Datasheet SC4250 Datasheet (SEMTECH)

Page 1
查询SC4250供应商
Page 2
2 2005 Semtech Corp. www.semtech.com
SC4250
POWER MANAGEMENT
retemaraPlobmySsnoitidnoCtseTniMpyTxaMstinU
scitsiretcarahCCD
egnaRgnitarepOylppuSV
0108 V
tnerruCylppuSI
V=V0,V3=VU
EE
V=ESNES,
EE
35 Am
egatloVpirTrekaerBtiucriCV
V
V(=
ESNES
V-EE) 050607 Vm
tnerruCpu-lluPniPetaGI
UP
V,NOevirdetaG
ETAG
V=
EE
05-Aµ
tnerruCnwod-lluPniPetaGI
DP
noitidnoctluafynA04Am
tnerruCniPesneSI
ESNES
V
ESNES
Vm05=50.0-Aµ
evirDetaGlanretxE
V
ETAG
V(
ETAG
V-
EE
V02,) < VDD≤ V08 93161 V
V(
ETAG
V-
EE
V01,) VDD≤ V02 8
egatloVdlohserhThgiHniPVUV
HVU
noitisnarthgiHotwoLVU 142.1372.1503.1 V
egatloVdlohserhTwoLniPVUV
LVU
noitisnartwoLothgiHVU 291.1322.1352.1 V
sisretsyHniPVUV
YHVU
05 Vm
tnerruCtupnIniPVUI
VUNI
VVUV=
EE
1.0-Aµ
egatloVdlohserhThgiHniPVOV
HVO
noitisnarthgiHotwoLVO 291.1322.1352.1 V
egatloVdlohserhTwoLniPVOV
LVO
noitisnartwoLothgiHVO 351.1881.1322.1 V
sisretsyHniPVOV
YHVO
53Vm
tnerruCtupnIniPVOI
VONI
V
VO
V5.150.0-Aµ
Unless specified: TA = 25°C, VCC = 48V, VEE = 0V. Values in bold apply over full operating temperature range.
Absolute Maximum Ratings
Electrical Characteristics
Exceeding the specifications below may result in permanent damage to the device or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied.
retemaraP lobmySmumixaMstinU
egatloVylppuSV
CC
001ot3.0-V
DGRWP/DGRWP,NIARD 001ot3.0-V
ETAG,ESNES 02ot3.0-V
VO,VU 06ot3.0-V
tneibmAotnoitcnuJecnatsiseRlamrehT
θ
AJ
861C°
esaCotnoitcnuJecnatsiseRlamrehT
θ
CJ
8.83C°
egnaRerutarepmeTnoitcnuJgnitarepOT
J
521ot04-C°
egnaRerutarepmeTegarotST
GTS
051ot56-C°
ces01)gniredloS(erutarepmeTdaeLT
DAEL
003C°
Page 3
3 2005 Semtech Corp. www.semtech.com
POWER MANAGEMENT
SC4250
Electrical Characteristics (Cont.)
Unless specified: TA = 25°C, VCC = 48V, VEE = 0V. Values in bold apply over full operating temperature range.
Note: (1) This device is ESD sensitive. Use of standard ESD handling precaution is required.
