Datasheet SAA7111AHZ-01, SAA7111AHZ-02, SAA7111AHZ-03, SAA7111AH-01, SAA7111AH-03 Datasheet (Philips)

Page 1
DATA SH EET
Product specification Supersedes data of 1997 May 26 File under Integrated Circuits, IC22
1998 May 15
INTEGRATED CIRCUITS
SAA7111A
Page 2
1998 May 15 2
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
CONTENTS
1 FEATURES 2 APPLICATIONS 3 GENERAL DESCRIPTION 4 QUICK REFERENCE DATA 5 ORDERING INFORMATION 6 BLOCK DIAGRAM 7 PINNING 8 FUNCTIONAL DESCRIPTION
8.1 Analog input processing
8.2 Analog control circuits
8.2.1 Clamping
8.2.2 Gain control
8.3 Chrominance processing
8.4 Luminance processing
8.5 RGB matrix
8.6 VBI-data bypass
8.7 VPO-bus (digital outputs)
8.8 Reference signals HREF, VREF and CREF
8.9 Synchronization
8.10 Clock generation circuit
8.11 Power-on reset and CE input
8.12 RTCO output
8.13 The Line-21 text slicer
8.13.1 Suggestions for I2C-bus interface of the display software reading line-21 data
9 BOUNDARY-SCAN TEST
9.1 Initialization of boundary-scan circuit
9.2 Device identification codes
10 GAIN CHARTS 11 LIMITING VALUES 12 CHARACTERISTICS 13 TIMING DIAGRAMS 14 CLOCK SYSTEM
14.1 Clock generation circuit
14.2 Power-on control
15 OUTPUT FORMATS 16 APPLICATION INFORMATION
16.1 Layout hints
17 I2C-BUS DESCRIPTION
17.1 I2C-bus format
17.2 I2C-bus detail
17.2.1 Subaddress 00
17.2.2 Subaddress 02
17.2.3 Subaddress 03
17.2.4 Subaddress 04
17.2.5 Subaddress 05
17.2.6 Subaddress 06
17.2.7 Subaddress 07
17.2.8 Subaddress 08
17.2.9 Subaddress 09
17.2.10 Subaddress 0A
17.2.11 Subaddress 0B
17.2.12 Subaddress 0C
17.2.13 Subaddress 0D
17.2.14 Subaddress 0E
17.2.15 Subaddress 10
17.2.16 Subaddress 11
17.2.17 Subaddress 12
17.2.18 Subaddress 13
17.2.19 Subaddress 15
17.2.20 Subaddress 16
17.2.21 Subaddress 17
17.2.22 Subaddress 1A (read-only register)
17.2.23 Subaddress 1B (read-only register)
17.2.24 Subaddress 1C (read-only register)
17.2.25 Subaddress 1F (read-only register) 18 FILTER CURVES
18.1 Anti-alias filter curve
18.2 TUF-block filter curve
18.3 Luminance filter curves
18.4 Chrominance filter curves 19 I2C-BUS START SET-UP 20 PACKAGE OUTLINES 21 SOLDERING
21.1 Introduction
21.2 Reflow soldering
21.3 Wave soldering
21.4 Repairing soldered joints 22 DEFINITIONS 23 LIFE SUPPORT APPLICATIONS 24 PURCHASE OF PHILIPS I2C COMPONENTS
Page 3
1998 May 15 3
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
1 FEATURES
Four analog inputs, internal analog source selectors,
e.g. 4 × CVBS or 2 × Y/C or (1 × Y/C and 2 × CVBS)
Two analog preprocessing channels
Fully programmable static gain for the main channels or
automatic gain control for the selected CVBS or Y/C channel
Switchable white peak control
Two built-in analog anti-aliasing filters
Two 8-bit video CMOS analog-to-digital converters
On-chip clock generator
Line-locked system clock frequencies
Digital PLL for horizontal-sync processing and clock
generation
Requires only one crystal (24.576 MHz) for all standards
Horizontal and vertical sync detection
Automatic detection of 50 and 60 Hz field frequency,
and automatic switching between PAL and NTSC standards
Luminance and chrominance signal processing for
PAL BGHI, PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43, NTSC-Japan and SECAM
User programmable luminance peaking or aperture
correction
Cross-colour reduction for NTSC by chrominance comb
filtering
PAL delay line for correcting PAL phase errors
Real time status information output (RTCO)
Brightness Contrast Saturation (BCS) control on-chip
The YUV (CCIR-601) bus supports a data rate of:
– 864 × f
H
= 13.5 MHz for 625 line sources
– 858 × fH= 13.5 MHz for 525 line sources.
Data output streams for 16, 12 or 8-bit width with the
following formats: – YUV4:1:1 (12-bit) – YUV4:2:2 (16-bit) – YUV4:2:2 (CCIR-656) (8-bit) – RGB (5, 6, and 5) (16-bit) with dither – RGB (8, 8, and 8) (24-bit) with special application.
Odd/even field identification by a non interlace CVBS input signal
Fix level for RGB output format during horizontal blanking
720 active samples per line on the YUV bus
One user programmable general purpose switch on an
output pin
Built-in line-21 text slicer
A 27 MHz Vertical Blanking Interval (VBI) data bypass
programmable by I
2
C-bus for INTERCAST applications
Power-on control
Two via I2C-bus switchable outputs for the digitized
CVBS or Y/C input signals AD1 (7 to 0) and AD2 (7 to 0)
Chip enable function (reset for the clock generator and power save mode up from chip version 3)
Compatible with memory-based features (line-locked clock)
Boundary scan test circuit complies with the
‘IEEE Std. 1149.1−1990’
(ID-Code = 0 F111 02 B)
I2C-bus controlled (full read-back ability by an external controller)
Low power (<0.5 W), low voltage (3.3 V), small package (LQFP64)
5 V tolerant digital I/O ports.
2 APPLICATIONS
Desktop/Notebook (PCMCIA) video
Multimedia
Digital television
Image processing
Video phone
Intercast.
Page 4
1998 May 15 4
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
3 GENERAL DESCRIPTION
The Enhanced Video Input Processor (EVIP) is a combination of a two-channel analog preprocessing circuit including source selection, anti-aliasing filter and ADC, an automatic clamp and gain control, a Clock Generation Circuit (CGC), a digital multi-standard decoder (PAL BGHI, PAL M, PAL N, NTSC M, NTSC-Japan NTSC N and SECAM), a brightness/contrast/saturation control circuit, a colour space matrix (see Fig.1) and a 27 MHz VBI-data bypass.
