Datasheet SC1548CSK-15.TR, SC1548CSK-18.TR, SC1548CSKTR Datasheet (Semtech Corporation)

Page 1
1 www.semtech.com
SC1548
Linear Fet Controller
POWER MANAGEMENT
Revision 1, January 2001
Typical Application Circuit
The SC1548 is a power supply controller designed to provide a simple single regulated power supply with over current protection. It is part of Semtechs SmartLDO family of products. The SC1548 can provide a 1.818V power supply for the I/O plane or 1.515V for GTL+ / AGP from either 3.3V or 2.5V. An adjustable option allows generation and control of any voltage from 1.263V up to 5V.
SC1548 features include tight output voltage regulation, an enable control and over current protection. Over current protection is provided by feedback to the sense pin. If the output drops below 50% of the nominal output voltage (typical) for greater than 4ms (typical), the output will be shut down.
The SC1548 is available in a tiny 5-pin SOT-23 surface mount package.
u Motherboards u Graphics cards u Microcontrollers u Simple power supplies
u ± 2.5% output accuracy over line, load and
temperature
u 1.515V, 1.818V and adjustable output voltage
options available
u Enable control u Over current protection u 5-pin SOT-23 package
1.818V OUT
3.3V IN 12V IN
ENABLE
Q1
IRL530N
C4
0.1uF
+
C1 100uF
+
C2 100uF
+
C3 22uF
U1
SC1548CSK-1.8
1 2 3 4
5
SNS GND DRV IN
EN
Adjustable Output Voltage Version
2.5V OUT
3.3V IN 12V IN
ENABLE
Q1
IRL530N
C4
0.1uF
+
C1 100uF
+
C2 100uF
+
C3 22uF
R1
97.6
R2 100
U1
SC1548CSK
1 2 3 4
5
ADJ GND DRV IN
EN
Fixed Output Voltage Versions
Description Features
Applications
Page 2
2ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
retemaraP lobmySmumixaMstinU
egatloVylppuStupnI V
NI
51+ot5.0-V
sniPtupnI V
JDA
V,
NE
V,
SNS
7+ot5.0-V
esaCotnoitcnuJecnadepmIlamrehT
q
CJ
18W/C°
tneibmAotnoitcnuJecnadepmIlamrehT
q
AJ
652W/C°
egnaRerutarepmeTtneibmAgnitarepO T
A
07+ot0C°
egnaRerutarepmeTnoitcnuJgnitarepO T
J
521+ot0C°
egnaRerutarepmeTegarotS T
GTS
051+ot56-C°
ceS01)gniredloS(erutarepmeTdaeL T
DAEL
003C°
retemaraPlobmySsnoitidnoCtseTniMpyTxaMstinU
NI
egatloVylppuSV
NI
82.11 00.21 27.21 V
tnerruCtnecseiuQI
Q
0.15.1Am
0.2
tuokcoLegatlovrednU
dlohserhTtratSOLVU789V
NE
tnerruCniPelbanEI
NE
V
NE
V0=001051Aµ
egatloVdlohserhTV
)NE(HT
V
NE
gnisir8.13.2V
siseretsyHV
TSYH
002Vm
emiTyaleDelbanE
)3()2(
t
)NO(D
V
NE
morfderusaem,hgiHotwoL=
V
NE
V=
)NE(HT
V%01ot
VRD
005sn
emiTyaleDelbasiD
)3()2(
t
)FFO(D
V
NE
morfderusaem,woLothgiH=
V
NE
V=
)NE(HT
V%09ot
VRD
051sn
)straPegatloVtuptuOdexiF(SNS
tnerruCniPesneSI
SNS
gnikniS 57 001 521 Aµ
)straPegatloVtuptuOelbatsujdA(JDA
tnerruCniPtsujdAI
JDA
gnicruoS52.0Aµ
egatloVecnerefeR
)2(
V
JDA
V0.3 £ V
RWP
)4(
£ Am1,V6.3 £ I
TUO
£ A1%5.1-362.1%5.1+V
%5.2-%5.2+
Absolute Maximum Ratings
Electrical Characteristics
(1)
Unless specified: TA = 25°C, VIN = 12V, V
PWR
= 3.3V, I
OUT
= 0A. Values in bold apply over full operating temperature range.
