Datasheet SCA-3 Datasheet (Stanford Microdevices)

Page 1
Product Description
Stanford Microdevices SCA-3 is a high performance Gallium Arsenide Heterojunction Bipolar Transistor MMIC Amplifier. A Darlington configuration is utilized for broadband performance up to 5GHz. The heterojunction increases breakdown voltage
SCA-3
DC-5 GHz, Cascadable GaAs HBT MMIC Amplifier
and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Typical IP3 at 850 MHz with 65mA is
NGA-489 Recommended for New Designs
32.8 dBm.
These unconditionally stable amplifiers provide 13.7 dB of gain and 17.3 dBm of 1dB compressed power and require only a single positive voltage supply. Only 2 DC-blocking capacitors, a bias resistor and an optional inductor are needed for operation. This MMIC is an ideal choice for wireless applica­tions such as cellular, PCS, CDPD, wireless data and SONET.
Product Features
High Output IP3: 32.8 dBm @ 850 MHz
Cascadable 50 Ohm Gain BlockPatented GaAs HBT Technology Operates From Single Supply
Applications
Cellular, PCS, CDPD, Wireless Data, SONET
dB
Small Signal Gain vs. Frequency @ ID=65mA
16
15
14
13
12
11
10
0123456
Frequency (GHz)
Electrical Specifications
lobmyS
Z
0
P
Bd1
PI
3
S
12
htdiwdnaBSybdenimreteD(
S
11
S
22
S
21
FNZ,erugiFesioN
V
D
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the users own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.
l-j,htR)dael-noitcnuj(ecnatsiseRlamrehT
RWSVtupnIzHM0005-CD=f- 1:7.1
GHz
I,smhO05=
D
niaGlangiSllamS
11S,22
RWSVtuptuOzHM0005-CD=f- 1:5.1
noitalosIesreveR
S
egatloVeciveDV4.49.44.5
:snoitidnoCtseT:sretemaraP
C°52=T,Am56=
noisserpmoCBd1tarewoPtuptuO
tnioPtpecretnIredrOdrihT
mBd0=enotreptuorewoP
)seulaVzHM0005
smhO05=zHM0591=fBd6.5
zHM058=f
zHM0591=f zHM0042=f
zHM058=f
zHM0591=f zHM0042=f
zHM058=f
zHM0591=f zHM0042=f
zHM058=f
zHM0591=f zHM0042=f
1
stinU .niM .pyT .xaM
mBd mBd mBd
mBd mBd mBd
Bd Bd Bd
Bd Bd Bd
o
W/C422
8.928.23
3.217.31
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
3.71
6.71
4.71
3.03
1.92
6.31
6.31
3.81
4.81
4.81
EDS-101392 Rev A
Page 2
SCA-3 DC-5GHz Cascadable MMIC Amplifier
Absolute Maximum Ratings
Operation of this device above any one of these parameters may cause permanent damage.
Bias Conditions should also satisfy the following expression: IDVD (max) < (TJ - TOP)/Rth, j-l
retemaraP
zHM005
niaG
erugiFesioN
3PItuptuO
Bd1PtuptuO
ssoLnruteRtupnI
noitalosI
zHM058
niaG
erugiFesioN
3PItuptuO
Bd1PtuptuO
ssoLnruteRtupnI
noitalosI
zHM0591
niaG
erugiFesioN
3PItuptuO
Bd1PtuptuO
ssoLnruteRtupnI
noitalosI
zHM0042
niaG
3PItuptuO
Bd1PtuptuO
ssoLnruteRtupnI
noitalosI
lacipyT noitidnoCtseT
C°52 tinU
7.31
4.5
3.23
1.71
8.21
2.81
7.31
5.5
8.23
3.71
3.21
3.81
6.31
6.5
3.03
6.71
9.21
2.81
6.31
1.92
4.71
2.51
4.81
Bd Bd
Z mBd mBd
Bd Bd
Bd Bd
Z mBd mBd
Bd Bd
Bd Bd
Z mBd mBd
Bd Bd
Bd
mBd mBd
Bd Bd
retemaraPeulaVtinU
tnerruCylppuS021Am
erutarepmeTgnitarepO58+ot04-C
rewoPtupnImumixaM61+mBd
egnaRerutarepmeTegarotS051+ot04-C
erutarepmeTnoitcnuJgnitarepO571+C
I(
D
S
S
S
smhO05=
smhO05=
smhO05=
detonesiwrehtosselnu,Am56=)
mBd0=enotreptuoP,zHM1=gnicapsenoT
mBd0=enotreptuoP,zHM1=gnicapsenoT
mBd0=enotreptuoP,zHM1=gnicapsenoT
mBd0=enotreptuoP,zHM1=gnicapsenoT
*NOTE: While the SCA-3 can be operated at different bias currents, 65 mA is the recommended bias for lower junction temperature and longer life. This reflects typical operating conditions which we have found to be an optimal balance between high IP3 and MTTF. In general, MTTF is improved to more than 100,000 hours when biasing at 65 mA and operating up to 85°C ambient temperature.