The pure 3.3 V CMOS circuit SAA7111A, analog front-end and digital video decoder, is a highly integrated circuit for desktop video applications. The decoder is based on the principle of line-locked clock decoding and is able to decode the colour of PAL, SECAM and NTSC signals into CCIR-601 compatible colour component values. The SAA7111A accepts as analog inputs CVBS or S-video (Y/C) from TV or VTR sources. The circuit is I
2
C-bus controlled. The SAA7111A then supports several
text features as Line 21 data slicing and a high-speed VBI data bypass for Intercast.
4 QUICK REFERENCE DATA
5 ORDERING INFORMATION
SYMBOL PARAMETER MIN. TYP. MAX. UNIT
V
DDD
digital supply voltage 3.0 3.3 3.6 V
V
DDA
analog supply voltage 3.1 3.3 3.5 V
T
amb
operating ambient temperature 0 25 70 °C
P
A+D
analog and digital power 0.5 W
TYPE
NUMBER
PACKAGE
NAME DESCRIPTION VERSION
SAA7111AHZ LQFP64 plastic low profile quad flat package; 64 leads; body 10 × 10 × 1.4 mm SOT314-2 SAA7111AH QFP64 plastic quad flat package; 64 leads (lead length 1.6 mm);
body 14 × 14 × 2.7 mm
SOT393-1
Page 5
1998 May 15 5
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
6 BLOCK DIAGRAM
Fig.1 Block diagram.
handbook, full pagewidth
SDA
XTAL XTALI
RES
IICSA
TRST
TDI
HSVS
CLOCK
GENERATION
CIRCUIT
POWER-ON
CONTROL
INTERFACE
I
2
C-BUS
SYNCHRONIZATION
CIRCUIT
LUMINANCE
CIRCUIT
SAA7111A
CHROMINANCE
CIRCUIT
AND
BRIGHTNESS
CONTRAST
SATURATION
CONTROL
VBI DATA BYPASS
UPSAMPLING FILTER
I
2
C-BUS
CONTROL
CLOCKS
Y
31
ANALOG
PROCESSING
AND
ANALOG-TO-
DIGITAL
CONVERSION
AI11 AI12
AI21 AI22
12 10
8 6
AD2 AD1
ANALOG
CONTROL
CON
BYPASS
30 27 17 29 28 60 15 16 24
RTS0
55
54
21 22 20
LLC2 CREF
52
34 to 39 42 to 51
53
FEI HREF
VPO (0 : 15)
GPSW
63
62
61
23
V
SSS
n.c.
n.c.
64
10
13
AOUT
14
RTCO
CE
MGG061
RTS1
LLC
V
SSA0
V
DDA0
V
SSD1-5
V
DDD1-5
57,41,33,25,18
56,40,32,26,19
V
SSA1-2
V
DDA1-2
9,5 11,7
Y/CVBS
C/CVBS
TCK
59 4 58
2
3
TMS
TDO
VREF
YUV-to-RGB
CONVERSION
AND
OUTPUT
FORMATTER
UV
Y
PROCESSING
Y
LFCO
TEST
CONTROL
BLOCK
FOR BOUNDARY SCAN TEST
AND SCAN TEST
SCL
Page 6
1998 May 15 6
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
7 PINNING
SYMBOL
PIN
I/O/P DESCRIPTION
(L)QFP64
n.c. 1 Do not connect. TDO 2 O Test data output for boundary scan test; note 1. TDI 3 I Test data input for boundary scan test; note 1. TMS 4 I Test mode select input for boundary scan test or scan test; note 1. V
SSA2
5 P Ground for analog supply voltage channel 2. AI22 6 I Analog input 22. V
DDA2
7 P Positive supply voltage for analog channel 2 (+3.3 V). AI21 8 I Analog input 21. V
SSA1
9 P Ground for analog supply voltage channel 1. AI12 10 I Analog input 12. V
DDA1
11 P Positive supply voltage for analog channel 1 (+3.3 V). AI11 12 I Analog input 11. V
SSS
13 P Substrate ground connection. AOUT 14 O Analog test output; for testing the analog input channels. V
DDA0
15 P Positive supply voltage for internal Clock Generator Circuit (CGC) (+3.3 V). V
SSA0
16 P Ground for internal CGC. VREF 17 O Vertical reference output signal (I
2
C-bit COMPO = 0) or inverse composite blanking
signal (I2C-bit COMPO = 1) (enabled via I2C-bus bit OEHV).
V
DDD5
18 P Digital supply voltage 5 (+3.3 V). V
SSD5
19 P Ground for digital supply voltage 5. LLC 20 O Line-locked system clock output (27 MHz). LLC2 21 O Line-locked clock
1
⁄2output (13.5 MHz).
CREF 22 O Clock reference output: this is a clock qualifier signal distributed by the internal CGC
for a data rate of LLC2. Using CREF all interfaces on the VPO bus are able to generate a bus timing with identical phase. If CCIR 656 format is selected (OFTS0 = 1 and OFTS1 = 1) an inverse composite blanking signal (pixel qualifier) is provided on this pin.
RES 23 O Reset output (active LOW); sets the device into a defined state. All data outputs are
in high impedance state. The I2C-bus is reset (waiting for start condition).
CE 24 I Chip enable; connection to ground forces a reset, up from version 3 power save
function additionally available.
V
DDD4
25 P Digital supply voltage input 4 (+3.3 V). V
SSD4
26 P Ground for digital supply voltage input 4. HS 27 O Horizontal sync output signal (programmable); the positions of the positive and
negative slopes are programmable in 8 LLC increments over a complete line (equals 64 µs) via I
2
C-bus bytes HSB and HSS. Fine position adjustment in 2 LLC
increments can be performed via I2C-bus bits HDEL1 and HDEL0.
RTS1 28 O Two functions output; controlled by I
2
C-bus bit RTSE1. RTSE1 = 0: PAL line identifier (LOW = PAL line); indicates the inverted and non-inverted R Y component for PAL signals. RTSE1 = 1: H-PLL locked indicator; a high state indicates that the internal horizontal PLL has locked.
Page 7
1998 May 15 7
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
RTS0 29 O Two functions output; controlled by I2C-bus bit RTSE0.
RTSE0 = 0: odd/even field identification (HIGH = odd field). RTSE0 = 1: vertical locked indicator; a HIGH state indicates that the internal Vertical Noise Limiter (VNL) has locked.