Page 3
3ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
Notes:
(1) This device is ESD sensitive. Use of standard ESD handling precautions is required. (2) See Application Circuit on page 1. (3) See Timing Diagram on page 4. (4) Connected to FET drain.
retemaraPlobmySsnoitidnoCtseTniMpyTxaMstinU
)straPegatloVtuptuOdexiF(noitalugeRegatloVtuptuO
egatloVtuptuO
)2(
V
TUO
V0.3 £ V
RWP
)4(
£ Am1,V6.3 £ I
TUO
£ A1%5.1-V
TUO
%5.1+V
%5.2-%5.2+
VRD
tnerruCtuptuOI
VRD
V
VRD
V,V4=
SNS
V2.1= 5 01Am
egatloVtuptuOV
VRD
I,nOlluF
VRD
Am0= 0.9 5.01V
emiTesiR
)3()2(
t
r
V
NE
morfderusaem,hgiHotwoL=
V
NE
V=
)NE(HT
V%09ot
VRD
0.1sm
emiTllaF
)3()2(
t
f
V
NE
morfderusaem,woLothgiH=
V
NE
V=
)NE(HT
V%01ot
VRD
055sµ
noitcetorPtnerrucrevO
dlohserhTpirTV
)CO(HT
03 05 07 V%
TUO
trohStuptuOpu-rewoP
ytinummItiucriC
15 06sm
hctilGtiucriCtrohStuptuO
ytinummI
5.0401sm
noitceSlortnoC
htdiwdnaBV
VRD
C,%5=DHT,V9=
L
Fp006=5zHM
Unless specified: TA = 25°C, VIN = 12V, V
PWR
= 3.3V, I
OUT
= 0A. Values in bold apply over full operating temperature range.
Electrical Characteristics (Cont.)
(1)
Page 4
4ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
Timing Diagram
Page 5
5ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
Pin Descriptions
Top View
SOT-23-5L
Notes:
(1) Where -X.X denotes voltage options. Available voltages are: 1.515V (-1.5) and 1.818V (-1.8). Leave blank for adjustable version. (2) Only available in tape and reel packaging. A reel contains 3000 units.
rebmuNtraP
)2()1(
egakcaP
RT.X.X-KSC8451CS5-32-TOS
Pin Configuration Ordering Information
Block Diagram
niPemaNniPnoitcnuFniP
1SNS
JDA
ehtfoecruosehtotesnesetomerasaesU.snoitpoegatlovtuptuodexifroftupniesnesrotalugeR
.TEFSOMlennahc-N
otrefer(swollofsaegatlovtuptuoteS.noisrevegatlovtuptuoelbatsujdaroftupniesnesrotalugeR
:)1egapnotiucricnoitacilppa
2DNG.dnuorG
3VRD tuptuoehtniatniamotTEFSOMlennahc-NnafoetagehtsevirD.rotalugerfotuptuO
.derisedegatlov
4NI.ylppusV21+
5NE siNEnehwffosnrutrotalugerfotuptuO.pulluplanretnihtiwlortnocelbanehgihevitcA
.wolnekat
 
 
+=
2R
1R
1263.1VO
Page 6
6ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
0
25
50
75
100
125
150
0 25 50 75 100 125
T
J
(°C)
I
EN
(µA)
VIN = 12V V
EN
= 0V
0
100
200
300
400
500
600
700
800
900
1000
0 25 50 75 100 125
T
J
(°C)
t
D(ON)
(ns)
VIN = 12V
Enable Pin Current vs.
Junction Temperature
Enable Delay Time vs.
Junction Temperature
Quiescent Current vs. Junction Temperature
Start Threshold vs.
Junction Temperature
Enable Threshold Voltage
vs. Junction Temperature
Enable Hysteresis vs. Junction Temperature
Typical Characteristics
(1)
0
100
200
300
400
500
600
700
800
900
1000
0 25 50 75 100 125
T
J
(°C)
I
Q
(µA)
VIN = 12V, VEN = 3.3V
6.0
6.5
7.0
7.5
8.0
8.5
9.0
0 25 50 75 100 125
T
J
(°C)
UVLO (V)
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30
0 25 50 75 100 125
T
J
(°C)
V
TH(EN)
(V)
VIN = 12V V
EN
rising
0
50
100
150
200
250
300
350
400
450
500
0 25 50 75 100 125
T
J
(°C)
V
HYST
(mV)
VIN = 12V V
EN
falling
Page 7
7ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
Typical Characteristics (Cont.)