retemaraPlobmySsnoitidnoCtseTniMpyTxaMstinU
dlohserhTdooGrewoPV
GP
V
NIARD
V-
EE
noitisnartwoLothgiH,5.157.10.2V
siseretsyHdlohserhTdooGrewoPV
YHGP
4.0V
tnerruCsaiBtupnIniarDI
NIARD
V
NIARD
V84= 5105 Aµ
egatloVwoLtuptuOV
LO
V,H0524CS
LO
V-DGRWP=
NIARD
V@
NIARD
I,V5=
O
Am1=
1V
V,L0524CS
LO
V-DGRWP=
EE
V@
NIARD
I,V1=
O
Am1=
1V
egakaeLtuptuOI
HO
V,H0524CS
NIARD
V-
EE
V,V1=
DGRWP
V08= 0.101 Aµ
V,L0524CS
NIARD
V-
EE
V5= 0.101 Aµ
scitsiretcarahCCA
woLetaGothgiHVOt
VOLHP
7.1sµ
woLetaGotwoLVUt
VULHP
5.1sµ
hgiHetaGotwoLVOt
VOHLP
5.5sµ
hgiHetaGotwoLVUt
VUHLP
5.6sµ
woLetaGothgiHESNESt
ESNESLHP
3sµ
woLDGRWPotwoLNIARD
)NIARD-DGRWP(otwoLNIARD
hgiH
t
GPLHP
5.0
sµ
hgiHDGRWPothgiHNIARD
)NIARD-DGRWP(othgiHNIARD
woL
t
GPHLP
5.0sµ
yaleDemiT-emiTNOetaGt
1_NO
V
NIARD
tiucrictrohsretfa,V8>5sµ
yaleDemiT-emiTNOetaGt
2_NO
V
NIARD
tiucrictrohsretfa,V7<052sµ
Page 4
4 2005 Semtech Corp. www.semtech.com
SC4250
POWER MANAGEMENT
Notes:
(1) Only available in tape and reel packaging. A reel contains 2500 devices.
(2) Lead free product. This product is fully WEEE and RoHS compliant.
rebmuNtraPegakcaP
)1(
RTSIH0524CS
8-OS
TRTSIH0524CS
)2(
RTSIL0524CS
TRTSIL0524CS
)2(
Pin Configuration Ordering Information
Pin Descriptions
1
2
3
4
VCCPWRGD/PWRGD
TOP VIEW
(SO-8)
5
6
7
8
DRAINOV
GATEUV
SENSEVEE
niPemaNniPnoitcnuFniP
1DGRWP/DGRWPVnehwelggotlliwnipsihT.niptuptuodooGrewoP
NIARD
Vnihtiwsi
GP
Vfo
EE
nacnipsihT.
.lanoitposiEEVotFµ1.0,eludomrewopafonipelbaneehtotyltceriddetcennoceb
2VO egatlovrevona,dlohserhtV322.1ehtevobadellupsiVOnehW.tupniegatlovrevOgolanA
lliwnipETAGehT.woldellupyletaidemmieblliwnipETAGehtdnadetcetedsinoitidnoc
.dlohserhtwolothgihV881.1ehtwolebspordVOlitnuwolniamer
3VU na,dlohserhtV322.1ehtwolebdellupsiVUnehW.tupniegatlovrednUgolanA
ehT.woldellupyletaidemmieblliwnipETAGehtdnadetcetedsinoitidnocegatlovrednu
oslasinipVUehT.dlohserht372.1ehtevobasesirVUlitnuwolniamerlliwnipETAG
sinipVUehtfI.noisrev"FFOhctal"ehtnirekaerbtiucriccinortceleehtteserotdesu
dnatesersirekaerbtiucriceht,rekaerbtiucricehtfopirtehtgniwollofhgihdnawoldelcyc
.ruccolliwecneuqespu-rewoplamrona
4EEV .ylppusrewopehtfolaitnetoprewolehtottcennoC.tupniegatlovylppusevitageN
5ESNES VneewtebhtapylppusehtnidecalprotsiseresnesahtiW.nipesnesrekaerbtiucriC
EE
sdeecxerotsiserehtssorcaegatlovehtnehwpirtlliwrekaerbtiucriceht,ESNESdna
fI.rekaerbtiucricehtpirttonlliwdnatuoderetliferasµ2nahtsselfosekipsesioN.Vm06
siVm52ylno,tnerrucgnitarepolamronehteciwtottessitnerrucpirtrekaerbtiucriceht
,rekaerbtiucricehtelbasidoT.noitarepolamrongnirudrotsiseresnesehtssorcadeppord
V
EE
.rehtegotdetrohsebnacESNESdna
6ETAG gniwollofehtnehwhgihoglliwnipETAGehT.lennahc-NlanretxeroftuptuoevirdetaG
V(dnawolsinipVOeht,hgihsinipVUeht:temerasnoitidnocpu-trats
ESNES
V-
EE
<)
Am04ahtiwwoldellupdnaecruostnerrucAµ05aybhgihdellupsinipETAGehT.Vm06
.ecruostnerruc
7NIARD TEFlennahc-NlanretxeehtfoniardehtotnipsihttcennoC.tupniesnesniarDgolanA
VwolebsinipNIARDehtnehW.eludomrewopehtfonip)-(Vehtdna