VS 30 O Vertical sync signal (enabled via I
2
C-bus bit OEHV); this signal indicates the vertical sync with respect to the YUV output. The HIGH period of this signal is approximately six lines if the VNL function is active. The positive slope contains the phase information for a deflection controller.
HREF 31 O Horizontal reference output signal (enabled via I
2
C-bus bit OEHV); this signal is used to indicate data on the digital YUV bus. The positive slope marks the beginning of a new active line. The HIGH period of HREF is 720 Y samples long. HREF can be used to synchronize data multiplexer/demultiplexer. HREF is also present during the vertical blanking interval.
V
SSD3
32 P Ground for digital supply voltage input 3.
V
DDD3
33 P Digital supply voltage 3 (+3.3 V).
VPO (15 to 10)
34 to 39 O Digital VPO-bus (Video Port Out) signal; higher bits of the 16-bit VPO-bus or the
16-bit RGB-bus output signal. The output data rate, the format and multiplexing scheme of the VPO-bus are controlled via I
2
C-bus bits OFTS0 and OFTS1. If I2C-bus bit VIPB = 1 the six MSBs of the digitized input signal are connected to these outputs, configured by the I2C-bus ‘MODE’ bits (see Figs 33 to 40): LUMA VPO15 to VPO8, CHROMA VPO7 to VPO0.
V
SSD2
40 P Ground for digital supply voltage input 2.
V
DDD2
41 P Digital supply voltage 2 (+3.3 V).
VPO (9 to 0)
42 to 51 O Digital VPO-bus output signal; lower bits of the 16-bit YUV-bus or the 16-bit RGB-bus
output signal. The output data rate, the format and multiplexing schema of the VPO-bus are controlled via I
2
C-bus bits OFTS0 and OFTS1. If I2C-bus bit VIPB = 1 the digitized input signal are connected to these outputs, configured by the I2C-bus ‘MODE’ bits (see Figs 33 to 40): LUMA VPO15 to VPO8, CHROMA VPO7 to VPO0.
FEI 52 I Fast enable input signal (active LOW); this signal is used to control fast switching on
the digital YUV-bus. A HIGH at this input forces the IC to set its Y and UV outputs to the high impedance state.
GPSW 53 O General purpose switch output; the state of this signal is set via I
2
C-bus control and
the levels are TTL compatible.
XTAL 54 O Second terminal of crystal oscillator; not connected if external clock signal is used. XTALI 55 I Input terminal for 24.576 MHz crystal oscillator or connection of external oscillator
with CMOS compatible square wave clock signal.
V
SSD1
56 P Ground for digital supply voltage input 1.
V
DDD1
57 P Digital supply voltage input 1 (+3.3 V). TRST 58 I Test reset input not (active LOW), for boundary scan test; notes 1, 2 and 3. TCK 59 I Test clock for boundary scan test; note 1. RTCO 60 O Real time control output: contains information about actual system clock frequency,
subcarrier frequency and phase and PAL sequence.
SYMBOL
PIN
I/O/P DESCRIPTION
(L)QFP64
Page 8
1998 May 15 8
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Notes
1. In accordance with the ‘
IEEE1149.1
’ standard the pads TCK, TDI, TMS and TRST are input pads with an internal
pull-up transistor and TDO a 3-state output pad.
2. This pin provides easy initialization of BST circuit. TRST can be used to force the TAP (Test Access Port) controller to the Test-Logic-Reset state (normal operation) at once.
3. For board design without boundary scan implementation (pin compatibility with the SAA7110) connect the TRST pin to ground.
IICSA 61 I I
2
C-bus slave address select; 0 = 48H for write, 49H for read 1 = 4AH for write, 4BH for read.
SDA 62 I/O Serial data input/output (I
2
C-bus).
SCL 63 I/O Serial clock input/output (I
2
C-bus).
n.c. 64 Not connect.
SYMBOL
PIN
I/O/P DESCRIPTION
(L)QFP64
Page 9
1998 May 15 9
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.2 Pin configuration (LQFP64/QFP64).
handbook, full pagewidth
SAA7111A
MGG060
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
TCK
IICSA
SDA
RTCO
n.c.
TDO
TDI
TMS
V
SSA2
n.c.
AI22
V
DDA2
VPO15
VPO14
VPO13
VPO12
VPO11
VPO10
VPO9
VPO8
VPO7
VPO6
VPO5
VPO4
VPO3
VPO2
VPO1
VPO0
FEI
GPSW
XTAL
XTALI
V
SSD1
V
DDD1
V
DDD3
V
DDD2
V
SSD2
AI21
AI11
AOUT
V
SSA1
V
SSA0
V
SSD5
LLC
LLC2
CREF
CE
HS
RTS1
RTS0
VS
HREF
V
SSD3
V
SSD4
V
DDD4
VREF
V
SSS
V
DDA1
V
DDA0
V
DDD5
AI12
SCL
TRST
RES
Page 10
1998 May 15 10
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
8 FUNCTIONAL DESCRIPTION
8.1 Analog input processing
The SAA7111A offers four analog signal inputs, two analog main channels with source switch, clamp circuit, analog amplifier, anti-alias filter and video CMOS ADC (see Fig.5).
8.2 Analog control circuits
The anti-alias filters are adapted to the line-locked clock frequency via a filter control circuit. During the vertical blanking time, gain and clamping control are frozen.
8.2.1 C
LAMPING
The clamp control circuit controls the correct clamping of the analog input signals. The coupling capacitor is also used to store and filter the clamping voltage. An internal digital clamp comparator generates the information with respect to clamp-up or clamp-down. The clamping levels for the two ADC channels are fixed for luminance (60) and chrominance (128). Clamping time in normal use is set with the HCL pulse at the back porch of the video signal.
8.2.2 G
AIN CONTROL
Signal (white) peak control limits the gain at signal overshoots. The flow charts (see Figs 13 and 14) show more details of the AGC. The influence of supply voltage variation within the specified range is automatically eliminated by clamp and automatic gain control.
The gain control circuit receives (via the I2C-bus) the static gain levels for the two analog amplifiers or controls one of these amplifiers automatically via a built-in automatic gain control (AGC) as part of the Analog Input Control (AICO).
Fig.3 Analog line with clamp (HCL) and gain
range (HSY).
handbook, halfpage
HCL
MGL065
HSY
analog line blanking
TV line
1
60
255
GAIN CLAMP
The AGC (automatic gain control for luminance) is used to amplify a CVBS or Y signal to the required signal amplitude, matched to the ADCs input voltage range. The AGC active time is the sync bottom of the video signal.
