Datasheet SAA7199BWP Datasheet (Philips)

Page 1
INTEGRATED CIRCUITS
DATA SH EET
SAA7199B
Digital Video Encoder (DENC) GENLOCK-capable
Product specification Supersedes data of April 1993 File under Integrated Circuits, IC22
1996 Sep 27
Page 2
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable

FEATURES

Monolithic integrated CMOS video encoder circuit
Standard MPU (12 lines) and I2C-bus interfaces for
controls
Three 8-bit signal inputs PD7 to PD0 for RGB respectively YUV or indexed colour signals (Tables 19 to 26)
Square pixel and CCIR input data rates
Band limited composite sync pulses
Three 256 × 8 colour look-up tables (CLUTs)
for example for gamma correction
External subcarrier from a digital decoder (SAA7151B or SAA7191B)
Multi-purpose key for real time format switching
Autonomous internal blanking
Optional GENLOCK operation with adjustable horizontal
sync timing and adjustable subcarrier phase
Stable GENLOCK operation in VCR standard playback mode
Optional still video capture extension
Three suitable video 9-bit digital-to-analog converters
Composite analog output signals CVBS, Y and C for
PAL/NTSC
Line 21 data insertion possible.
SAA7199B

GENERAL DESCRIPTION

The SAA7199B encodes digital baseband colour/video data into analog Y, C and CVBS signals (S-video included). Pixel clock and data are line-locked to the horizontal scanning frequency of the video signal. The circuit can be used in a square pixel or in a consumer TV application. Flexibility is provided by programming facilities via MPU-bus (parallel) or I2C-bus (serial).

QUICK REFERENCE DATA

SYMBOL PARAMETER MIN. TYP. MAX. UNIT
V
DDD
V
DDA
I
P(tot)
V
I
V
o
R
L
digital supply voltage (pins 2, 21 and 41) 4.5 5.0 5.5 V analog supply voltage (pins 64, 66, 70 and 72) 4.75 5.0 5.25 V total supply current −−200 mA input signal levels TTL-compatible analog output voltage Y, C and CVBS without load (peak-to-peak value) 2 V
output load resistance 90 −−Ω ILE LF integral linearity error in output signal (9-bit DAC) −−±1 LSB DLE LF differential linearity error in output signal (9-bit DAC) −−±0.5 LSB T
amb
operating ambient temperature 0 70 °C

ORDERING INFORMATION

TYPE
NUMBER
NAME DESCRIPTION VERSION
SAA7199BWP PLCC84
plastic leaded chip carrier; 84 leads
PACKAGE
SOT189-2
1996 Sep 27 2
Page 3
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable

BLOCK DIAGRAM

outputs to
Y 
67
DACs
TRIPLE
ENCODER
OUTPUT
+5 V
to
DDA1
V
KEY
DDA4
V
CUR
refH
V
TP
66, 70,
72, 64
71
63
73
53
C 
65
monitor/TV
CVBS
69
BUFFERS
SSA
V
68
SAA7199B
XTALI
refL
V
62
SAA7199B
XTALO
59
60
CLOCK INTERFACE
MEH416
52495051235556
CLKO CLKSEL
CB
LLC
CREF
358846174753635
VSN/CSYN PIXCLK CLKIN
SLT
ook, full pagewidth
+5 V
to V
V
MPK
to V
V
SSD3
SSD1
DDD3
DDD1
1, 22, 42
32
2, 21, 41
(1)
3 × 8-bit input data
11 to 4
(1)
PD1(7 to 0)
(digital red)
RTCI
MATRIX
3 ¥
CLUTS
256 ¥ 8
INPUT
INTERFACE
19 to 12
(digital green)
PD2(7 to 0)
31 to 24
(1)
PD3(7 to 0)
(digital blue)
internal control bus
83 to 76
20
LDV
CVBS(7 to 0)
STATUS
REGISTER
SYNC PROCESSING
46 to 43,
40 to 37
34 33
CONTROL INTERFACE
5754
C-BUS
2
I
CONTROL
48
47
SCL
SDA
C-bus
2
I
LFCO
HCL
CS
A1
RTCI/
GPSW
RESET
HSY HSN
D(7 to 0)
R/W
to/from microcontroller
A0
Fig.1 Block diagram.
1996 Sep 27 3
(1) RGB respectively input formats YUV and indexed colour (Tables 19 to 26).
Page 4
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable

PINNING

SYMBOL PIN DESCRIPTION
V
SSD1
V
DDD1
VSN/CSYN 3 vertical sync output (3-state), conditionally composite sync output; active LOW or active HIGH PD1(0) 4 data 1 input: digital signal R (red) respectively V signal; bit 0 (formats in Tables 19 to 25) PD1(1) 5 data 1 input: digital signal R (red) respectively V signal; bit 1 (formats in Tables 19 to 25) PD1(2) 6 data 1 input: digital signal R (red) respectively V signal; bit 2 (formats in Tables 19 to 25) PD1(3) 7 data 1 input: digital signal R (red) respectively V signal; bit 3 (formats in Tables 19 to 25) PD1(4) 8 data 1 input: digital signal R (red) respectively V signal; bit 4 (formats in Tables 19 to 25) PD1(5) 9 data 1 input: digital signal R (red) respectively V signal; bit 5 (formats in Tables 19 to 25) PD1(6) 10 data 1 input: digital signal R (red) respectively V signal; bit 6 (formats in Tables 19 to 25) PD1(7) 11 data 1 input: digital signal R (red) respectively V signal; bit 7 (formats in Tables 19 to 25) PD2(0) 12 data 2 input: digital signal G (green) respectively Y signal or indexed colour data; bit 0
PD2(1) 13 data 2 input: digital signal G (green) respectively Y signal or indexed colour data; bit 1
PD2(2) 14 data 2 input: digital signal G (green) respectively Y signal or indexed colour data; bit 2
PD2(3) 15 data 2 input: digital signal G (green) respectively Y signal or indexed colour data; bit 3
PD2(4) 16 data 2 input: digital signal G (green) respectively Y signal or indexed colour data; bit 4
PD2(5) 17 data 2 input: digital signal G (green) respectively Y signal or indexed colour data; bit 5
PD2(6) 18 data 2 input: digital signal G (green) respectively Y signal or indexed colour data; bit 6
PD2(7) 19 data 2 input: digital signal G (green) respectively Y signal or indexed colour data; bit 7
LDV 20 load data clock input signal to input interface (samples PDn(7 to 0), V
DDD2
V
SSD2
CB 23 composite blanking input; active LOW PD3(0) 24 data 3 input: digital signal B (blue) respectively U signal; bit 0 (formats in Tables 19 to 25) PD3(1) 25 data 3 input: digital signal B (blue) respectively U signal; bit 1 (formats in Tables 19 to 25) PD3(2) 26 data 3 input: digital signal B (blue) respectively U signal; bit 2 (formats in Tables 19 to 25) PD3(3) 27 data 3 input: digital signal B (blue) respectively U signal; bit 3 (formats in Tables 19 to 25) PD3(4) 28 data 3 input: digital signal B (blue) respectively U signal; bit 4 (formats in Tables 19 to 25) PD3(5) 29 data 3 input: digital signal B (blue) respectively U signal; bit 5 (formats in Tables 19 to 25) PD3(6) 30 data 3 input: digital signal B (blue) respectively U signal; bit 6 (formats in Tables 19 to 25) PD3(7) 31 data 3 input: digital signal B (blue) respectively U signal; bit 7 (formats in Tables 19 to 25) MPK 32 multi-purpose key input; active HIGH A0 33 subaddress bit A0 input for microcontroller access (Table 3)
1 digital ground 1 (0 V) 2 digital supply 1 (5 V)
(formats in Tables 19 to 25)
(formats in Tables 19 to 25)
(formats in Tables 19 to 25)
(formats in Tables 19 to 25)
(formats in Tables 19 to 25)
(formats in Tables 19 to 25)
(formats in Tables 19 to 25)
(formats in Tables 19 to 25)
CB, MPK, KEY and RTCI) 21 digital supply 2 (5 V) 22 digital ground 2 (0 V)
1996 Sep 27 4
Page 5
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable
SYMBOL PIN DESCRIPTION
A1 34 subaddress bit A1 input for microcontroller access (Table 3)
W 35 read/write not input signal from microcontroller
R/ CS 36 chip select input for parallel interface; active LOW D0 37 bidirectional port from/to microcontroller; bit D0 D1 38 bidirectional port from/to microcontroller; bit D1 D2 39 bidirectional port from/to microcontroller; bit D2 D3 40 bidirectional port from/to microcontroller; bit D3 V
DDD3
V
SSD3
D4 43 bidirectional port from/to microcontroller; bit D4 D5 44 bidirectional port from/to microcontroller; bit D5 D6 45 bidirectional port from/to microcontroller; bit D6 D7 46 bidirectional port from/to microcontroller; bit D7 SDA 47 I SCL 48 I CLKIN 49 external clock signal input (maximum frequency 60 MHz) CLKSEL 50 clock source select input PIXCLK 51 CLKO/2 or conditionally CLKO output signal CLKO 52 selected clock output signal (LLC or CLKIN) TP 53 test pin; connected to ground RESET 54 reset input; active LOW LLC 55 line-locked clock input signal from external clock generation circuit (CGC) CREF 56 clock qualifier input of external CGC GPSW/RTCI 57 general purpose switch output (set via I
SLT 58 GENLOCK output flag (3-state): HIGH = sync lost in GENLOCK mode; LOW = otherwise XTALI 59 crystal oscillator input (26.8 or 24.576 MHz) XTALO 60 crystal oscillator output LFCO 61 line frequency control output signal for external CGC V
refL
V
refH
V
DDA4
C 65 chrominance analog output signal V
DDA1
Y 67 luminance analog output signal V
SSA
CVBS 69 CVBS analog output signal V
DDA2
CUR 71 current input for analog output buffers V
DDA3
KEY 73 key input signal to insert CVBS input signal into encoded CVBS output signal; active HIGH
41 digital supply 3 (5 V) 42 digital ground 3
2
C-bus data input/output
2
C-bus clock input
2
C-bus or MPU-bus); real time control input, defined
by I2C or MPU programming
62 reference voltage LOW of DACs (resistor chains) 63 reference voltage HIGH of DACs (resistor chains) 64 analog supply 4 for resistor chains of the DACs (5 V)
66 analog supply 1 for output buffer amplifier of DAC1 (5 V)
68 analog ground (0 V)
70 analog supply 2 for output buffer amplifier of DAC2 (5 V)
72 analog supply 3 for output buffer amplifier of DAC3 (5 V)
1996 Sep 27 5
Page 6
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
SYMBOL PIN DESCRIPTION
HSY 74 horizontal sync indicator output signal; active HIGH (3-state output to ADC) HCL 75 horizontal clamping output; active HIGH (3-state output) CVBS0 76 digital CVBS input signal; bit 0 CVBS1 77 digital CVBS input signal; bit 1 CVBS2 78 digital CVBS input signal; bit 2 CVBS3 79 digital CVBS input signal; bit 3 CVBS4 80 digital CVBS input signal; bit 4 CVBS5 81 digital CVBS input signal; bit 5 CVBS6 82 digital CVBS input signal; bit 6 CVBS7 83 digital CVBS input signal; bit 7 HSN 84 horizontal sync output; active LOW or active HIGH for 60/66/72 × PIXCLK at
12.27/13.5/14.75 MHz (3-state output)
SAA7199B
1996 Sep 27 6
Page 7
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
handbook, full pagewidth
PD1(7)
PD1(6)
PD1(5)
PD1(4)
PD1(3)
PD1(2)
9
8
7
6
PD2(0) PD2(1) PD2(2) PD2(3) PD2(4) PD2(5) PD2(6) PD2(7)
LDV
V
DDD2
V
SSD2
PD3(0) PD3(1) PD3(2) PD3(3) PD3(4) PD3(5) PD3(6) PD3(7)
MKP
CB
11
10
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PD1(1) 5
PD1(0) 4
DDD1VSSD1
VSN/CSYN
V
3
2
SAA7199B
SAA7199B
HSN
CVBS7
CVBS6
CVBS5
CVBS4
CVBS3
CVBS2
CVBS1
CVBS0
HCL
1
84
83
82
81
80
79
78
77
76
75
HSY
74
KEY
73 72
V
DDA3
CUR
71 70
V
DDA2
CVBS
69 68
V
SSA
Y
67 66
V
DDA1
C
65 64
V
DDA4
63
V
refH
62
V
refL
LFCO
61
XTALO
60
XTALI
59
SLT
58
RTCI/
57
GPSW CREF
56
LLC
55 54
RESET
33
34
35
36
37
38
39
40
41
42
A0
A1
R/W
CS
D0
D1
D2
D3
DDD3
V
SSD3
V
Fig.2 Pin configuration.
1996 Sep 27 7
43 D4
44 D5
45 D6
46 D7
47
SDA
48
SCL
49
CLKIN
50
51
PIXCLK
CLKSEL
52
CLKO
53 TP
MEH417
Page 8
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable

