Datasheet SCA-13 Datasheet (Stanford Microdevices)

Page 1
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.
1
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EDS-101393 Rev A
Product Description
10
11
12
13
14
15
16
0123456
Stanford Microdevices SCA-13 is a high performance Gallium Arsenide Heterojunction Bipolar Transistor MMIC Amplifier. A Darlington configuration is utilized for broadband performance up to 5GHz. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Typical IP3 at 850 MHz with 65mA is
32.8 dBm.
These unconditionally stable amplifiers provide 13.7 dB of gain and 17.3 dBm of 1dB compressed power and require only a single positive voltage supply. Only 2 DC-blocking capacitors, a bias resistor and an optional inductor are needed for operation. This MMIC is an ideal choice for wireless applica­tions such as cellular, PCS, CDPD, wireless data and SONET.
SCA-13
DC-5 GHz, Cascadable GaAs HBT MMIC Amplifier
NGA-489 Recommended for New Designs
Product Features
High Output IP3: 32.8 dBm @ 850 MHz
Cascadable 50 Ohm Gain BlockPatented GaAs HBT Technology Operates From Single Supply
Applications
Cellular, PCS, CDPD, Wireless Data, SONET
Electrical Specifications
GHz
lobmyS
:snoitidnoCtseT:sretemaraP
Z
0
I,smhO05=
D
C°52=T,Am56=
stinU .niM .pyT .xaM
P
Bd1
noisserpmoCBd1tarewoPtuptuO
zHM058=f
zHM0591=f zHM0042=f
mBd mBd mBd
3.71
6.71
4.71
PI
3
tnioPtpecretnIredrOdrihT
mBd0=enotreptuorewoP
zHM058=f
zHM0591=f zHM0042=f
mBd mBd mBd
8.23
3.03
1.92
S
12
niaGlangiSllamS
zHM058=f
zHM0591=f zHM0042=f
Bd Bd Bd
3.217.31
6.31
6.31
htdiwdnaBSybdenimreteD(
11S,22
)seulaVzHM0005
S
11
RWSVtupnIzHM0005-CD=f- 1:7.1
S
22
RWSVtuptuOzHM0005-CD=f- 1:5.1
S
21
noitalosIesreveR
zHM058=f
zHM0591=f zHM0042=f
Bd Bd Bd
3.81
4.81
4.81
FNZ,erugiFesioN
S
smhO05=zHM0591=fBd6.5
V
D
egatloVeciveDV4.49.44.5
l-j,htR)dael-noitcnuj(ecnatsiseRlamrehT
o
W/C422
dB
Small Signal Gain vs. Frequency @ ID=65mA
Frequency (GHz)
Page 2
2
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EDS-101393 Rev A
SCA-13 DC-5GHz Cascadable MMIC Amplifier
Absolute Maximum Ratings
retemaraPeulaVtinU
tnerruCylppuS021Am
erutarepmeTgnitarepO58+ot04-C
rewoPtupnImumixaM61+mBd
egnaRerutarepmeTegarotS051+ot04-C
erutarepmeTnoitcnuJgnitarepO571+C
Operation of this device above any one of these parameters may cause permanent damage.
Bias Conditions should also satisfy the following expression: IDVD (max) < (TJ - TOP)/Rth, j-l
retemaraP
lacipyT noitidnoCtseT
C°52 tinU
I(
D
detonesiwrehtosselnu,Am56=)
zHM005
niaG
erugiFesioN
3PItuptuO
Bd1PtuptuO
ssoLnruteRtupnI
noitalosI
7.31
4.5
3.23
1.71
8.21
2.81
Bd Bd
mBd
mBd Bd Bd
Z
S
smhO05=
mBd0=enotreptuoP,zHM1=gnicapsenoT
zHM058
niaG
erugiFesioN
3PItuptuO
Bd1PtuptuO
ssoLnruteRtupnI
noitalosI
7.31
5.5
8.23
3.71
3.21
3.81
Bd Bd
mBd
mBd Bd Bd
Z
S
smhO05=
mBd0=enotreptuoP,zHM1=gnicapsenoT
zHM0591
niaG
erugiFesioN
3PItuptuO
Bd1PtuptuO
ssoLnruteRtupnI
noitalosI
6.31
6.5
3.03
6.71
9.21
2.81
Bd Bd
mBd
mBd Bd Bd
Z
S
smhO05=
mBd0=enotreptuoP,zHM1=gnicapsenoT
zHM0042
niaG
3PItuptuO
Bd1PtuptuO
ssoLnruteRtupnI
noitalosI
6.31
1.92
4.71
2.51
4.81
Bd
mBd
mBd Bd Bd
mBd0=enotreptuoP,zHM1=gnicapsenoT
*NOTE: While the SCA-3 can be operated at different bias currents, 65 mA is the recommended bias for lower junction temperature and longer life. This reflects typical operating conditions which we have found to be an optimal balance between high IP3 and MTTF. In general, MTTF is improved to more than 100,000 hours when biasing at 65 mA and operating up to 85°C ambient temperature.