8.3 Chrominance processing
The 8-bit chrominance signal is fed to the multiplication inputs of a quadrature demodulator, where two subcarrier signals from the local oscillator DTO1 are applied (0 and 90° phase relationship to the demodulator axis). The frequency is dependent on the present colour standard. The output signals of the multipliers are low-pass filtered (four programmable characteristics) to achieve the desired bandwidth for the colour difference signals (PAL and NTSC) or the 0 and 90° FM-signals (SECAM).
The colour difference signals are fed to the Brightness/Contrast/Saturation block (BCS), which includes the following five functions:
AGC (Automatic Gain Control for chrominance PAL and NTSC)
Chrominance amplitude matching (different gain factors for R Y and B Y to achieve CCIR-601 levels Cr and Cb for all standards)
Chrominance saturation control
Luminance contrast and brightness
Limiting YUV to the values 1 (min.) and 254 (max.) to
fulfil CCIR-601 requirements.
Fig.4 Automatic gain range.
handbook, halfpage
analog input level
controlled
ADC input level
maximum
minimum
range tbf0 dB
0 dB
MGG063
+4.5 dB
7.5 dB
(1 V(p-p) 27/47 Ω)
Page 11
1998 May 15 11
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
The SECAM-processing contains the following blocks:
Baseband ‘bell’ filters to reconstruct the amplitude and phase equalized 0 and 90° FM-signals
Phase demodulator and differentiator (FM-demodulation)
De-emphasis filter to compensate the pre-emphasised input signal, including frequency offset compensation (DB or DR white carrier values are subtracted from the signal, controlled by the SECAM-switch signal).
The burst processing block provides the feedback loop of the chroma PLL and contains;
Burst gate accumulator
Colour identification and killer
Comparison nominal/actual burst amplitude (PAL/NTSC
standards only)
Loop filter chrominance gain control (PAL/NTSC standards only)
Loop filter chrominance PLL (only active for PAL/NTSC standards)
PAL/SECAM sequence detection, H/2-switch generation
Increment generation for DTO1 with divider to generate stable subcarrier for non-standard signals.
The chrominance comb filter block eliminates crosstalk between the chrominance channels in accordance with the PAL standard requirements. For NTSC colour standards the chrominance comb filter can be used to eliminate crosstalk from luminance to chrominance (cross-colour) for vertical structures. The comb filter can be switched off if desired. The embedded line delay is also used for SECAM recombination (cross-over switches).
The resulting signals are fed to the variable Y-delay compensation, RGB matrix, dithering circuit and output interface, which contains the VPO output formatter and the output control logic (see Fig.6).
8.4 Luminance processing
The 8-bit luminance signal, a digital CVBS format or a luminance format (S-VHS, HI8), is fed through a switchable prefilter. High frequency components are emphasized to compensate for loss. The following chrominance trap filter (f
0
= 4.43 or 3.58 MHz centre frequency selectable) eliminates most of the colour carrier signal, therefore, it must be bypassed for S-video (S-VHS and HI8) signals.
The high frequency components of the luminance signal can be peaked (control for sharpness improvement via I
2
C-bus) in two band-pass filters with selectable transfer characteristic. This signal is then added to the original (unpeaked) signal. A switchable amplifier achieves common DC amplification, because the DC gains are different in both chrominance trap modes. The improved luminance signal is fed to the BCS control located in the chrominance processing block (see Fig.7).
8.5 RGB matrix
Y, Cr and Cb data are converted after interpolation into RGB data in accordance with CCIR-601 recommendations. The realized matrix equations consider the digital quantization:
R = Y + 1.371 Cr G=Y0.336 Cb 0.698 Cr B = Y + 1.732 Cb.
After dithering (noise shaping) the RGB data is fed to the output interface within the VPO-bus output formatter.
8.6 VBI-data bypass
For a 27 MHz VBI-data bypass the offset binary CVBS signal is upsampled behind the ADCs. Upsampling of the CVBS signal from 13.5 to 27 MHz is possible, because the ADCs deliver high performance at 13.5 MHz sample clock. Suppressing of the back folded CVBS frequency components after upsampling is achieved by an interpolation filter (see Fig.42).
The TUF block on the digital top level performs the upsampling and interpolation for the bypassed CVBS signal (see Fig.6).
For bypass details see Figs 8 to 10.
8.7 VPO-bus (digital outputs)
The 16-bit VPO-bus transfers digital data from the output interfaces to a feature box or a field memory, a digital colour space converter (SAA7192 DCSC), a video enhancement and digital-to-analog processor (SAA7165 VEDA2) or a colour graphics board (Targa-format) as a graphical user interface.
Page 12
1998 May 15 12
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
The output data formats are controlled via the I2C-bus bits OFTS0, OFTS1 and RGB888. Timing for the data stream formats, YUV (4 : 1 : 1) (12-bit), YUV (4 : 2 : 2) (16-bit), RGB (5, 6 and 5) (16-bit) and RGB (8, 8 and 8) (24-bit) with an LLC2 data rate, is achieved by marking each second positive rising edge of the clock LLC in conjunction with CREF (clock reference) (except RGB (8, 8 and 8), see special application in Fig.32). The higher output signals VPO15 to VPO8 in the YUV format perform the digital luminance signal. The lower output signals VPO7 to VPO0 in the YUV format are the bits of the multiplexed colour difference signals (B Y) and (R Y). The arrangement of the RGB (5, 6 and 5) and RGB (8, 8 and 8) data stream bits on the VPO-bus is given in Table 6.
The data stream format YUV 4:2:2 (the 8 higher output signals VPO15 to VPO8) in LLC data rate fulfils the CCIR-656 standard with its own timing reference code at the start and end of each video data block.
A pixel in the format tables is the time required to transfer a full set of samples. If 16-bit 4 : 2 : 2 format is selected two luminance samples are transmitted in comparison to one (B Y) and one (R Y) sample within a pixel. The time frames are controlled by the HREF signal.
Fast enable is achieved by setting input FEI to LOW. The signal is used to control fast switching on the digital VPO-bus. HIGH on this pin forces the VPO outputs to a high-impedance state (see Figs 18 and 19). The I2C-bus bit OEYC has to be set HIGH to use this function.