FUNCTIONAL DESCRIPTION

The SAA7199B is a digital video encoder that translates digital RGB, YUV or 8-bit indexed colour signals into the analog PAL/NTSC output signals Y (luminance), C (4.43/3.58 MHz chrominance) and CVBS (composite signal including sync).
Four different modes are selectable (Table 18):
Stand-alone mode (horizontal and vertical timings are generated)
Slave mode (stand-alone unit that accepts external horizontal and vertical timing), and optional real time information for subcarrier/clock from a digital colour decoder
GENLOCK mode (GENLOCK capabilities are achieved in conjunction with determined ICs)
Test mode (only clock signal is required).
The input data rate (pixel sequence) has an integer relationship to the number of horizontal clock cycles (Table 1). A sufficient stable external clock signal ensures correct encoding. The generated clock frequency in the GENLOCK mode may deviate by ±7% depending on the reference signal which is corresponding to its input sync signal. The clock will be nominal in the GENLOCK mode when the reference signal is absent (nominal with crystal oscillator accuracy for TV time constants, and nominal ±1.4% for VCR time constants).
The on-chip colour conversion matrix provides “ code-compatible transcoding of RGB to YUV data.
RGB data out of bounds, with respect to specification, can be clipped to prevent over-loading of the colour modulator. RGB data input can be either in linear colour space or in gamma-corrected colour space.
YUV data must be gamma-corrected in accordance with “
CCIR 601”
colour space (3 × 8-bit) but can also accommodate different data formats (4 :1:1, 4:2:2 and 4:4:4) plus 8-bit indexed pseudo-colour space operations (FMT-bits in Table 8).
RGB CLUTs on-chip provide gamma-correction and/or other CLUT functions. They consist of programmable tables to be loaded independently, and they generate 24-bit gamma-corrected output signals from 24-bit data of one of the input formats or from 8-bit indexed pseudo-colour data.
. This circuit operates primarily in a 24-bit
CCIR 601”
“CCIR 601”
SAA7199B
Required modulation is performed. The digital YUV data is encoded in accordance with standards (composite NTSC) and PAL-B/G). S-video output signal is available (Y/C) also some sub-standard output signals (STD-bits in Table 12).
A 7.5 IRE set-up level is automatically selected in the 60 Hz mode, but not selected in the 50 Hz mode.
The analog signal outputs can drive directly into terminated 75 coaxial lines, a passive external filter is recommended (Figs 3, 13 and 14). Analog post-filtering is required (LP in Fig.3).
GENLOCK to an external reference signal is achieved by addition of a video ADC and a clock generator combination. Thus, the system is enabled to lock on a stable video source or to a stable VCR source (normal playback). The SAA7199B, the ADC and the clock generator combination (Fig.3) form a control loop achieving a highly stable line-locked clock. The clock has to be generated by a crystal oscillator without this availability. The GENLOCK mode is not available in a single device set-up.
Control interface
The SAA7199B supports a standard parallel MPU interface and the serial I direct access to internal control registers and colour tables. Update is possible at any time, excluding coincident internal reading and external writing of the same cell (the current pixel value could be destroyed).
The two interfaces of Table 2 are selected automatically. However, the I2C-bus control is inactive when the MPU interface is selected by CS = LOW. No simultaneous access may occur. I2C-bus and MPU control complement each other and have access to common registers controlled via a common internal bus. The programmer can use virtually identical programs.
The internal memory space is devided into the look-up table and the control table, each with its own 8-bit address register used as a pointer for specific location. This address register is provided with auto-incrementation and can be written by only one addressing.
The look-up table contains three banks of 256 bytes. Therefore, each read or write cycle must access all three banks in a pre-determined order. The support logic is part of the control interface.
“CCIR 624-4
2
C-bus interface. The MPU has
“RS-170A
” (composite
1996 Sep 27 8
Page 9
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
Timing (see Fig.3) The reference to generate internal clocks from LLC in
GENLOCK operation with SAA7197 is CREF CREF = .
In this event input CLKSEL is HIGH and the SRC-bit = 1. In non-GENLOCK operation the signal from CLKIN is used
and LDV is clock reference (input CLKSEL = 0; SCR-bit = CPR-bit = 0).
Pins LLC and CLKIN are tied together when no switching between LLC and CLKIN is applied. In Fig.3 it is assumed that LLC and CLKIN are double the pixel clock frequency of CREF and LDV respectively.
CREF must be at the same frequency (or constant HIGH or LOW) when LLC is at pixel clock frequency. CPR-bit = 1 if CLKIN is at pixel clock frequency.
The buffered CLKO signal is always delayed. LLC or CLKIN signals are in accordance with CLKSEL.
Mapping
The method of mapping external control signals on to the internal bus is simple. The MPU-bus contains the signals as shown in Table 4 (names in chip-internal nomenclature).
LLC
----------­2
SAA7199B
Bit allocation
The Bit Allocation Map (BAM) shows the individual control signals, used to control the different operational modes of the circuit. The I The SAA7199B also has an MPU-bus interface for direct microcontroller connection. The BAM shown in Table 6 resembles the I2C-bus type but can be also used for the parallel bus; the control registers are indexed from 00H to 0FH. Auto-incrementation is applied.
Digital-to-analog converters
The converters use a combination of resistor chains with low-impedance output buffers. The bottom output voltage is 200 mV to reduce integral non-linearity errors. The analog signal, without load on output pin, is between
0.2 and 2.2 V. Figure 16 shows the application for
1.23 V/75 outputs, using the serial 25 + 22 resistors. Each digital-to-analog converter has its own supply pin for
the purpose of decoupling. V the resistor chains of the three DACs. The accuracy of this supply voltage directly influences the output amplitudes. The current CUR into pin 71 is 0.3 mA (V R
=20kΩ); a larger current improves the bandwidth
64-71
but increases the integral non-linearity.
2
C-bus is normally used for control.
is the supply voltage for
DDA4
=5V;
DDA4
Table 1 Pixel relationships
ACTIVE PIXELS
PER LINE
640 (square) 60 780 12.27 26.8 720 60 858 13.5 24.576 768 50 944 14.75 26.8 720 50 864 13.5 24.576
Table 2 Access to the control interface
SYMBOL DESCRIPTION
SDA I SCL I A1, A0 MPU-bus address inputs
W read/write control input
R/ CS chip select input; I2C-bus disabled when LOW GPSW general purpose switch output (bit of control register) RESET reset input signal; active-LOW
FIELD RATE
(Hz)
2
C-bus serial data line (bidirectional)
2
C-bus clock line
MULTIPLES OF LINE
FREQUENCY
PIXCLK OUTPUT SIGNAL
(MHz)
CRYSTAL
(MHz)
1996 Sep 27 9
Page 10
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
Table 3 Address assignment
ADDRESS INPUTS
A1 A0
0 0 00 ADR-CLUT (address register of look-up tables) 0 1 01 DATA-CLUT 1 0 02 ADR-CTRL (index register of control table) 1 1 03 DATA-CTRL
Table 4 Signals on the internal bus
SYMBOL DESCRIPTION
W select read/write (read = 1; write = 0)
R/
T control table/look-up table (control table = 1; look-up table = 0)
C/
A select data/address (data = 1; address = 0)
D/ DI/DO (0 to 7) data bus on port inputs/outputs D7 to D0 EN enable from control interface to synchronize data transfer
I2C-BUS SUBADDRESS SELECTION
SAA7199B
Table 5 Signals on the internal bus
2
INTERNAL PARALLEL BUS PARALLEL INTERFACE I
R/
WR/W (pin 35) LSB of slave address byte (read = HIGH; write = LOW) T A1 (pin 34) X 4 subaddresses after decoding
C/
T A0 (pin 33) X 4 subaddresses after decoding
A/ DI/DO (0 to 7) D7 to D0 data bits D7 to D0 for each subaddress EN
CS and R/W enable by every 9th clock of sample of SCL
(control of serial-to-parallel conversion)
C-BUS INTERFACE
1996 Sep 27 10
Page 11
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
optional)
(passive filters 
analog outputs
LFCO
LLC
RESET CREF
(2)
RTCI
HSY GPSW
HCL
ook, full pagewidth
SAA7197 (CGC)
(1)
GPSW
LFCO
LLCA
CREF
RESET
C
LP
SAA7199B
Y
LP
C
Y
SAA7199B
CVBS
LP
CVBS
MHA 418
CLKO CLKIN
XTALI
XTALO
TP
CLKSEL
)
pix
or 2f
mode
pix
(f
pixel frequency
in non-GENLOCK
CLK LLC2A
TDA8708A (ADC)
VIN0
(1)
CVBS1
RTCO (from SAA7151B or SAA7191B)
CVBS2
D(7 to 0)
VIN1
8
C-bus controls