2
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EDS-101392 Rev A
Page 3
SCA-3 DC-5GHz Cascadable MMIC Amplifier
Junction Temp vs. Dissipated Power
250
Device Lead Temp = +85 C
230
210
190
+175C
170
Junction Temperature (°C)
150
0.35 0.45 0.55
Pdiss (W)
Output IP3 vs. ID vs. Frequency
40
35
dBm
30
25
0.51.52.53.5
GHz
IP3_65mA
IP3_80mA
IP3_100mA
MTTF vs. Dissipated Power
1.E+07
Device Lead Temp = +85C
1.E+06
1.E+05
MTTF (hrs)
1.E+04
1.E+03
0.35 0.45 0.55
Pdiss (W)
Output P1dB vs. ID vs. Frequency
20
19
18
dBm
17
16
15
0.5 1.5 2.5 3.5
GHz
P1dB_65mA
P1dB_80mA
P1dB_100mA
NF vs. ID vs. Frequency
6.5
6
dB
5.5
5
NF_65mA NF_80mA
NF_100mA
0.511.52
GHz GHz
Small Signal Gain vs. ID vs. Frequency
dB
15
14
13
G_65mA G_80mA G_100mA
12
0.51.52.53.5
3
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EDS-101392 Rev A
Page 4
SCA-3 DC-5GHz Cascadable MMIC Amplifier
#niPnoitcnuFnoitpircseD
1 NIFR roticapacgnikcolbCDlanretxenafoesuehtseriuqernipsihT.niptupniFR
2 DNG daelecuderotecnamrofreptsebrofselohaivesU.dnuorgotnoitcennoC
3 ccV/TUOFR lanretxenahguorhtnipsihtotdeilppusebdluohssaiB.nipsaibdnatuptuoFR
.dessapyb
4 DNG.2niPsaemaS
Application Schematic for Operation at 850 MHz
seulaVrotsiseRsaiBdednemmoceR
)sV(egatloVylppuSV8V9V21V51
)smhO(saibR
Am56@
)smhO(saibR
Am08@
)smhO(saibR
Am001@
7426011061
931519031
033486001
1uF
68pF
.noitarepofoycneuqerfehtrofnesohc
.elbissopsasdaeldnuorgotesolcsasaivecalP.ecnatcudni
sihtnotneserpsignisaibCDesuaceB.rotcudniekohcFRdnarotsiserseires
ees(snoitacilppatsomnidesuebdluohsroticapacgnikcolbCDa,nip
llewebdluohskrowtensaibehtfoedisylppusehT.)citamehcsnoitacilppa
Rbias
VS
33nH
50 ohm
microstrip
2
1
3
100pF
4
100pF
Application Schematic for Operation at 1950 MHz
50 ohm
microstrip
68pF
1uF
22pF
2
1
3
4
4
Rbias
22nH
68pF
50 ohm
microstrip
50 ohm
microstrip
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
VS
EDS-101392 Rev A
Page 5
S21, ID=65mA, T=25°C
16
15
14
dB
13
12
11
10
0123456
Frequency GHz
S11, ID=65mA, T=25°C
0
-5
-10
dB
-15
-20
-25
-30
0123456
Frequency GHz
SCA-3 DC-5GHz Cascadable MMIC Amplifier
S12, ID=65mA, T=25°C
-10
-15
dB
-20
-25
-30
0123456
0
-5
-10
dB
-15
-20
-25
-30
0123456
Frequency GHz
S22, I
=65mA, T=25°C
D
Frequency GHz
S11, ID=65mA, Ta=25°C
Freq. Min = 0.05 GHz
Freq. Max = 6.0 GHz
F = 6.0 GHz
S22, I
=65mA, Ta=25°C
D
5
Freq. Min = 0.05 GHz
Freq. Max = 6.0 GHz
F = 6.0 GHz
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EDS-101392 Rev A
Page 6
Appropriate precautions in handling, packaging and testing devices must be observed.
SCA-3 DC-5GHz Cascadable MMIC Amplifier
Part Number Ordering InformationCaution: ESD Sensitive
rebmuNtraPeziSleeRleeR/seciveD
3-ACS"70001
The part will be symbolized with a C3 designator on
Part Symbolization
the top surface of the package. Outline Drawing
Mounting Instructions
The data shown was taken on a 31 mil thick FR-4 board with 1 ounce of copper on both sides. The board was mounted to a baseplate with 3 screws as shown. The screws bring the top side copper temperature to the same value as the baseplate.
1. Use 1 or 2 ounce copper, if possible.
2. Solder the copper pad on the backside of the device package to the ground plane.
3. Use a large ground pad area with many plated through­holes as shown.
4. If possible, use at least one screw no more than 0.2 inch from the device package to provide a low thermal resistance path to the baseplate of the package.
5. Thermal resistance from ground lead to screws is 2 deg. C/W.
1
C3
2
3
PCB Pad Layout
4
6
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EDS-101392 Rev A
Loading...