The digitized PAL, SECAM or NTSC signals AD1 (7 to 0) and AD2 (7 to 0) are connected directly to the VPO-bus via I2C-bus bit VIPB = 1 and MODE = 4, 5, 6 or 7.
AD1 (7 to 0) VPO (15 to 8) and AD2 (7 to 0) VPO (7 to 0).
The selection of the analog input channels is controlled via I2C-bus subaddress 02 MODE select.
The upsampled 8-bit offset binary CVBS signal (VBI-data bypass) is multiplexed under control of the I2C-bus to the digital VPO-bus (see Fig.8).
8.8 Reference signals HREF, VREF and CREF
HREF: The positive slope of the HREF output signal indicates the beginning of a new active video line. The high period is 720 luminance samples long and is also present during the vertical blanking. The description of timing and position from HREF is illustrated in Figs 15, 16, 21 and 23.
VREF: The VREF output delivers a vertical reference signal or an inverse composite blank signal controlled via the I2C-bus [subaddress 11, inverse composite blank (COMPO)]. Furthermore four different modes of vertical reference signals are selectable via the I2C-bus [subaddress 13, vertical reference output control (VCTR1 and VCTR0)]. The description of VREF timing and position is illustrated in Figs 15, 16, 24 and 25.
CREF: The CREF output delivers a clock/pixel qualifier signal for external interfaces to synchronize to the VPO-bus data stream.
Four different modes for the clock qualifier signal are selectable via the I2C-bus [subaddress 13, clock reference output control (CCTR1 and CCTR0)]. The description of CREF timing and position is illustrated in Figs 16, 18, 20 and 21.
8.9 Synchronization
The prefiltered luminance signal is fed to the synchronization stage. Its bandwidth is reduced to 1 MHz in a low-pass filter. The sync pulses are sliced and fed to the phase detectors where they are compared with the sub-divided clock frequency. The resulting output signal is applied to the loop filter to accumulate all phase deviations. Internal signals (e. g. HCL and HSY) are generated in accordance with analog front-end requirements. The output signals HS, VS, and PLIN are locked to the timing reference, guaranteed between the input signal and the HREF signal, as further improvements to the circuit may change the total processing delay. It is therefore not recommended to use them for applications which require absolute timing accuracy on the input signals. The loop filter signal drives an oscillator to generate the line frequency control signal LFCO (see Fig.7).
8.10 Clock generation circuit
The internal CGC generates all clock signals required for the video input processor. The internal signal LFCO is a digital-to-analog converted signal provided by the horizontal PLL. It is the multiple of the line frequency
Internally the LFCO signal is multiplied by a factor of 2 or 4 in the PLL circuit (including phase detector, loop filtering, VCO and frequency divider) to obtain the LLC and LLC2 output clock signals. The rectangular output clocks have a 50% duty factor (see Fig.26).
6.75MHz
429 432
--------- -
f
H
×=
Page 13
1998 May 15 13
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
8.11 Power-on reset and CE input
A missing clock, insufficient digital or analog V
DDA0
supply voltages (below 2.7 V) will initiate the reset sequence; all outputs are forced to 3-state. The indicator output RES is LOW for approximately 128LLC after the internal reset and can be applied to reset other circuits of the digital TV system.
It is possible to force a reset by pulling the chip enable (CE) to ground. After the rising edge of CE and sufficient power supply voltage, the outputs LLC, LLC2, CREF, RTCO, RTS0, RTS1, GPSW and SDA return from 3-state to active, while HREF, VREF, HS and VS remain in 3-state and have to be activated via I
2
C-bus programming
(see Table 5).
8.12 RTCO output
The real time control and status output signal contains serial information about the actual system clock (increment of the HPLL), subcarrier frequency [increment and phase (via reset) of the FSC-PLL] and PAL sequence bit. The signal can be used for various applications in external circuits, e.g. in a digital encoder to achieve clean encoding (see Fig.20).
8.13 The Line-21 text slicer
The text slicer block detects and acquires Line-21 Closed Captioning data from a 525-line CVBS signal. Extended data services on Line-21 Field 2 are also supported. If valid data is detected the two data bytes are stored in two I2C-bus registers. A parity check is also performed and the result is stored in the MSB of the corresponding byte. A third I2C-bus register is provided for data valid and data ready flags. The two bits F1VAL and F2VAL indicate that the input signal carries valid Closed Captioning data in the corresponding fields. The data ready bits F1RDY and F2RDY have to be evaluated if asynchronous I2C-bus reading is used.
8.13.1 S
UGGESTIONS FOR I
2
C-BUS INTERFACE OF THE
DISPLAY SOFTWARE READING LINE
-21 DATA
There are two methods by which the software can acquire the data:
1. Synchronous reading once per frame (or once per field); It can use either the rising edge (Line-21 Field 1) or both edges (Line-21 Field 1 or 2) of the ODD signal (pin RTSO) to initiate an I2C-bus read transfer of the three registers 1A, 1B and 1C.
2. Asynchronous reading; It can poll either the F1RDY bit (Line-21 Field 1) or both F1RDY/F2RDY bits (Line-21 Field 1 or 2). After valid data has been read the corresponding F*RDY bit is set to LOW until new data has arrived. The polling frequency has to be slightly higher than the frame or field frequency, respectively.
Page 14
1998 May 15 14
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
handbook, full pagewidth
AI22 AI21
FUSE (1 : 0)
AI12 AI11
FUSE (1 : 0)
AOSL (1 : 0)
HOLDG
ANALOG CONTROL
GAI10-GAI18
V
SSS
n.c.
VBSL 8 8
64
13
MGC655
14
CHRLUM
VERTICAL
BLANKING
CONTROL
SOURCE
SWITCH
CLAMP
CIRCUIT
ANALOG
AMPLIFIER
ANTI-ALIAS
FILTER
BYPASS SWITCH
SOURCE
SWITCH
CLAMP
CIRCUIT
ANALOG
AMPLIFIER
ANTI-ALIAS
FILTER
BYPASS SWITCH
ADC2
ADC1
TEST
AND
SELECTOR
CLAMP
CONTROL
GAIN
CONTROL
CROSS MULTIPLEXER
ANTI-ALIAS
CONTROL
V
DDA1
V
SSA2
AOUT
MODE
CONTROL
MODE 0 MODE 1 MODE 2
GAI20-GAI28
GUDL0-GUDL2
GAFIX WPOFF
HSY
VBLNK SVREF
HCL
AD1BYPAD2BYP
BUFFER
DAC9
DAC9
HLNRS UPTCV
V
DDA2
9 5
6 8
11 7
10 12
V
SSA1
GLIMB GLIMT WIPA SLTCA
Fig.5 Analog input processing.