GP
roDGRWPeht,
.elggotlliwnipDGRWP
8CCV ylppusrewopehtfolaitnetoprehgihehtotnipsihttcennoC.tupniegatlovylppusevitisoP
eludomrewopehtfonip)+(Vehtdnatupni
Page 5
5 2005 Semtech Corp. www.semtech.com
POWER MANAGEMENT
SC4250
Block Diagrams
Active High PWRGD
Active Low PWRGD
60mV
+
_
_
+
_
+
_
+
+
_
+7V
Dela y
DRAINGATESENSEVee
Vcc
12.5V Reg 1.223V
1.75V
PWRG D
50uA
UV
OV
60mV
+
_
_
+
_
+
_
+
+
_
+7V
Dela y
DRAINGATESENSEVee
Vcc
12.5V Reg 1.223V
1.75V
PWRG D
50uA
UV
OV
Page 6
6 2005 Semtech Corp. www.semtech.com
SC4250
POWER MANAGEMENT
Applications Information
Insertion of a power circuit board into a live backplane would draw enormous inrush currents. This is mostly due to the charging of the bulk electrolytic capacitors at the input of the power module being plugged in.
The transient currents would send glitches all over the power system and could cause corruption of the signals and even a power down if the source isn’t able to handle these high surges.
This section describes the components selection needed for a typical application utilizing the SC4250. Let’s assume the following requirements for a representative system:
Input voltage range: 36V to 72V
Nominal current: 2A typ.
Over-current condition: 5A
Bulk capacitance: Cload = 150µF
The schematic in Figure 2 combines internal function blocks along with the external components of the application circuit.
Resistors R1, R2 and R3 make up a voltage divider to set the Under-Voltage (UV) and Over-Voltage (OV) trip points.
When the input power supply ramps up the UV trips at
1.273V and OV trips at 1.223V; during the ramp down transition the UV trips at 1.223V and OV trips at 1.198V.
The 50mV hysteresis for UV and 25mV hysteresis for OV provide the necessary guard-bands to prevent false tripping during power up and power down conditions.
As an additional noise killing and stabilizing measure, the capacitor C1 should be placed at the OV terminal with the value in range from 1,000 to 10,000pF.
For the UV=38V and OV=70V the values of the resistor can be calculated as follows:
Vuv = 1.273V · (R1+R2+R3) ÷ (R2+R3)
Vov = 1.223V · (R1+R2+R3) ÷ R3
With the input bias current of the UV and OV comparators in the range of 20-30nA, let’s choose the R1 to be
562k. This yields the values of R2=9.31kΩ and R3 =
10.2k. With these values the accuracy is about 1%
which is quite acceptable for those functions.
Figure 2
60mV
+
_
_
+
_
+
_
+
+
_
+7V
Delay
Q1
DRAINGATE
R4
SENSEVee
Vcc
12.5V Reg 1.223V
1.75V
PWRGD
50uA
Cloa d 150uF
C3
R5
R1
R2
R3
C2
UV
OV
-48V
+48V
C
1
R6
Page 7
7 2005 Semtech Corp. www.semtech.com
POWER MANAGEMENT
SC4250
Applications Information (Cont.)
Resistor R4 sets the over-current trip. To choose R4, the user must determine the level of the current where it should trip. As a rule of thumb, the over-current is set to be 200-300% of the nominal value. In our case, we assumed this value to be 5A.