(1)
0
25
50
75
100
125
150
175
200
0 25 50 75 100 125
T
J
(°C)
t
D(OFF)
(ns)
VIN = 12V
75
80
85
90
95
100
105
110
115
120
125
0 25 50 75 100 125
T
J
(°C)
I
SNS
(µA)
VIN = 12V V
EN
= 3.3V
V
SNS
= V
O(NOM)
9.00
9.50
10.00
10.50
11.00
11.50
12.00
0 25 50 75 100 125
T
J
(°C)
V
DRV
(V)
VIN = 12V V
SNS
= 0V
I
DRV
= 0mA
1.790
1.795
1.800
1.805
1.810
1.815
1.820
1.825
1.830
1.835
1.840
1.845
0 25 50 75 100 125
T
J
(°C)
V
O
(V)
VIN = 12V V
EN
= 3.3V
3.0V ≤ V
PWR
≤ 3.6V
1mA ≤ I
O
≤ 1A
Disable Delay Time vs.
Junction Temperature
Sense Pin Current vs. Junction Temperature
Drive Output Voltage vs.
Junction Temperature
Output Voltage (SC1548CSK-1.8)
vs. Junction Temperature
OCP Trip Threshold (SC1548CSK-1.8)
vs. Junction Temperature
Power-Up Output Short Circuit Immunity
vs. Junction Temperature
0
0.2
0.4
0.6
0.8
1
1.2
0 25 50 75 100 125
T
J
(°C)
V
TH(OC)
(V)
VIN = 12V V
EN
= 3.3V
0
1
2
3
4
5
6
7
8
9
10
0 25 50 75 100 125
T
J
(°C)
Power-up Short Circuit Immunity (ms)
VIN = 12V V
EN
switched from 0V to 3.3V
R
OUT
= 0
Two representative parts shown
Page 8
8ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
Output Short Circuit Glitch Immunity
vs. Junction Temperature
Drive Pin Rise Time vs.
Junction Temperature
Drive Pin Fall Time vs.
Junction Temperature
SC1548CSK-1.8 Small Signal Gain
and Phase Shift vs. Frequency
Typical Characteristics (Cont.)
(1)
0
1
2
3
4
5
6
7
8
0 25 50 75 100 125
T
J
(°C)
Short Circuit Glitch Immunity (ms)
VIN = 12V V
EN
= 3.3V
R
OUT
of 0Ω applied to output
Two representative parts shown
0
200
400
600
800
1000
1200
0255075100125
T
J
(°C)
t
r
(µs)
VIN = 12V V
EN
switched from 0V to 3.3V
Two repr esentative p a r ts shown
SC1548CSK-1.5 Small Signal Gain
and Phase Shift vs. Frequency
SC1548CSK Small Signal Gain
and Phase Shift vs. Frequency
0
100
200
300
400
500
600
700
800
900
1000
0 25 50 75 100 125
T
J
(°C)
t
f
(µs)
VIN = 12V V
EN
switched from 3.3V to 0V
Two representative parts shown
-80
-60
-40
-20
0
20
40
60
80
1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06
Gain (dB)
f (Hz)
-360
-315
-270
-225
-180
-135
-90
-45
0
Phase (°)
Gain
Phase
I
OUT
= 1.8A
-80
-60
-40
-20
0
20
40
60
80
1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06
f (Hz)
Gain (dB)
-360
-315
-270
-225
-180
-135
-90
-45
0
Phase (°)
Gain
Phase
I
OUT
= 1.8A
-80
-60
-40
-20
0
20
40
60
80
1.00E+02 1.00E+03 1.00E+04 1.00E+05 1.00E+06
f (Hz)
Gain (dB)
-360
-315
-270
-225
-180
-135
-90
-45
0
Phase (°)
V
OUT
= 2V
I
OUT
= 1.8A
Gain
Phase
Page 9
9ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
Typical Characteristics (Cont.)
(1)
Trace 1: V
OUT
, AC coupled, 50mV/div.
Trace 2: V
DRV
, 2V/div. Trace M3: load stepping from 1A to 0A Timebase: 1µs/div
Load Transient Response, Expanded
Trace 1: V
DRV
, 1V/div. Trace 2: VEN, 2V/div. Timebase: 100ns/div t
D(OFF)
» 36ns
Disable Delay Time, t
D(OFF)
Load Transient Response
Trace 1: V
OUT
, AC coupled, 50mV/div.