Page 15
1998 May 15 15
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
Fig.6 Chrominance circuit.
g
ewidth
CHRLUM
CODE
AD1BYPAD2BYP
BRIG
CONT
SATN
HUEC
DCCF
fH/2 switch signal
MGG062
V
DDD1-5
V
SSD1-5
57,41,33, 25,18
56,40,32,26,19
31
60
34 to 39
42 to 51
52
QUADRATURE
DEMODULATOR
COMB
FILTERS
SECAM
RECOMBINATION
FORMATTER
OUTPUT
AND
INTERFACE
ACCUMULATOR
BURST GATE
LOW-PASS
LOOP FILTER
SUBCARRIER
INCREMENT
GENERATION
AND
DIVIDER
SUBCARRIER GENERATION
FCTCCSTD 1
RGB MATRIX
interpolation
dithering
SECAM
PROCESSING
DIT CBR
CHBW0 CHBW1
CSTD 0
INCS
RES
TCK
TDI
59 3
23
POWER-ON
CONTROL
TEST
CONTROL
BLOCK
TDO
TRST
2
58
TMS
4
LUM
Y
RTCO
n.c.
1
CLOCKS
CE
Y
sequential UV signals
UV
RGB
FEI
HREF
VPO (9 : 0)
VPO (15 : 10)
VBI DATA BYPASS
TUF
PHASE
DEMODULATOR
AMPLITUDE
DETECTOR
OFTS0 OFTS1 RGB888 OEYC OEHV FECO VRLN VSTA (8 : 0) VSTO (8 : 0)
GPSW RTSE1 RTSE0 VIPB VLOF COLO COMPO
LEVEL
ADJUSTMENT,
BRIGHTNESS,
CONTRAST,
AND
SATURATION
CONTROL
GAIN
CONTROL
AND Y-DELAY
COMPENSATION
Page 16
1998 May 15 16
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
handbook, full pagewidth
CREF LLC
XTALI XTAL
VREF
RTS0
HS
VS
SDASCLIICSA
GPSW
I C BUS CONTROL
CLOCKS
SYNCHRONIZATION CIRCUIT
PREF
BYPS
APER0 APER1 VBLB
AUFD
HSB HSS
FSEL
VTRC
STTC
FIDT
VNOI0 VNOI1 VTRC
VTRC
CE
RTS1
MGC654
LLC2
HLCK
V
DDA0
V
SSA0
53
61 63 62 30 29 17 27 28
16 24
15
54
55
22 20 21
DAC6
AND
WEIGHTING
ADDING
BAND-PASS
VARIABLE
FILTER
CHROMINANCE
TRAP
PREFILTER
AMPLIFIER
MATCHING
CLOCK
LINE-LOCKED GENERATOR
2
LOOP FILTER
DETECTOR
PHASE
COARSE
DETECTOR
PHASE
FINE
SYNC SLICER
SYNC
PREFILTER
LINE 21
TEXT
SLICER
CLOCK
CRYSTAL
GENERATOR
TIME
DISCRETE
OSCILLATOR 2
INTERFACE
I C-BUS
PROCESSOR
VERTICAL
COUNTER
GENERATION
CLOCK
CIRCUIT
LUMINANCE CIRCUIT
BPSS0 BPSS1 PREF
LUM
VBLB
VBLB
Y
CLOCK CIRCUIT
INCS
STAGE
HPLL VTRC
EXFIL
BYTE1 BYTE2
STATUS
2
2
Fig.7 Luminance and sync processing.
Page 17
1998 May 15 17
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.8 Multiplexing of the CVBS signal to the VPO-bus.
HREFINT = internal horizontal reference. TBP = upsampled CVBS input data (27 MHz). AD1BYP/AD2BYP = digitized CVBS input data and Y/C input data (13.5 MHz). VBP0 = programmable vertical reference signal. VBP4 = delayed programmable vertical reference signal (4LLC clocks delay).
handbook, full pagewidth
MGG064
CLOCK 0
HREFINT
V_GATE
(programmable)
4 × REG
CLOCK 0
REG
BCHI1 BCHI0 SWHI
0 0 1 1
0 1 0 1
1
0 VBP0 VBP4
VBP0
AD1BYP
VBP4
0
MUX
CVBS
UP
1
0
MUX
BYP
UP
REGISTER
1
BCLO1 BCLO0 SWLO
0 0 1 1
0 1 0 1
1
BCLO1 to 0
I
2
C-bus
BCHI1 to 0
I
2
C-bus
VIPB I
2
C-bus
TBP7 to 0
(CVBS)
UV or YUV
Y or YUV
0 VBP0 VBP4
VBP0
VBP4
VBP0
AD2BYP
VBP4
0
MUX
CVBS
UP
1
0
VPO7 to 0
SWHI
SWLO
VPO15 to 8
MUX
BYP
UP
REGISTER
1
EN
(LUMA see Fig. 37)
(CHROMA see Fig. 37)
Page 18
1998 May 15 18
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.9 VREF output signal generation.
VREF_CCIR 656 = vertical reference signal referring to the field interval definitions of CCIR656. HREFINT = internal horizontal reference signal. VREFINT = internal vertical reference signal. VBP0 = programmable vertical reference signal. VBP4 = delayed programmable vertical reference signal (4LLC clocks delay).
handbook, full pagewidth
MGG065
V C T R 1
0 0 1 1
0 1 0 1
V C T R 0
VREFINT
VREF
CLOCK 0
COMPO
VCTR1 to 0
VREFOUT
VREF CCIR 656 VBP0 VBP4
VBP0 VBP4
VREFINT
HREFINT
HREFINT
VREF CCIR 656
REG
HREF
CLK0
REG
CLOCK 0
REG
EN
0
MUX
1
CLOCK 0
REG
EN
Fig.10 CREF output signal generation.
CREFINT = internal clock qualifier signal.
handbook, full pagewidth
MGG066
C C T R 1
0 0 1 1
0 1 0 1
C C T R 0
CREFINT
CREFINT
selected
VREF
CCTR1 to 0
CREF
CLOCK 0
CREFOUT
0 if VREF = 0 1 if VREF = 0 1 (always HIGH)
REG
Page 19
1998 May 15 19
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
9 BOUNDARY-SCAN TEST
The SAA7111A has built in logic and 5 dedicated pins to support boundary-scan testing which allows board testing without special hardware (nails). The SAA7111A follows the
‘IEEE Std. 1149.1 - Standard Test Access Port and
Boundary-Scan Architecture
’ set by the Joint Test Action
Group (JTAG) chaired by Philips. The 5 special pins are Test Mode Select (TMS), Test
Clock (TCK), Test Reset (TRST), Test Data Input (TDI) and Test Data Output (TDO).