Considering the minimum trip voltage is 50mV the value
of R4 is 50mV ÷ 5A = 10 mΩ.
The tolerance of this resistor is usually price driven and 5% is an adequate range of accuracy.
The actual position and layout of the circuitry around the sense resistor R4 is critical to avoid a false over-current tripping. The trace routing between R4 and SC4250 should be as short as possible and wide enough to handle the maximum current with zero current in the sense lines – ideally “Kelvin” like. Additionally, there is a short delay circuit at the comparator to filter out unwanted noise and otherwise induced transients.
Inrush Current
is being controlled by the R5C3 network
and swamping capacitor C2.
When a board is plugged into a live backplane, the input bulk capacitance of the board’s power supply produces large current transients due to the rush of the currents charging those capacitors. The main feature of the SC4250 is to provide an orderly and well-controlled inrush current.
Since the minimum trip voltage is 50mV, let’s choose the inrush current to be 3A.
Imax = Cload ·
Vmax /dt
dt = Cload ·
Vmax /Imax = 150µF · 70V / 3A = 3.5ms
This would be the minimum time for the gate voltage plateau during which the Vdd linearly decreases maintaining 3A charge current of the Cload. The inrush can be calculated using the following equation:
I
MAX
= (50µA • C
LOAD
) / C3
With the values shown in the schematic the actual inrush current will be about 2A, which is within the limits we have chosen.
Resistor R5 will produce a time constant which prevents Q1 from turning on when power is initially applied and the circuit is not ready to actively pull the gate low. It’s value is not critical and 18k ensures the adequate delay.
The value of C2 is chosen to prevent false turn-on of the FET due to the current flowing via C3 into the gate of the FET when the circuit initially connects to the power source. Capacitors C2 and C3 form a divider from Vin to GND. C2 must keep the initial voltage at the gate below Vth minimum.
For the typical FET, this threshold is around 1V to 2V, therefore C2 = 100 • C3 will keep gate voltage at 0.7V, even at the ”worst” case of Vin = 70V. The choice of the Q1 is quite straightforward and is guided mostly by thermal considerations due to the power dissipation in the steady state.
For instance, in our case, the nominal current is 2A, the power dissipation due to the conducting losses will be
Pdis = Inom² • Rds_on.
The MOSFET should be able to withstand Vdss
100V
with continuous drain current Id 6A. Device SUD06N10 or similar fits this application. It has an Rds_on = 0.2Ω,
and will dissipate
Pdis = 2² • 0.2 = 0.8W, which can be handled by this DPAK device.
If there is a consideration of reducing the temperature of the MOSFET then the lower Rds_on device should be chosen or a different style (D2PAK) which has lower Junction-to-Ambient thermal characteristics.
The R6
has a function of dumping high frequency
oscillations. The value of it is not critical and can be in
the range of 5 to 20Ω.
Page 8
8 2005 Semtech Corp. www.semtech.com
SC4250
POWER MANAGEMENT
Typical Characteristics
Below are the snap-shots taken at start-up with different loading conditions and during the application of the over­current at the output of the circuit.
For all figures, Ch1: V
DRAIN
; Ch2: V
GATE
; Ch3: PWRGD; Ch4: VR4 (Input current)
Figure 3. Start-up with no load.
Figure 4. Start-up with 1A load.
Figure 5. Start-up with “over the limit” load. Figure 6. Over-current/Short circuit.
Page 9
9 2005 Semtech Corp. www.semtech.com
POWER MANAGEMENT
SC4250
Typical Characteristics (Cont.)
The following set of snapshots demonstrates effectiveness of SC4250 circuit in the case where connection to the live back plane is very “bouncy”, which is usually the situation with manual replacements of the power cards.
For all figures, Ch1: V
DRAIN
; Ch2: V
GATE
; Ch3: PWRGD (referenced to V
DRAIN
); Ch4: VR4 (Input current)
Figure 7. Start-up with no load.