Trace 2: V
DRV
, 2V/div. Trace M3: load stepping from 0A to 1A to 0A Timebase: 10µs/div
Load Transient Response, Expanded
Trace 1: V
OUT
, AC coupled, 50mV/div.
Trace 2: V
DRV
, 2V/div. Trace M3: load stepping from 0A to 1A Timebase: 1µs/div
Page 10
10ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
Typical Characteristics (Cont.)
(1)
Trace 1: V
DRV
, 1V/div. Trace 2: VEN, 2V/div. Timebase: 500µs/div tr » 1ms
Drive Output Rise Time, t
r
Trace 1: V
DRV
, 5V/div. Trace 2: VEN, 2V/div. Timebase: 2ms/div SC1548 enabled into a short, therefore V
OUT
< V
TH(OC)
immediately the device is enabled. This device shuts down after 8ms.
Power-up Output Short Circuit Immunity
Drive Output Fall Time, t
f
Trace 1: V
DRV
, 1V/div. Trace 2: VEN, 2V/div. Timebase: 100ns/div tf » 350ns
Enable Delay Time, t
D(ON)
Trace 1: V
DRV
, 1V/div. Trace 2: VEN, 2V/div. Timebase: 250ns/div t
D(ON)
» 550ns
Page 11
11ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
Theory Of Operation
The SC1548 linear FET controller provides a simple way to drive an N-channel MOSFET to produce a tightly regulated output voltage from an available, higher, supply voltage. It takes its power from a 12V supply, drawing typically 2mA while operating.
It contains an internal bandgap reference which is compared to the output voltage via a resistor divider. This resistor divider is internal on the fixed output voltage options, and user selectable on the adjustable option. Since the drive pin can pull up to a 9V guaranteed minimum, the device can be used to regulate a large range of output voltages by careful selection of the external MOSFET (see component selection, below).
The SC1548 includes an active high enable control with an internal pullup resistor. If this pin is pulled low, the drive pin is pulled low, turning off the N-channel MOSFET. If the pin is left open or pulled up to 2.5V, 3.3V or 5V, then the drive pin will be enabled.
Also included is an overcurrent protection circuit that monitors the output voltage. If the output voltage drops below 50% of nominal, as would occur during an overcurrent or short condition, the device will pull the drive pin low and latch off.
Fixed Output Voltage Options
Please refer to the Application Circuit on Page 1. The fixed output voltage parts have an internal resistor divider that draws a nominal 100µA from the output. The voltage at the common node of the resistor divider is then compared to the bandgap reference voltage of
1.263V. The drive pin voltage is then adjusted to maintain the output voltage set by the resistor divider. Referring to the block diagram on page 5, the nominal resistor values are:
egatloVtuptuOk(1R W)k(1R W)
V515.125.236.21
V818.155.536.21
Typical Characteristics (Cont.)
(1)
Output Short Circuit Glitch Immunity
Trace 1: V
DRV
, 5V/div.
Trace 2: V
OUT
, 1V/div. Timebase: 1ms/div SC1548 enabled, then shorted, therefore V
OUT
< V
TH(OC)
immediately the short is applied. This
device shuts down after 5ms.
Note:
(1) See Applications Circuit on page 1.
Applications Infomation
Page 12
12ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
It is possible to adjust the output voltage of the fixed voltage options, by applying an external resistor divider to the sense pin (please refer to Figure 1 below). Since the sense pin sinks a nominal 100µA, the resistor values should be selected to allow 10mA to flow through the divider. This will ensure that variations in this current do not adversely affect output voltage regulation. Thus a target value for R2 (maximum) can be calculated:
mA10
V
2R
)FIXED(OUT
The output voltage can only be adjusted upwards from the fixed output voltage, and can be calculated using the following equation:
VoltsA1001R
2R
1R
1VV
)FIXED(OUT)ADJUSTED(OUT
µ+
 
 
+=
Adjustable Output Voltage Option
The adjustable output voltage option does not have an internal resistor divider. The adjust pin connects directly to the inverting input of the error amplifier, and the output voltage is set using external resistors (please refer to Figure 2 above). In this case, the adjust pin sources a nominal 0.5µA, so the resistor values should be selected to allow 50µA to flow through the divider.