2
I
CVBS(7 to 0)
SDA
SCL
HSN
PIXCLK
VSN
data
input
PD2(7 to 0)
PD1(7 to 0)
8
8
RAM
data
PD3(7 to 0)
LDV
8
INTERFACE
controls
1996 Sep 27 11
CB
KEY
R/W
A0 A1 SLT
CS
D(7 to 0)
MPK
Fig.3 System configuration.
8
MPU
INTERFACE
controls
(1) Not necessary in GENLOCK mode.
(2) RTCI optional (GPSW not possible).
Page 12
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable
Table 6 Bit allocation map (I2C-bus access in Table 17)
INDEX DATA BYTE
BINARY HEX D7 D6 D5 D4 D3 D2 D1 D0
Input processing
0000 0000 00 VTBY FMT2 FMT1 FMT0 SCBW CCIR MOD1 MOD0 5C 0000 0001 01 TRER7 TRER6 TRER5 TRER4 TRER3 TRER2 TRER1 TRER0 XX 0000 0010 02 TREG7 TREG6 TREG5 TREG4 TREG3 TREG2 TREG1 TREG0 XX 0000 0011 03 TREB7 TREB6 TREB5 TREB4 TREB3 TREB2 TREB1 TREB0 XX
Sync processing
0000 0100 04 SYSEL1 SYSEL0 SCEN VTRC NINT HPLL HLCK
(2)
0000 0101 05 0 0 GDC5 GDC4 GDC3 GDC2 GDC1 GDC0 21 0000 0110 06 IDEL7 IDEL6 IDEL5 IDEL4 IDEL3 IDEL2 IDEL1 IDEL0 52 0000 0111 07 0 0 PSO5 PSO4 PSO3 PSO2 PSO1 PSO0 32
Control, clock and output formatter
0000 1000 08 DD KEYE SRC CPR COKI IM GPSW SRSN 64 0000 1001 09 0 BAME MPKC1 MPKC0 IEPI RTSC RTIN RTCE 02 0000 1010 0000 1011
(3) (3)
0A 0B
(3)
0000000000
(3)
0000000000
OEF
(2)
10
DF
(1)
Encoder control
0000 1100 0C CHPS7 CHPS6 CHPS5 CHPS4 CHPS3 CHPS2 CHPS1 CHPS0 XX
(4)
0000 1101 0D FSCO7 FSCO6 FSCO5 FSCO4 FSCO3 FSCO2 FSCO1 FSCO0 00
(2)
0000 1110 0E 0 0 0 CLCK 0000 1111
(3)
0F
(3)
00000000
STD3 STD2 STD1 STD0 0C
Notes
1. DF is the default value for a typical programming example: GENLOCK mode for a VCR; non-gamma-corrected RGB data (real time keying is possible). SLT will be set if there is no horizontal lock.NTSC-M standard with normal colour bandwidth and 12.2727 MHz pixel rate. CSYN signal will be provided, arriving 8 pixel clocks earlier, to compensate pipeline delay in the previous RAM interface. The encoded CVBS is 12 clocks earlier than the CVBS reference on the input of the previous ADC. The CLUTs are bypassed at MPK = HIGH in real time.
2. Read only bits.
3. Reserved.
4. Adjust as required.
1996 Sep 27 12
Page 13
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable
Table 7 Function of registers bits of Table 6
BIT FUNCTION
Index 00 VTBY video look-up table by-pass: 0 = not bypassed; 1 = bypassed (logically OR-ed with MPK) FMT2 to FMT0 input formats see Table 8 SCBW chrominance bandwidth: 0 = enhanced; 1 = standard CCIR select level: 0 = DMSD2 levels; 1 = CCIR levels MOD1 to MOD0 select mode see Table9
2
Index 01
test register red (read/write via MPU-bus; write only via I
TRER7 to TRER0 Index 02
test register green (read/write via MPU-bus; write only via I
TREG7 to TREG0 Index 03
test register blue (read/write via MPU-bus; write only via I
TREB7 to TREB0 Index 04
sync select see Table 10
SYSEL1 to SYSEL0 SCEN sync/clamping (HSY/HCL) enable: 0 = disabled (set to HIGH); 1 = enabled VTRC select TV/VTR mode: 0 = TV mode (slow); 1 = VTR mode (fast) NINT select interlace of encoded signal: 0 = interlaced (262.5/262.5 or 312.5/312.5);
1 = non-interlaced (262/262 or 312/312 in modes 1 and 3 only) HPLL select horizontal lock: 0= lock enabled; 1 = lock disabled (crystal reference) OEF status bit field organization (to be read): 0 = even field; 1 = odd field HLCK status bit sync indication (to be read): 0 = locked to external sync; 1 = external sync lost Index 05
GDC5 to GDC0
GENLOCK delay compensation; note 1: data 00 to 3F equals timing of CVBS output signal
which is (46 GDC) pixel clocks = t
(t
corresponds to the falling edge of the horizontal sync pulse of CVBS input signal; t
REF1
earlier with respect to reference point t
ofs
designated for propagation delay of external GENLOCK source, Fig.10). Index 06
increment delay: update of line-locked clock frequency (Table 6, data ‘43’ hex recommended) IDEL7 to IDEL0
Index 07 PSO7 to PSO0
Phase sync in output signal, note 1: data 00 to 3F equals to active slope of HSN, VSN/CSYN is
(58 PSO) pixel clocks = t
PSO = 58; t
is designated for pipeline delay of the feeding RAM interface, Fig.10).
Rint
earlier with respect to reference point t
Rint
Index 08 DD digital video encoder disable: 0 = enabled; 1 = disabled KEYE keying enable: 0 = disabled; 1 = enabled (logically AND-connected with KEY) SRCC clock source: 0 = external system clock; 1 = DTV2 system clock CPR clock phase reference: 0 = LDV is input (pin 20); 1 = LDV is not COKI colour-killer: 0 = colour on; 1 = colour off (subcarrier is switched off) IM interrupt mask: 1 = interrupt not masked at sync lost (pin 58) 0 = interrupt masked at sync lost
(pin 58) GPSW general purpose switch at bit RTIN = 1: 0 = pin 57 LOW; 1 = pin 57 HIGH SRSN software reset: 0 = no reset; 1 = reset (see “Reset” procedure) Index 09 BAME Burst amplitude indication: 0 = burst amplitude measurement is overridden; colour lock always
assumed; 1 = burst amplitude is used to control the CLCK status bit, recommended for
reference signal without subcarrier burst (pure black and white) in order to avoid PLL hunting. MPKC1 to MPKC0 multipurpose key control: with MKP = LOW (pin 32) all functions are as given by software
programming; MKP = HIGH sets in real time with respect to PDn (7 to 0); functions see Table 11
C-bus)
2
C-bus)
2
C-bus)
REF2
REF1
(t
corresponds to
REF2
.
ofs
is
1996 Sep 27 13
Page 14
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable
BIT FUNCTION
IEPI polarity of external PAL-ID signal (H/2 signal) from RTCI input (pin 57): 0 = not inverted;
1 = inverted RTSC Real time select control: 0 = real time control HPLL increment is selected, which means,
information concerning actual clock frequency from the digital colour decoder is received
(SAA7151B or SAA7191B); the corresponding subcarrier frequency is calculated; 1 = real time
control FSC increment with PAL-ID is selected, which means, information concerning actual
subcarrier frequency and PAL-ID from the digital colour decoder is received (SAA7151B or
SAA7191B). RTIN select real time control input: 0 = pin 57 is input for RTCI signal; 1 = pin 57 is port output GPSW RTCE real time control enabled: 0 = disabled; 1 = enabled (RTIN = 0) Index 0C
CHPS7 to CHPS0 Index 0D
FSC7 to FSC0 Index 0E CLCK lock to external chrominance (to be read): 0 = possible; 1 = not possible STD3 to STD0 colour encoding standards; see Table 12
status bits to be read via I
status bits to be read by microcontroller: all registers from 00 up to 0F can be read via
phase adjustment between chrominance output signal and reference: 00 to FF equals
0 to 358.59375 degrees in steps of 1.40625 degrees
fine adjustment of subcarrier frequency in non-GENLOCK modes: 00 to 7F increasing and
FF to 80 decreasing equal approximately to 450 × 10
2
C-bus: see Table 15
MPU-bus, read only bits are OEF, HCLK (index 04) and CLCK (index 0E)
-6
of the subcarrier frequency in 256 steps
Note
1. Field blanking (Figs 11 and 12): normally, video to be encoded should not become active after the active edge of VSN or CSYN before line 22.5 at 50 Hz (line 18 at 60 Hz). Total internal field blanking is 11 lines at 50 Hz (13 lines at 60 Hz).
Table 8 Input formats
FMT2 FMT1 FMT0 FORMAT
0 0 0 YUV4:1:1format; DMSD2 compatible 0 0 1 YUV4:1:1format; customized 0 1 0 YUV4:2:2format; DMSD2 compatible 0 1 1 YUV4:2:2format; customized 1 0 0 YUV4:4:4format 1 0 1 RGB4:4:4format 1 1 0 reserved 1 1 1 8-bit indexed colour
Table 9 Select mode
MOD1 MOD0 MODE
0 0 GENLOCK mode 0 1 stand alone mode 1 0 slave mode 1 1 test mode
1996 Sep 27 14
Page 15
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable
Table 10 Sync select
SYSEL1 SYSEL0 SYNCHRONIZED FROM
0 0 CSYN (active LOW; pin 3) 0 1 HSN and VSN (active LOW; pins 84 and 3) 1 0 CSYN (active HIGH; pin 3) 1 1 HSN and VSN (active HIGH; pins 84 and 3)
Table 11 Multi-purpose key control
SET BY BITS
MPKC1 MPKC0
0 0 control via CCIR bit and FMT bits bypass control via FMT bits control via CCIR bit 01
1X
Table 12 Colour encoding standards
IN FUNCTION BLOCKS INPUT
FORMA TTER
format 5 (RGB) CCIR level active,
no indexed colour
format 7 (indexed colour) CCIR level
active, no indexed colour
CLUTs MATRIX
active CCIR level
active CCIR level
LEVEL
MA TCHING
STD3 STD2 STD1 STD0 STANDARD
0000NTSC 4.43; 60 Hz; SQP (12.27 MHz) 0001NTSC 4.43; 50 Hz; SQP (14.75 MHz) 0010PAL-B/G 4.43; 50 Hz; SQP (14.75 MHz) 0011NTSC 4.43; 60 Hz; CCIR (13.5 MHz) 0100NTSC 4.43; 50 Hz; CCIR (13.5 MHz) 0101PAL-B/G 4.43; 50 Hz; CCIR (13.5 MHz) 0110reserved 0111reserved 1000PAL-M; 60 Hz; SQP (12.27 MHz) 1001PAL-M; 60 Hz; CCIR (13.5 MHz) 1010PAL-N; 50 Hz; CCIR (13.5 MHz) 1011PAL-N; 50 Hz; SQP (14.75 MHz) 1100NTSC-M; 60 Hz; SQP (12.27 MHz) 1101NTSC-M; 60 Hz; CCIR (13.5 MHz) 1110reserved 1111reserved