The BST functions BYPASS, EXTEST, INTEST, SAMPLE, CLAMP and IDCODE are all supported (see Table 1). Details about the JTAG BST-TEST can be found in the specification “
EEE Std. 1149.1”
. A file containing the detailed Boundary-Scan Description Language (BSDL) description of the SAA7111A is available on request.
9.1 Initialization of boundary-scan circuit
The Test Access Port (TAP) controller of an IC should be in the reset state (TEST_LOGIC_RESET) when the IC is in functional mode. This reset state also forces the instruction register into a functional instruction such as IDCODE or BYPASS.
To solve the power-up reset, the standard specifies that the TAP controller will be forced asynchronously to the TEST_LOGIC_RESET state by setting the TRST pin LOW.
9.2 Device identification codes
A Device Identification Register (DIR) is specified in
‘IEEE Std. 1149.1-1990 - IEEE Standard Test Access Port and Boundary-Scan Architecture
’ (IEEE Std. 1149.1b-1994). It is a 32-bit register which contains fields for the specification of the IC manufacturer, the IC part number and the IC version number. Its biggest advantage is the possibility to check for the correct ICs mounted after production and determination of the version number of ICs during field service.
When the IDCODE instruction is loaded into the BST instruction register, the identification register will be connected between TDI and TDO of the IC. The identification register will load a component specific code during the CAPTURE_DATA_REGISTER state of the TAP controller and this code can subsequently be shifted out. At board level this code can be used to verify component manufacturer, type and version number. The device identification register contains 32-bits, numbered 31 to 0, where bit 31 is the Most Significant Bit (MSB) (nearest to TDI) and bit 0 is the Least Significant Bit (LSB) (nearest to TDO); see Fig.11.
Table 1 BST instructions supported by the SAA7111A
INSTRUCTION DESCRIPTION
BYPASS This mandatory instruction provides a minimum length serial path (1 bit) between TDI and TDO
when no test operation of the component is required.
EXTEST This mandatory instruction allows testing of off-chip circuitry and board level interconnections.
SAMPLE This mandatory instruction can be used to take a sample of the inputs during normal operation of
the component. It can also be used to preload data values into the latched outputs of the boundary-scan register.
CLAMP This optional instruction is useful for testing when not all ICs have BST. This instruction addresses
the bypass register while the boundary-scan register is in external test mode.
IDCODE This optional instruction will provide information on the components manufacturer, part number and
version number.
INTEST This optional instruction allows testing of the internal logic (no support for customers available).
USER1 This private instruction allows testing by the manufacturer (no support for customers available).
Page 20
1998 May 15 20
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.11 32 bits of identification code.
handbook, full pagewidth
MGL111
0000001010111110001000100010010
4-bit
version
code
16-bit part number 11-bit manufacturer
indentification
TDI TDO
31
MSB LSB
28 27 12 11 1 0
1
Page 21
1998 May 15 21
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
10 GAIN CHARTS
Fig.12 Amplifier curve.
handbook, halfpage
0
7.5
5.5
dB
3.5
1.5
0.5
4.5
2.5
256 512
gain value (i)
MGC648
bit [8] = 1
factor
dB
= 20 x log10 gain =
(
512
768 i
i > 256
bit [8] = 0
factor
dB
= 20 x log10 gain =
(
512
257 + i
(
i < 256
(
Fig.13 Clamp and gain flow.
WIPE = white peak level (254); SBOT = sync bottom level (1); CLL = clamp level [60 Y (128 C)]; HSY = horizontal sync pulse; HCL = horizontal clamp pulse.
handbook, full pagewidth
10
+ CLAMP CLAMP
NO CLAMP
10 10
01 10
MGC647
fast GAIN
slow + GAIN
+ GAIN GAIN
HCL HSY
ADC
SBOT
WIPE
CLL
ANALOG INPUT
GAIN -><- CLAMP
VBLK
NO BLANKING ACTIVE
10
Page 22
1998 May 15 22
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.14 Gain flow chart.
X = system variable; Y = IAGV FGVI > GUDL; VBLK = vertical blanking pulse; HSY = horizontal sync pulse; AGV = actual gain value; FGV = frozen gain value.
handbook, full pagewidth
ANALOG INPUT
AMPLIFIER
ANTI-ALIAS FILTER
ADC
LUMA/CHROMA DECODER
X
HSY
>254
>254
<1
<4
>248
X = 0
X = 1
1/LLC2
+1/LLC2 1/LLC2
+/ 0
+1/F
+1/L
GAIN ACCUMULATOR (18 BITS)
ACTUAL GAIN VALUE 9-BIT (AGV) [6/+6 dB]
X
STOP
HSY
Y
UPDATE
FGV
MGC652
AGV
GAIN VALUE 9-BIT
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
1
0
VBLK
1
0
NO ACTION
9
8
DAC
gain
HOLDG
Page 23
1998 May 15 23
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
11 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134); all ground pins connected together and all supply pins connected together.
Note
1. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k resistor.
12 CHARACTERISTICS
V
DDD
= 3.0 to 3.6 V; V
DDA
= 3.1 to 3.5 V; T
amb
=25°C; unless otherwise specified.
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DDD
digital supply voltage 0.5 +4.6 V
V
DDA
analog supply voltage 0.5 +4.6 V
V
i(A)
input voltage at analog inputs 0.5 V
DDA
+ 0.5
(4.6 max.)