Page 3
3
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EDS-101393 Rev A
SCA-13 DC-5GHz Cascadable MMIC Amplifier
5
5.5
6
6.5
0.511.52
NF_65mA NF_80mA
NF_100mA
12
13
14
15
0.51.52.53.5
G_65mA G_80mA G_100mA
25
30
35
40
0.51.52.53.5
IP3_65mA
IP3_80mA
IP3_100mA
15
16
17
18
19
20
0.5 1.5 2.5 3.5
P1dB_65mA
P1dB_80mA
P1dB_100mA
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
0.35 0.45 0.55
Device Lead Temp = +85C
150
170
190
210
230
250
0.35 0.45 0.55
Device Lead Temp = +85 C
+175C
Output IP3 vs. ID vs. Frequency
GHz
GHz
Output P1dB vs. ID vs. Frequency
dBm
GHz GHz
dB
dB
NF vs. ID vs. Frequency
Small Signal Gain vs. ID vs. Frequency
dBm
Junction Temp vs. Dissipated Power
MTTF vs. Dissipated Power
Pdiss (W)
Pdiss (W)
MTTF (hrs)
Junction Temperature (°C)
Page 4
4
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EDS-101393 Rev A
SCA-13 DC-5GHz Cascadable MMIC Amplifier
#niPnoitcnuFnoitpircseD
1 NIFR roticapacgnikcolbCDlanretxenafoesuehtseriuqernipsihT.niptupniFR
.noitarepofoycneuqerfehtrofnesohc
2 DNG daelecuderotecnamrofreptsebrofselohaivesU.dnuorgotnoitcennoC
.elbissopsasdaeldnuorgotesolcsasaivecalP.ecnatcudni
3 ccV/TUOFR lanretxenahguorhtnipsihtotdeilppusebdluohssaiB.nipsaibdnatuptuoFR
sihtnotneserpsignisaibCDesuaceB.rotcudniekohcFRdnarotsiserseires
ees(snoitacilppatsomnidesuebdluohsroticapacgnikcolbCDa,nip
llewebdluohskrowtensaibehtfoedisylppusehT.)citamehcsnoitacilppa
.dessapyb
4 DNG.2niPsaemaS
Rbias
68pF
22nH
1uF
22pF
68pF
50 ohm
microstrip
50 ohm
microstrip
VS
Application Schematic for Operation at 850 MHz
Application Schematic for Operation at 1950 MHz
Rbias
100pF
33nH
1uF
68pF
100pF
50 ohm
microstrip
50 ohm
microstrip
VS
1
2
3
4
1
2
3
4
seulaVrotsiseRsaiBdednemmoceR
)sV(egatloVylppuSV8V9V21V51
)smhO(saibR
Am56@
7426011061
)smhO(saibR
Am08@
931519031
)smhO(saibR
Am001@
033486001
Page 5
5
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EDS-101393 Rev A
SCA-13 DC-5GHz Cascadable MMIC Amplifier
-30
-25
-20
-15
-10
-5
0
0123456
-30
-25
-20
-15
-10
0123456
-30
-25
-20
-15
-10
-5
0
0123456
10
11
12
13
14
15
16
0123456
S21, ID=65mA, T=25°C
dB
Frequency GHz
dB
dB
dB
Frequency GHz
S12, ID=65mA, T=25°C
S22, I
D
=65mA, T=25°C
Frequency GHz
Frequency GHz
S11, ID=65mA, T=25°C
S11, ID=65mA, Ta=25°C
S22, I
D
=65mA, Ta=25°C
Freq. Min = 0.05 GHz
Freq. Max = 6.0 GHz
Freq. Min = 0.05 GHz
Freq. Max = 6.0 GHz
F = 6.0 GHz
F = 6.0 GHz
Page 6
6
http://www.stanfordmicro.comPhone: (800) SMI-MMIC522 Almanor Ave., Sunnyvale, CA 94085
EDS-101393 Rev A
SCA-13 DC-5GHz Cascadable MMIC Amplifier
Mounting Instructions
The data shown was taken on a 31 mil thick FR-4 board with 1 ounce of copper on both sides. The board was mounted to a baseplate with 3 screws as shown. The screws bring the top side copper temperature to the same value as the baseplate.
1. Use 1 or 2 ounce copper, if possible.
2. Solder the copper pad on the backside of the device package to the ground plane.
3. Use a large ground pad area with many plated through­holes as shown.
4. If possible, use at least one screw no more than 0.2 inch from the device package to provide a low thermal resistance path to the baseplate of the package.
5. Thermal resistance from ground lead to screws is 2 deg. C/W.
1
2
3
4
rebmuNtraPeziSleeRleeR/seciveD
31-ACS"70001
Part Number Ordering InformationCaution: ESD Sensitive
Appropriate precautions in handling, packaging and testing devices must be observed.
PCB Pad Layout
Part Symbolization
The part will be symbolized with a C3 designator on
the top surface of the package. Outline Drawing
C3
Loading...