Colour look-up tables (CLUTs)

The CLUTs consist of RAM tables. The RAM tables can be loaded with X = 0 to 255 in accordance with equation 1 for the signals R, G and B. Gamma-correction (pre-distortion) by the following equation:
Y = NINT (b + a × X1 b=16a×16
2.2
1/g
); Y(X 16) = 16; Y(X 235) = 235 (equation 1) with g = 2.2: ;
a
=
219
---------------------------------------­235
2.2
2.2
16
The RAM tables are loaded via MPU-bus or via I2C-bus (Table 17).
1996 Sep 27 15
Page 16
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable

I2C-bus format

2
Table 13 I
S SLAVE ADDRESS ACK SUBADDRESS ACK DATA 0 ACK -------- DATA n ACK P
Table 14 Explanation of Table 13
S START condition Slave address 1011000X (note 1) ACK acknowledge, generated by the slave Subaddress (note 2) subaddress byte (Table 17) DATA data byte (Table 6)
-------- continued data bytes and ACKs P STOP condition
Notes
1. X is the read/write control bit; X = 0 is order to write (the circuit is slave receiver); X = 1 is order to read (the circuit is slave transmitter).
2. If more than 1 byte DATA is transmitted, then auto-increment of the subaddress is performed.
C-bus address; see Table 14
PART DESCRIPTION
2
Table 15 I
FUNCTION
Read status 0 0 0 0 FFOS OEF CLCK HLCK
Table 16 Function of the bits in Table 15
FFOS first field of sequence: 0 = false; 1 = first of 4 fields for NTSC (first of 8 fields for PAL). FFOS is not
OEF field organization: 0 = even field; 1 = odd field CLCK lock to external chrominance: 0 = possible; 1 = not possible HLCK sync indication: 0 = locked to external sync; 1 = external sync lost
Table 17 I
Control registers address byte B0 subaddress byte 02 index byte (00 to 0F); Table 6 data bytes
CLUTs registers address byte B0 subaddress byte 00 CLUT address bytes
C-bus status byte (address byte B1)
STATUS BYTE
D7 D6 D5 D4 D3 D2 D1 D0
BIT FUNCTION
valid for non-interlaced signals.
2
C-bus write bytes (address byte B0)
ACCESS DESCRIPTION OF BYTE
(00 to FF)
(auto-increment) 3 data bytes for one RGB
sequence (auto-increment)
1996 Sep 27 16
Page 17
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable
Modes of the SAA7199B Table 18 The four different modes of the SAA7199B
MODE DESCRIPTION
Stand alone The SAA7199B receives a line-locked clock CLKIN and generates CSYN or HSN/VSN output
signals, which trigger the RGB or the YUV source signal to provide data and composite blanking CB.
Slave The SAA7199B receives the line-locked clock CLKIN, CSYN or HSN/VSN,
RGB or YUV source. The sync inputs are edge-sensitive; their minimum active length is 1 PIXCLK. A real time control signal RTCI is received from a digital colour decoder as an option.
GENLOCK Horizontal and vertical sync plus colour are locked on a received CVBS reference signal. The CVBS
reference signal also generates a line-locked clock by the SAA7197 clock generator. Auxiliary signals HCL and HSY plus CSYN or HSN/VSN are generated to trigger the RGB or the YUV source providing data and composite blanking
Test Similar to stand alone mode, but the contents of the test registers TRER, TREG and TREB consists
of data to be encoded. VSN/CSYN and HSN outputs are in 3-state condition.
R
ELATIONSHIP BETWEEN HORIZONTAL FREQUENCY AND COLOUR SUBCARRIER FREQUENCY IN NON-GENLOCK MODE
1. Internal subcarrier frequency with n = integer PAL: fSC=fH(n/4 + 1/625) respectively fH (n/4 + 1/525) NTSC: fSC=fH(n/2) Necessary conditions: non-GENLOCK mode; RTCE = 0, FSCO = 00H; phase coupling of the two frequencies is
given by a definite phase reset every 8th field at PAL (4th field at NTSC). FSCO 00H adjusts the subcarrier frequency, phase reset is disabled and phase between fSC and fH is not constant.
2. External subcarrier frequency fSC is given by RTCI real time input from a digital colour decoder Necessary conditions: Slave mode; RTCE = 1, RTSC = 1. The 8th respectively 4th field reset is enabled at
FSCO = 00H (disabled at FSCO 00H). The subcarrier frequency is not influenced by FSCO bits, but is given by real time increment.
3. External HPLL increment fSC is calculated by RTCI real time input signal from a digital colour decoder. The frequency of fSC depends on the
absolute crystal frequency value used by the digital colour decoder. Necessary conditions: Slave mode; RTCE = 1, RTSC = 0. The 8th respectively 4th field reset is enabled at
FSCO = 00H (disabled at FSCO 00H). The subcarrier frequency is influenced by FSCO bits.
CB.
CB and data from an
The absolute phase relationship between sync and subcarrier (colour burst output) can be influenced in all three events by CHPS7 to CHPS0 register byte (index 0C).
1996 Sep 27 17
Page 18
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable

Data input formats

One clock cycle equals 12.27 MHz, 13.5 MHz or 14.75 MHz; Cb = (B Y) equals U; Cr = (R Y) equals V; (n) = number of pixels.
Table 19 Format 0; DMSD2 compatible YUV4:1:1format (FMT-bits in index 00 = 000)
INPUT
SIGNAL
PD2(7 to 0) Y(0) Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) PD3(7) Cb7(0) Cb5(0) Cb3(0) Cb1(0) Cb7(4) Cb5(4) Cb3(4) Cb1(4) PD3(6) Cb6(0) Cb4(0) Cb2(0) Cb0(0) Cb6(4) Cb4(4) Cb2(4) Cb0(4) PD3(5) Cr7(0) Cr5(0) Cr3(0) Cr1(0) Cr7(4) Cr5(4) Cr3(4) Cr1(4) PD3(4) Cr6(0) Cr4(0) Cr2(0) Cr0(0) Cr6(4) Cr4(4) Cr2(4) Cr0(4) PD3(3 to 0) not used PD1(7 to 0) not used
Table 20 Format 1; customized YUV 4 : 1 : 1 format (FMT-bits in index 00 = 001)
INPUT
SIGNAL
PD2(7 to 0) Y(0) Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) PD3(7) Cb7(0) Cr7(0) Cb7(4) Cr7(4) PD3(6) Cb6(0) Cr6(0) Cb6(4) Cr6(4) PD3(5) Cb5(0) Cr5(0) Cb5(4) Cr5(4) PD3(4) Cb4(0) Cr4(0) Cb4(4) Cr4(4) PD3(3) Cb3(0) Cr3(0) Cb3(4) Cr3(4) PD3(2) Cb2(0) Cr2(0) Cb2(4) Cr2(4) PD3(1) Cb1(0) Cr1(0) Cb1(4) Cr1(4) PD3(0) Cb0(0) Cr0(0) Cb0(4) Cr0(4) PD1(7 to 0) not used
01234567
01234567
CLOCK CYCLE (PIXEL SEQUENCE)
CLOCK CYCLE (PIXEL SEQUENCE)
1996 Sep 27 18
Page 19
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable
Table 21 Format 2; DMSD2 compatible YUV 4:2:2format (FMT-bits in index 00 = 010)
INPUT
SIGNAL
PD2(7 to 0) Y(0) Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) PD3(7) Cb7(0) Cr7(0) Cb7(2) Cr7(2) Cb7(4) Cr7(4) Cb7(6) Cr7(6) PD3(6) Cb6(0) Cr6(0) Cb6(2) Cr6(2) Cb6(4) Cr6(4) Cb6(6) Cr6(6) PD3(5) Cb5(0) Cr5(0) Cb5(2) Cr5(2) Cb5(4) Cr5(4) Cb5(6) Cr5(6) PD3(4) Cb4(0) Cr4(0) Cb4(2) Cr4(2) Cb4(4) Cr4(4) Cb4(6) Cr4(6) PD3(3) Cb3(0) Cr3(0) Cb3(2) Cr3(2) Cb3(4) Cr3(4) Cb3(6) Cr3(6) PD3(2) Cb2(0) Cr2(0) Cb2(2) Cr2(2) Cb2(4) Cr2(4) Cb2(6) Cr2(6) PD3(1) Cb1(0) Cr1(0) Cb1(2) Cr1(2) Cb1(4) Cr1(4) Cb1(6) Cr1(6) PD3(0) Cb0(0) Cr0(0) Cb0(2) Cr0(2) Cb0(4) Cr0(4) Cb0(6) Cr0(6) PD1(7 to 0) not used