Figure 8. Start-up with 1A load.
Figure 9. Start-up with “over the limit” load.
Figure 10. Over-current/Short circuit.
Page 10
10 2005 Semtech Corp. www.semtech.com
SC4250
POWER MANAGEMENT
Evaluation Board Schematic
Figure 12
Evaluation Board
C3
0.33
C5
150
+Vout
-Vout
GND
-- 48V
R5 10
R1
562k
R3
10.2k R4
0.01
R6 18k
R2
9.31k
C4
3.3nF
DRAIN
7
UV
3
VEE
4
GATE
6
PWRGD/PWRGD
1
SENSE
5
VCC
8
OV
2
U1
SC4250H/L
GND(remote)
C2(opt)
0.01
+Vin
-Vin
ON/OFF
POWER
MODULE
C1
0.1
C6(opt)
0.1
R7 (opt)
Copt
0.1
Q1
IRF1310
Figure 11
Page 11
11 2005 Semtech Corp. www.semtech.com
POWER MANAGEMENT
SC4250
feRytQrotangiseDeulaVnoitpircseDtnirptooF
111CV001/1.0paccimareC0121
21 ).tpo(2C10.0paccimareC5080
313C33.0paccimareCS6021
414CV001/3300.0paccimareC5080
515CV08/051pacmunimulAH-LA-PAC
61 ).tpo(6CV001/1.0paccimareC0121
711Q0131FRITEFSOMKAP2D
811Rk265rotsiseR5080
912Rk13.9rotsiseR5080
0113Rk2.01rotsiseR5080
1114R10.0rotsiseRSC0102
2115R01rotsiseR5080
3116Rk81rotsiseR5080
4117Rk1.5rotsiseRS6021
5111U0524CSCIhcetmeS8-OS
Evaluation Board - Bill of Materials
Page 12
12 2005 Semtech Corp. www.semtech.com
SC4250
POWER MANAGEMENT
Outline Drawing - SO-8
Minimum Land Pattern - SO-8
Semtech Corporation
Power Management Products Division
200 Flynn Road, Camarillo, CA 93012
Phone: (805)498-2111 FAX (805)498-3804
Contact Information
SEE DETAIL
DETAIL
A
A
.050 BSC
.236 BSC
8
.010
.150
.189
.154
.193
.012
-
8
0.25
1.27 BSC
6.00 BSC
3.90
4.90
-
.157
.197
3.80
4.80
.020 0.31
4.00
5.00
0.51
bxN
2X N/2 TIPS
SEATING
aaa C
E/2
2X
12
N
A
D
A1
E1
bbb C A-B D
ccc C
e/2
A2
(.041)
.004
.008
-
.028
-
-
-
-
.016
.007
.049
.004
.053
0.20
0.10
-
0.40
0.17
1.25
0.10
.041
.010
.069
.065
.010
1.35
(1.04)
0.72-1.04
0.25
-
-
-
1.75
1.65
0.25
0.25
-
.010 .020 0.50
-
c
L
(L1)
01
0.25
GAGE
PLANE
h
h
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
-B-
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
DATUMS AND TO BE DETERMINED AT DATUM PLANE
NOTES:
1.
2.
-A-
-H-
SIDE VIEW
A
B
C
D
e
H
PLANE
REFERENCE JEDEC STD MS-012, VARIATION AA.
4.
L1
N
01
bbb
aaa
ccc
A
b
A2
A1
D
E
E1
L
h
e
c
DIM
MIN
MILLIMETERS
NOM
DIMENSIONS
INCHES
MIN MAX MAXNOM
E
(.205) (5.20)
Z
G
Y
P
(C)
3.00
.118
1.27
.050
0.60.024
2.20.087
7.40.291
X
INCHES
DIMENSIONS
Z
P
Y
X
DIM
C G
MILLIMETERS
THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.
NOTES:
1.
REFERENCE IPC-SM-782A, RLP NO. 300A.
2.
Loading...