Again, a target value for R2 (maximum) can be calculated:
µ≤A50
V263.1
2R
The output voltage can be calculated as follows:
1RA5.0
2R
1R
1263.1V
OUT
µ
 
 
+=
Applications Infomation (Cont.)
VOUT
VPWR
12V IN
ENABLE
R1
R2
Q1
C4
0.1uF
+
C3 22uF
+
C2 100uF
+
C1 100uF
U1
SC1548CSK-X.X
1 2 3 4
5
SNS GND DRV IN
EN
Figure 1: Adjusting The Output Voltage of Fixed Output Voltage Options
VOUT
VPWR
12V IN
ENABLE
Q1
C4
0.1uF
+
C1 100uF
+
C2 100uF
+
C3 22uF
R1
R2
U1
SC1548CSK
1 2 3 4
5
ADJ GND DRV IN
EN
Figure 2: Setting The Output Voltage of the Adjustable Output Voltage Option
Page 13
13ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
Please see Table 1 below for recommended resistor values for some standard output voltages. All resistors are 1%, 1/10W.
)V(TUOV(1R W)(2R W)
5.17.81001
8.12.24001
5.26.79001
8.2421201
0.3041201
3.3961501
Table 1: Recommended Resistor Values For SC1548
The maximum output voltage that can be obtained from the adjustable option is determined by the input supply voltage and the R
DS(ON)
and gate threshold voltage of the external MOSFET. Assuming that the MOSFET gate threshold voltage is sufficiently low for the output voltage chosen and a worst-case drive voltage of 9V, V
OUT(MAX)
is given by:
)MAX)(ON(DS)MAX(OUT)MIN(PWR)MAX(OUT
RIVV =
Short Circuit Protection
The short circuit protection feature of the SC1548 is implemented by using the R
DS(ON)
of the MOSFET. As the output current increases, the regulation loop maintains the output voltage by turning the FET on more and more. Eventually, as the R
DS(ON)
limit is reached, the MOSFET will be unable to turn on any further, and the output voltage will start to fall. When the output voltage falls to approximately 50% of nominal, the LDO controller is latched off, setting output voltage to 0V. Power must be cycled to reset the latch.
To prevent false latching due to capacitor inrush currents or low supply rails, the current limit latch is initially disabled. It is enabled at a preset time (nominally 5ms) after both IN and EN rise above their lockout points. If EN is left floating (using the internal resistor pullup), then V
PWR
should come up before VIN, or the device will latch off. If the enable function is not being used, EN should be tied to V
PWR
.
To be most effective, the MOSFET R
DS(ON)
should not be selected artificially low. The MOSFET should be chosen so that at maximum required current, it is almost fully turned on. If, for example, a supply of 1.5V at 4A is required from a 3.3V ± 5% rail, the maximum allowable R
DS(ON)
would be:
()
= m400
4
025.15.13.395.0
R
)MAX)(ON(DS
To allow for temperature effects 200mW would be a suitable room temperature maximum, allowing a peak short circuit current of approximately 15A for a short time before shutdown.
Capacitor Selection
Output Capacitors: low ESR aluminum electrolytic or tan-
talum capacitors are recommended for bulk capacitance, with ceramic bypass capacitors for decoupling high frequency transients.
Input Capacitors: placement of low ESR aluminum electrolytic or tantalum capacitors at the input to the MOSFET (V
PWR
) will help to hold up the power supply during fast load changes, thus improving overall transient response. The 12V supply should be bypassed with a
0.1µF ceramic capacitor.
Layout Guidelines
One of the advantages of using the SC1548 to drive an external MOSFET is that the bandgap reference and control circuitry do not need to be located right next to the power device, thus a very accurate output voltage can be obtained since heating effects will be minimal.
The 0.1µF bypass capacitor should be located close to the supply pin, and connected directly to the ground plane. The ground pin of the device should also be connected directly to the ground plane. The sense or adjust pin does not need to be close to the output voltage plane, but should be routed to avoid noisy traces if at all possible.
Power dissipation within the device is practically negligible, requiring no special consideration during layout.
Applications Infomation (Cont.)
Page 14
14ã 2001 Semtech Corp. www.semtech.com
SC1548
POWER MANAGEMENT
Outline Drawing - SOT-23-5
Semtech Corporation
Power Management Products Division
652 Mitchell Rd., Newbury Park, CA 91320
Phone: (805)498-2111 FAX (805)498-3804
Contact Information
Land Pattern - SOT-23-5
Loading...