Table 22 Format 3; customized YUV 4 : 2 : 2 format (FMT-bits in index 00 = 011)
INPUT
SIGNAL
PD2(7 to 0) Y(0) Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) PD3(7 to 0) Cb(0) Cb(2) Cb(4) Cb(6) PD1(7 to 0) Cr(0) Cr(2) Cr(4) Cr(6)
01234567
01234567
CLOCK CYCLE (PIXEL SEQUENCE)
CLOCK CYCLE (PIXEL SEQUENCE)
Table 23 Format 4; YUV 4 : 4 : 4 format (FMT-bits in index 00 = 100)
INPUT
SIGNAL
PD2(7 to 0) Y(0) Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) PD3(7 to 0) Cb(0) Cb(1) Cb(2) Cb(3) Cb(4) Cb(5) Cb(6) Cb(7) PD1(7 to 0) Cr(0) Cr(1) Cr(2) Cr(3) Cr(4) Cr(5) Cr(6) Cr(7)
Table 24 Format 5; RGB 4:4:4format (FMT-bits in index 00 = 101)
INPUT
SIGNAL
PD2(7 to 0) R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) PD3(7 to 0) G(0) G(1) G(2) G(3) G(4) G(5) G(6) G(7) PD1(7 to 0) B(0) B(1) B(2) B(3) B(4) B(5) B(6) B(7)
Table 25 Format 7; indexed colour format (FMT-bits in index 00 = 111), input codes 0 to 255 are allowed, output code
of CLUTs should preferably be the same as given in format 5
INPUT
SIGNAL
PD2(7 to 0) INC(0) INC(1) INC(2) INC(3) INC(4) INC(5) INC(6) INC(7)
01234567
01234567
01234567
CLOCK CYCLE (PIXEL SEQUENCE)
CLOCK CYCLE (PIXEL SEQUENCE)
CLOCK CYCLE (PIXEL SEQUENCE)
1996 Sep 27 19
Page 20
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable
Table 26 Input data levels for formats 0 to 4 and 5; EBU colour bar; 100% white equals 100 IRE intensity, 5% colour
saturation for formats 1 to 4, 100% for format 5
INPUT
CHANNEL
Y 0 IRE 12 offset binary 0 0 to 4
Cb bottom peak 101 two’s complement 0 0 to 4
Cr bottom peak 106 two’s complement 0 0 to 4
Y 0 IRE 16 offset binary 1 0 to 4
Cb bottom peak 44 offset binary 1 0 to 4
Cr bottom peak 44 offset binary 1 0 to 4
R, G and B 0 IRE 16 offset binary 1 5
LEVEL DIGITAL LEVEL CODE CCRIR-BIT FORMAT
100 IRE 230
colourless 0 top peak 100
colourless 0 top peak 105
100 IRE 235
colourless 128 top peak 212
colourless 128 top peak 212
100 IRE 235
GENLOCK
Table 27 Format 7; CVBS GENLOCK input data format has an 8-bit word length, the input data comes from an
INPUT
SIGNAL
CVBS(7-0) CVBS(0) CVBS(1) CVBS(2) CVBS(3) CVBS(4) CVBS(5) CVBS(6) CVBS(7)
Conditions of CVBS input signal two’s complement representation
Sync bottom corresponding to binary code 128 0 IRE (black) corresponding to binary code 64 100 IRE (white) corresponding to binary code 95 Top peak of 75% colour corresponding to binary code 95 Bottom peak of 75% colour corresponding to binary code 100
Note
1. If exactly matched levels are required in the internal multiplexer, the value 0 IRE should correspond to
68 and 100 IRE to 82.
INPUT DATA
analog-to-digital converter (TDA8708) with gain controlled and clamped CVBS or VBS signals
CLOCK CYCLE (PIXEL SEQUENCE)
01234567
(1)
1996 Sep 27 20
Page 21
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable
ENCODING DATA LEVELS Input data levels are transformed in three stages:
In the matrix when RGB or indexed colour is applied (formats 5 and 7) In the normalizing amplifier depending on 50/60 Hz mode and CCIR-bit (index 00) In the modulator.
Table 28 Y and C output levels for RGB input levels (100/100 colour bar)
SIGNAL
INPUT DATA MATRIX OUTPUT DATA
RGB(RY) Y (B Y) V
NORMALIZER OUTPUT
DATA
(1)
YUYC
Y and C output levels in 50 Hz mode (PAL)
White 235 235 235 128 235 128 0 421 0 421 0 Yellow 235 235 16 146 210 16 29 387 132 387 ±135 Cyan 16 235 235 16 170 166 184 332 44 332 ±189 Green 16 235 16 34 145 54 155 297 87 297 ±178 Magenta 235 16 235 221 107 202 152 245 86 245 ±175 Red 235 16 16 240 82 90 183 211 45 211 ±188 Blue 16 16 235 110 41 240 30 154 131 154 ±134 Black 16 16 16 128 16 128 0 120 0 120 0 Blanking X Burst X Top sync X
(3) (3) (3)
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X 45 X
(3)
X
(3)
X
(3) (3)
X
(3)
X
45 X
(3)
X
MODULATOR
OUTPUT DATA
120 0
(3)
±63
0X
(2)
(3)
Y and C output levels in 60 Hz mode (NTSC)
White 235 235 235 128 235 128 0 416 0 416 0 Yellow 235 235 16 146 210 16 29 385 132 385 ±135 Cyan 16 235 235 16 170 166 184 335 44 335 ±189 Green 16 235 16 34 145 54 155 303 87 303 ±178 Magenta 235 16 235 221 107 202 152 256 86 256 ±175 Red 235 16 16 240 82 90 183 225 45 225 ±188 Blue 16 16 235 110 41 240 30 173 131 173 ±134 Black 16 16 16 128 16 128 0 142 0 142 0 Blanking X Burst X Top sync X
(3) (3) (3)
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X
(3)
X 0X
(3)
X
(3)
X
(3) (3)
X
(3)
X
64 X
(3)
X
120 0
(3)
±64
0X
Notes
1. The V component is inverted in the PAL line.
2. The ± are peak values of the subcarrier signal.
3. X = not defined.
(3)
1996 Sep 27 21
Page 22
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable
CHROMINANCE FILTERING IN THE ENCODER
1. Decimation for 4 :4:4format input data (formats 4, 5 and 7; Fig.4).
2. Interpolation for 4:1:1 input data into 4 :2:2 data, also suitable to reduce the bandwidth of 4 : 2 : 2 data. This filter is controlled by the SCBW-bit (SCWB = 1 means active).
3. Interpolation at 13.5 MHz for 4 : 2 : 2 input data into 4:4:4 data before modulating baseband signals onto the colour subcarrier. Figures 5, 6 and 7 show the overall transfer characteristics of chrominance in “standard bandwidth condition” (SCBW = 1). Figures 8 and 9 show the overall transfer characteristics of chrominance in enhanced bandwidth condition (SCBW = 0), which is not possible for 4 :1:1 input data. The transfer curves are slightly different at 12.27 and 14.75 MHz.
10
handbook, halfpage
(dB)
0
10
MEH346
10
handbook, halfpage
(dB)
0
10
MEH347
20
30
40
50
0
0.2 0.4 0.6 0.8
Fig.4 Transfer characteristics of
4:4:4to4:2:2 decimator.
f / f
CLK
20
30
40
50
02468
f (MHz)
Fig.5 Overall transfer characteristics 4 : 1 : 1
input data.
1996 Sep 27 22
Page 23
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
10
handbook, halfpage
(dB)
0
10
20
30
40
50
02468
f (MHz)
MEH348
10
handbook, halfpage
(dB)
0
10
20
30
40
50
02468
SAA7199B
MEH349
f (MHz)
Fig.6 Overall transfer characteristics 4 : 2 : 2
input data (SCBW-bit = 1).
10
handbook, halfpage
(dB)
0
10
20
30
40
50
02468
f (MHz)
MEH350
Fig.7 Overall transfer characteristics 4 : 4 : 4
input data (SCBW-bit = 1).
10
handbook, halfpage
(dB)
0
10
20
30
40
50
02468
f (MHz)
MEH351
Fig.8 Overall transfer characteristics 4 : 2 : 2
input data (SCBW-bit = 0).
1996 Sep 27 23
Fig.9 Overall transfer characteristics 4 : 4 : 4
input data (SCBW-bit = 0).
Page 24
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable

Accuracy of matrix

Evaluation of quantization errors. The RGB to YUV matrix is achieved in accordance with
the following algorithm:
Y = INT [(NINT(R × 2 × 0.299) + NINT(G × 2 × 0.587) + NINT(B
× 2 × 0.114) / 2] U = NINT [(B Y) × 0.57722] V = NINT [(R Y) × 0.72955].
Errors can occur in the calculation of Y, which as a result influence the U and V outputs. The greatest positive error occurs, if in all of the three for Y calculation used ROMs the values are rounded up to 0.5 LSB, and no truncation error of 0.5 LSB is generated after summation:
0.5 LSB
×
3
-------------------- -
with truncation “error”:
0.5 LSB
×
3
-------------------- -
= +0.75 LSB;
2
0.5 LSB = +0.25 LSB.
2
SAA7199B
Normalizing amplifiers in the luminance channel
The absolute amplification error for 50 Hz non-set-up signals is 0.375%; differential non-linearity is 0.333% (equals 1 LSB).
The absolute amplification error for 60 Hz set-up signals is
1.5%; differential non-linearity is 0.365% (equals 1 LSB).
Normalizing amplifiers in the chrominance channel
The absolute amplification error is approximately ±0.5% with a truncation error of 0.5 LSB.
The subcarrier amplitude for standards with luminance set-up is the same as for the standards without luminance set-up.

Modulator

The absolute amplification error is 0.39%; there is no truncation error.

Functional timing (see Fig.10)

The greatest negative error occurs at rounding off in all the three ROMs and by consecutive truncation:
0.5 LSB
3
×
------------------------
As a result, the matrix error can be ±1 digit, which corresponds to approximately ±0.5% differential non-linearity.

Estimation of noise by quantization

The sum of all sqared quantization errors is SS normalized
3
input combinations (3-dimensional colour scale).
to 220
SS = 0.187545 LSB2.
Compared with noise energy for ideal quantization, SSI =1⁄12LSB2 results in a deterioration by the conversion matrix of:
D = 10 log (0.187545 × 12) = 3.5 dB (equals 0.5 bit).
If SS is the sum of all squared quantization errors, normalized to 220 input combinations of a grey-scale (R = G = B), then:
SS = 0.12273 LSB2.
Compared with noise energy for ideal quantization, SSI =1⁄12LSB2 results in a deterioration by the conversion matrix of:
D = 10 log (0.12273 × 12) = 1.7 dB (equals 0.25 bit).
0.5 LSB = 1.25 LSB.
2
GENLOCK The encoded signal can be generated earlier with respect
to CVBS7 to CVBS0 bits (offset t index 05). The HSN output signal can be generated early by PSO-bits (index 07) with respect to CB to compensate for pipelining delay t stand alone mode).
The horizontal timing is independent of active video at data inputs PDn(7 to 0). The line blanking period on the outputs is set to approximately 12 µs in 50 Hz standards (11 µs in 60 Hz standards).
LAVE MODE
S HSN pin is used as an input. The active edge of the input
signal is assumed to fit to the incoming CB signal. Deviations can be compensated in the range of the GCD-bits (index 05).
The t CVBS output; it is 55 pixel clock periods long (PIXCLK) plus the propagation delay of the LDV input register regardless of mode and colour standard.
The key input signal is delay compensated with respect to PDn(7 to 0) data input. The generated vertical field and burst blanking sequences are shown in Fig.11 (50 Hz PAL) and Fig.12 (60 Hz NTSC).
MODE
set by GDC-bits;
ofs
of the RAM interface (valid also in
Rint
time is the total delay from data input to analog
enc
1996 Sep 27 24
Page 25
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable

Reset

Prior to a reset all outputs are undefined. RESET = LOW sets the circuit into the slave mode.
MOD1 bit = 1, MOD0-bit = 0. All other control register bits are set to zero. The outputs CSYN/VSN, HSN, SLT, HSY and HCL are automatically set to a high impedance state.The I2C-bus interface is set to a slave receiver.
The D7 to D0 pins of the MPU interface are inputs during RESET = LOW. As the circuit requires an external clock signal on pin CLKIN in slave mode, the clock select signal CLKSEL (pin 50) must be LOW during (pin 54). The LOW time ofRESET is at least 50 pixel clock periods long.
RESET = LOW
SAA7199B

Disable chip

All analog outputs are set to zero by DD-bit = 1 (index 08); while the outputs CSYN/VSN, HSN, HCL, HSY and SLT are set to a high impedance state. The internal clock is divided-by-4 at DD-bit = 1. The circuit can be disabled for any reason and it must be disabled when CLKIN exceeds 32 MHz. After setting DD-bit = 1, the CLKIN input signal can be set to a frequency of <60 MHz (modification of control registers and RAM tables is not certain).
To re-enable the circuit, CLKIN must be set to a frequency <32 MHz, a hardware reset is then required to set DD-bit to zero.
handbook, full pagewidth
CVBS input signal; GENLOCK only
HSN output signal
CB input signal
PDn(7 to 0) digital input data
CVBS output signal
(1) t
is the pipeline delay of the RAM interface adjustable from 5 to +58 pixel clocks (PIXCLK).
Rint
(2) t = 125 × PIXCLK at 12.27 MHz
t = 163 × PIXCLK at 14.75 MHzt = 134 × PIXCLK at 13.50 MHz in 50 Hz modet = 122 × PIXCLK at 13.50 MHz in 60 Hz mode.
(3) t
is the propagation delay of external GENLOCK line adjustable from 17 to +46 pixel clocks.
ofs
t
REF2
t
REF1
(1)
t
Rint
(2)
t
active video
0 to 640/720/780
PIXCLK
t
enc
(3)
t
ofs
MEH345-1
Fig.10 Horizontal timing.
1996 Sep 27 25
Page 26
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
621
309
CVBS output signal
622
CVBS output signal
CVBS output signal
623
310
624
625
312 311
(a) 1st field
handbook, full pagewidth
(a) 3rd field
VSN
CB
(b) 2nd field
SAA7199B
318
6
7
23
319
320
335
24
25
336
2 1
314 313
315
3
4
316
5
317
(b) 4th field
VSN
CB
CVBS output signal
MEH352-1
Fig.11 Vertical field and burst blanking sequence for PAL 50 Hz mode.
1996 Sep 27 26
Page 27
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
(a) 1st field
handbook, full pagewidth
VSN
CB
(b) 2nd field
CVBS output signal
521
259
522
523
CVBS output signal
260
524
525
262 261
SAA7199B
268
6
269
7
19
270
281
20
21
282
2 1
264 263
265
3
4
266
5
267
VSN
CB
MEH353-1
Fig.12 Vertical field and burst blanking sequence for NTSC 60 Hz mode.
1996 Sep 27 27
Page 28
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DDA1
V
DDA2
V
DDA3
V
DDA4
V
DDD1
V
DDD2
V
DDD3
V
diff(GND)
V
n
P
tot
T
stg
T
amb
V
esd
analog supply voltage 1 (pin 66) 0.3 +7 V analog supply voltage 2 (pin 70) 0.3 +7 V analog supply voltage 3 (pin 72) 0.3 +7 V analog supply voltage 4 (pin 64) 0.3 +7 V digital supply voltage 1 (pin 2) 0.3 +7 V digital supply voltage 2 (pin 21) 0.3 +7 V digital supply voltage 3 (pin 41) 0.3 +7 V voltage difference between analog and digital ground pins
(V
SSA
V
SSDn
)
voltage on all pins except grounds 0 V
−±100 mV
P
V total power dissipation 1.1 W storage temperature 65 +150 °C operating ambient temperature 0 70 °C electrostatic handling for all pins note 1 2000 +2000 V
Note
1. Equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor.
1996 Sep 27 28
Page 29
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable

CHARACTERISTICS

V
= 4.75 to 5.25 V; V
DDA
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
DDA
analog supply voltage (pins 64, 66, 70 and 72)
V I
DDA
I
DDD
DDD
digital supply voltage (pins 2, 21 and 41) 4.5 5.0 5.5 V analog supply current I digital supply current I
Data and control inputs (pins 3 to 20, 23 to 40, 43 to 46, 49, 50, 54 to 56, 59, 73 and 76 to 84)
V
IL
V
IH
I
LI
C
i
LOW level input voltage note 1 0 0.8 V HIGH level input voltage note 1 2.0 V input leakage current 1 +1 µA input capacitance
data inputs −− 8pF CLKIN, LLC and LDV −− 10 pF 3-state I/O −− 10 pF
= 4.5 to 5.5 V; T
DDD
DDA1
DDD1
to I
to I
=0to70°C; unless otherwise specified.
amb
DDA4
DDD3
40 pF output load −− 60 mA 40 pF output load −− 140 mA
4.75 5.0 5.25 V
+ 0.5 V
DDD
LFCO output (pin 61)
V V
o(p-p) 61
output voltage (peak-to-peak value) 1.4 2.6 V output voltage range 0 V
DDD
V
Data and other control outputs (pins 3, 51, 52, 57, 58, 60, 74 and 75)
V
OL
V
OH
LOW level output voltage note 2 0 0.6 V HIGH level output voltage note 2 2.4 V
DDD
V
C, Y and CVBS analog outputs (pins 65, 67 and 69)
V
o(p-p)
V
o(min)
V
o(max)
R
o(int)
R
L
output voltage (peak-to-peak value) without load; V minimum output voltage without load; V maximum output voltage without load; V
=5V 2 V
DDA
=5V 0.2 V
DDA
=5V 2.2 V
DDA
internal serial output resistance not tested 18 25 35 output load resistance recommendation 90 −−
B output signal bandwidth 3dB 10 −− MHz ILE LF integral linearity error 9-bit data −− ±1.0 LSB DLE LF differential linearity error 9-bit data −− ±0.5 LSB I
CUR
2
C-bus SDA and SCL (pins 47 and 48)
I
V
IL
V
IH
I
I
V
OL
I
O
input current (pin 71) Fig.1; R
LOW level input voltage 0.5 +1.5 V HIGH level input voltage 3.0 V input current VI= LOW or HIGH 10 +10 µA SDA LOW level output voltage IOL=3mA −− 0.4 V SDA output current during acknowledge 3 −− mA
=20kΩ− 300 −µA
70-71
+ 0.5 V
DDD
1996 Sep 27 29
Page 30
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Crystal oscillator (see Fig.15)
f
n
f/f
n
X1 crystal specification
T
amb
C
L
R
s
C
mot
C
par
LDV and LLC timing (pins 20 and 55) see Fig.17 T
cy(LLC)
t
W(CH)
t
r
t
f
t
cy(LDV)
t
su(LDV)
t
h(LDV)
PIXCLK and CLKO timing (pins 51 and 52) see Fig.17 t
d(CLK)
PD1 to 3(7 to 0),
t
SU; DAT
t
HD; DAT
CVBS(7 to 0), VSN/CSYN and HSN timing (pins 76 to 83, 3 and 84) see Fig.18 t
SU; DAT
t
HD; DAT
CREF timing (pin 56) see Fig.18 t
SU(CREF)
t
h(CREF)
nominal frequency 3rd harmonic; Table 1 24.576 MHz
3rd harmonic; Table 1 26.8 MHz
permissible deviation of f
n
50 10
6
ambient temperature range 0 70 °C load capacitance 8 −− pF series resonance resistance 40 80 motional capacitance 20% 1.5 +20% fF parallel capacitance 20% 3.5 +20% pF
LLC cycle time note 3 31.5 44.5 ns pulse width 40 50 60 % rise time −− 5ns fall time −− 6ns LDV cycle time 63 89 ns LDV set-up time 4 −− ns LDV hold time 10 −− ns
PIXCLK and CLKO delay time −− 25 ns
CB, MPK, KEY and RTCI input timing (pins 4 to 19, 23 to 32, 57 and 73) see Fig.17
input data set-up time 4 −− ns input data hold time 6 −− ns
input data set-up time 10 −− ns input data hold time 5 −− ns
input set-up time 10 −− ns input hold time 2 −− ns
1996 Sep 27 30
Page 31
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT MPU timing A1, A0, R/
t
su(ADD)
A1 and A0 address set-up time (pins 33 and 34)
t
h(ADD)
t
su(R)
t
h(R)
t
W(CL)
t
W(CH)
t
su;DAT
t
h;DAT
t
d(Q)
t
ZR
t
d(ZR)
t
d(RZ)
A1 and A0 address hold time 25 −− ns R/W set-up time (pin 35) 4 −− ns R/W hold time 25 −− ns CS pulse width LOW note 4 95 −− ns CS pulse width HIGH note 4 95 −− ns data set-up time (D7 to D0) write mode 80 −− ns data hold time (D7 to D0) write mode 5 −− ns data output hold time (D7 to D0) read mode 5 −− ns delay to driven ports (D7 to D0) read mode 5 −− ns delay to ports valid (D7 to D0) read mode; note 5 −− 275 ns port outputs disable time (D7 to D0) read mode −− 25 ns
Output timing (pins 3, 74, 75 and 84); see Fig.18 t
d
output delay time minimum clock period;
W, CS, D(7 to 0) (pins 33 to 36, 37 to 40 and 43 to 46) see Fig.19
4 −− ns
20 45 ns
note 6
Notes
1. XTALO, XTALI and TP are not characterized with respect to levels; CLKO is characterized up to 32 MHz and PIXCLK up to 16 MHz.
2. Levels are measured with load circuit. LFCO output with 10 k in parallel with 15 pF and other outputs with 1.2 k in parallel with 40 pF at 3 V (TTL load).
3. T
4. t
5. 3 × [t
must be 63 to 89 ns at CREF = HIGH (pin 56); T
LLC
PIXCLK(min)
+ 5 ns.
PIXCLK(min)
+ 5 ns].
= 16.5 ns is only allowed if the multiplexer clock is active.
LLC
6. 40 ns at low supply voltage (4 V) and high temperature (70 °C).
1996 Sep 27 31
Page 32
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
10
handbook, halfpage
(dB)
0
10
20
30
40
50
02468
f (MHz)
MEH357
SAA7199B
10
handbook, halfpage
(dB)
0
10
20
30
40
50
10
02468
MEH358
f (MHz)
10
Fig.13 Characteristics of low-pass post-filters;
without compensation of DC hold.
handbook, full pagewidth
10 pF
(2)
X1
1 nF
10 µH
± 20 %
10 pF
(a)
XTALO
(1)
XTALI
(1)
60
SAA7199B
59
Fig.14 Characteristics of low-pass post-filters.;
with compensation of DC hold.
XTALO
60
SAA7199B
XTALI
59
MHA417
(b)
(1) Value depends on crystal parameters. (2) 24.576 MHz (3rd harmonic), Philips: 4322 143 05291; 26.8 MHz (3rd harmonic), Philips: 9922 520 30004.
Fig.15 Oscillator application (a) and optional external clock sync (b).
1996 Sep 27 32
Page 33
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
C
(3)
75
1.23 V (p-p)
(3)
65
25 22
DDA3
0.1 µF
V
DDA2
V
70 72
DAC3
Y
(3)
75
1.23 V (p-p)
(3)
67
25 22
DAC2
CVBS
(3)
75
1.23 V (p-p)
(3)
69
25 22
DAC1
SAA7199B
MEH420
SSA
68
V
gewidth
+5 V
+5 V
66
DDA1
0.1 µF 0.1 µF
V
(3)
75
(2)
SAA7199B
560 pF
390 pF
0.1 µF
0.1 µF
20 k
20 k
0.1 µF
0.1 µF 0.1 µF
0.1 µF
CUR
refH
V
DDA4
V
DDD3
V
DDD2
V
DDD1
V
71
63
64
41
21
2
(3)
1.23 V (p-p)
analog
output
load
external output filters
75
2.7 µH 2.7 µH
120 pF
(3)
22
25
1.23 V (p-p)
analog
output
load
560 pF
390 pF
(1)
2.7 µH 1.8 µH
120 pF
(3)
25 22
62
42
22
1
refL
V
SSD3
V
SSD2
V
SSD1
V
x()sin
x
------------------
>90Ω.
L
Fig.16 Application details of Fig.1 showing proposals of analog low-pass post-filtering of output signals.
signals 
of Fig.1
and output 
digital input 
1996 Sep 27 33
(1) Without compensation of the DAC hold characteristic (see Fig.13).
(2) With compensation of the DAC hold characteristic correction (see Fig.14).
(3) Output amplitude determined by load resistors R
Page 34
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
handbook, full pagewidth
input clocks LLC and CLKIN
0.8 V
input data clock LDV
2.0 V
1.5 V
t
h(LDV)
t
w(CH)
T
t
f
cy(LLC); Tcy(CLKIN)
t
su(LDV)
2.0 V
1.5 V
0.8 V
SAA7199B
t
r
inputdata PDn(7 to 0) CB, MPK, KEY and RTCI (pin 57)
CLKO and PIXCLK
t
d(CLK)
2.0 V
0.8 V
t
SU; DAT
t
HD; DAT
data valid
PIXCLK
CLKO
MEH421
Fig.17 LDV input data timing.
1996 Sep 27 34
Page 35
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
handbook, full pagewidth
input clock LLC
input CREF
t
h(CREF)
2.0 V
t
w(CH)
1.5 V
0.8 V
T
cy(LLC)
t
f
t
su(CREF)
t
r
0.8 V
SAA7199B
2.0 V
1.5 V
outputs HCL, HSY, HSN, VSN and CSYN
input data CVBS(7 to 0)
data valid
2.0 V
data valid
0.8 V
t
SU; DAT
t
HD; DAT
t
d
2.4 V data valid
0.6 V
MEH355
Fig.18 Clock and data timing.
1996 Sep 27 35
Page 36
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
handbook, full pagewidth
input CS
inputs A1 and A0
t
W(CH)
t
su(ADD)
1.5 V data valid
t
h(ADD)
t
W(CL)
SAA7199B
2.0 V
1.5 V
0.8 V
input R/W
write D (7 to 0)
read D (7 to 0)
t
su(R)
t
h(R)
t
d(ZR)
t
d(DR)
1.5 V
t
su;DAT
1.5 V data valid
1.5 V
data valid
t
d(Q)
t
h;DAT
t
d(RZ)
MEH356
Fig.19 MPU-bus timing.
1996 Sep 27 36
Page 37
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable

PACKAGE OUTLINE

PLCC84: plastic leaded chip carrier; 84 leads
e
y
75
84
1
pin 1 index
D
X
SAA7199B

SOT189-2

e
E
5474
53
A
Z
E
b
p
b
1
w M
H
E
E
e
A
A
1
A
4
(A )
3
k
11
β
1
33
k
12 32
e
Z
D
D
H
D
v M
A
B
v M
B
0 5 10 mm
scale
DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)
UNIT A
mm
0.180
inches
0.165
A
1
min. max. max. max. max.
4.57
0.51
4.19
0.020
A
0.25
0.01
A
4
3
3.30
0.13
b
p
0.53
0.33
0.021
0.013
b
0.81
0.66
0.032
0.026
1
(1)
D
29.41
29.21
1.158
1.150
(1)
E
eH
e
D
1.27
0.05
28.70
27.69
1.130
1.090
29.41
29.21
1.158
1.150
e
28.70
27.69
1.130
1.090
H
D
E
30.35
30.35
30.10
30.10
1.195
1.195
1.185
1.185
Note
1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.
OUTLINE
VERSION
IEC JEDEC EIAJ
REFERENCES
SOT189-2
k
1
k
E
1.22
1.07
0.048
0.042
0.51
0.020
L
1.44
1.02
0.057
0.040
detail X
p
EUROPEAN
PROJECTION
L
p
(1) (1)
Z
Z
E
D
ywv β
0.18 0.100.18
0.007 0.0040.007
2.16
0.085
2.16
0.085
o
45
ISSUE DATE
92-11-17 95-03-11
1996 Sep 27 37
Page 38
Philips Semiconductors Product specification
Digital Video Encoder (DENC) GENLOCK-capable
SOLDERING Introduction
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our
“IC Package Databook”
Reflow soldering
Reflow soldering techniques are suitable for all PLCC packages.
The choice of heating method may be influenced by larger PLCC packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our
Reference Handbook”
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.
(order code 9398 652 90011).
“Quality
(order code 9397 750 00192).
SAA7199B
Wave soldering
Wave soldering techniques can be used for all PLCC packages if the following conditions are observed:
A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
The longitudinal axis of the package footprint must be parallel to the solder flow.
The package footprint must incorporate solder thieves at the downstream corners.
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.
Repairing soldered joints
Fix the component by first soldering two diagonally­opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.
1996 Sep 27 38
Page 39
Philips Semiconductors Product specification
Digital Video Encoder (DENC)
SAA7199B
GENLOCK-capable

DEFINITIONS

Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
PURCHASE OF PHILIPS I
Purchase of Philips I components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
2
C COMPONENTS
2
C components conveys a license under the Philips’ I2C patent to use the
1996 Sep 27 39
Page 40
Philips Semiconductors – a worldwide company
Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 615 800, Fax. +358 615 80920 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. +30 1 4894 339/911, Fax. +30 1 4814 240
Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 926 5361, Fax. +7 095 564 8323 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1, P.O. Box 22978, TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381
Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 825 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
© Philips Electronics N.V. 1996 SCA51 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Internet: http://www.semiconductors.philips.com
Printed in The Netherlands 657021/1200/02/pp40 Date of release: 1996 Sep 27 Document order number: 9397 750 01285
Loading...