V
V
o(A)
output voltage at analog output 0.5 V
DDA
+ 0.5 V
V
i(D)
input voltage at digital inputs and outputs outputs in 3-state 0.5 +5.5 V
V
o(D)
output voltage at digital outputs outputs active 0.5 V
DDD
+ 0.5 V
V
SS
voltage difference between V
SSAall
and V
SSall
100 mV
T
stg
storage temperature 65 +150 °C
T
amb
operating ambient temperature 0 70 °C
T
amb(bias)
operating ambient temperature under bias 10 +80 °C
V
esd
electrostatic discharge all pins note 1 2000 +2000 V
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Supplies
V
DDD
digital supply voltage 3.0 3.3 3.6 V
I
DDD
digital supply current 63 70 mA
P
D
digital power 0.21 W
V
DDA
analog supply voltage 3.1 3.3 3.5 V
I
DDA
analog supply current AOSL = [1:0] = 00b;
AOUT not connected
52 mA
P
A
analog power 0.17 W
P
A+D
analog and digital power 0.38 W
P
pd
analog and digital power in power-down mode
CE connected to ground (since version 3)
0.02 W
Analog part
I
clamp
clamping current VI= 0.9 V DC −±3.5 −µA
V
i(p-p)
input voltage (peak-to-peak value)
for normal video levels [1 V (p-p)]; 3dB termination 27/47 and AC coupling required; coupling capacitor = 22 nF
0.3 0.7 1.2 V
|Z
i
| input impedance clamping current off 200 −− k
C
i
input capacitance −−10 pF
Page 24
1998 May 15 24
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
α
cs
channel crosstalk fi= 5 MHz −−−50 dB
Analog-to-digital converters
B bandwidth at 3dB 7 MHz φ
diff
differential phase (amplifier plus anti-alias filter = bypass)
2 deg
G
diff
differential gain (amplifier plus anti-alias filter = bypass)
2 %
f
clkADC
ADC clock frequency 12.8 14.3 MHz
DLE DC differential linearity
error
0.7 LSB
ILE DC integral linearity error 1 LSB
Digital inputs
V
IL(SCL,SDA)
LOW level input voltage pins SDA and SCL
0.5 +0.3V
DDD
V
V
IH
HIGH level input voltage pins SDA and SCL
0.7V
DDD
V
DDD
+ 0.5 V
V
IL(xtal)
LOW level CMOS input voltage pin XTALI
0.3 +0.8 V
V
IH(xtal)
HIGH level CMOS input voltage pin XTALI
2.0 V
DDD
+ 0.3 V
V
ILn
LOW level input voltage all other inputs
0.3 +0.8 V
V
IHn
HIGH level input voltage all other inputs
2.0 5.5 V
I
LI
input leakage current −−1 µA
C
i
input capacitance outputs at 3-state −−8pF
C
i(n)
input capacitance all other inputs
−−5pF
Digital outputs
V
OL(SCL,SDA)
LOW level output voltage pins SDA and SCL
SDA/SCL at 3 mA (6 mA) sink current
−−0.4 (0.6) V
V
OL
LOW level output voltage V
DDD
= max; IOL=2mA 0 0.4 V
V
OH
HIGH level output voltage V
DDD
= min, IOH= 2 mA 2.4 V
DDD
+ 0.5 V
V
OL(clk)
LOW level output voltage for clocks
0.5 +0.6 V
V
OH(clk)
HIGH level output voltage for clocks
2.4 V
DDD
+ 0.5 V
I
LO
output leakage current at 3-state mode −−10 µA
FEI input timing
t
SU;DAT
input data set-up time 13 −− ns
t
HD;DAT
input data hold time 3 −− ns
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Page 25
1998 May 15 25
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Data and control output timing; note 1 C
L
output load capacitance 15 40 pF
t
OHD;DAT
output hold time CL=15pF 4 −− ns
t
PD
propagation delay CL=25pF −−20 ns
t
PDZ
propagation delay to 3-state
−−20 ns
Clock output timing (LLC and LLC2); note 2 C
L(LLC)
output load capacitance 15 40 pF
T
cy
cycle time LLC 35 39 ns
LLC2 70 78 ns
δ
LLC
duty factors for t
LLCH/tLLC
and t
LLC2H/tLLC2
CL=25pF 40 60 %
t
r
rise time LLC, LLC2 −−5ns
t
f
fall time LLC, LLC2 −−5ns
t
d
delay time LLC output to LLC2 output
at 1.5 V; LLC/LLC2 = 25 pF
4 +8 ns
Data qualifier output timing (CREF)
t
OHD;CREF
output hold time CL=15pF 4 −− ns
t
PD;CREF
propagation delay from positive edge of LLC
CL=25pF −−20 ns
Clock input timing (XTALI)
δ
XTALI
duty factor for t
XTALIH/tXTALI
nominal frequency 40 60 %
Horizontal PLL
f
Hn
nominal line frequency 50 Hz field 15625 Hz
60 Hz field 15734 Hz
f
H/fHn
permissible static deviation −−5.7 %
Subcarrier PLL
f
SCn
nominal subcarrier frequency
PAL BGHI 4433619 Hz NTSC M; NTSC-Japan 3579545 Hz PAL M 3575612 Hz PAL N 3582056 Hz
f
SC
lock-in range ±400 −− Hz
Crystal oscillator
f
n
nominal frequency 3rd harmonic; note 3 24.576 MHz
f/f
n
permissible nominal frequency deviation
−−±50 10
6
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Page 26
1998 May 15 26
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Notes
1. The levels must be measured with load circuits; 1.2 k at 3 V (TTL load); CL= 50 pF.
2. The effects of rise and fall times are included in the calculation of t
OHD;DAT
, tPD and t
PDZ
. Timings and levels refer to
drawings and conditions illustrated in Figs 15 and 16.
3. Order number: Philips 4322 143 05291.
Table 2 Processing delay
Note
1. Digital processing delay (LLC CLOCKS) for VBI data is defined in Fig.23 ‘Horizontal timing diagram’.
Crystal oscillator
f
n
nominal frequency 3rd harmonic; note 3 24.576 MHz
f/f
n
permissible nominal frequency deviation
−−±50 10
6
Tf/f
n
permissible nominal frequency deviation with temperature
−−±20 10
6
CRYSTAL SPECIFICATION (X1) T
amb(X1)
operating ambient temperature
0 70 °C
C
L
load capacitance 8 −− pF
R
s
series resonance resistor 40 80
C
1
motional capacitance 1.5 ±20% fF
C
0
parallel capacitance 3.5 ±20% pF
FUNCTION
TYPICAL ANALOG DELAY
AI22 ADCIN (AOUT) (ns)
DIGITAL DELAY
ADCIN VPO (LLC CLOCKS)
[YDEL(2 to 0) = 000]; note 1
Without amplifier or anti-alias filter 15
179With amplifier, without anti-alias filter 25
With amplifier and anti-alias filter 75
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Page 27
1998 May 15 27
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
13 TIMING DIAGRAMS
Fig.15 Clock/data timing (8-bit CCIR-656 format of the VPO-bus).
An explanation of the output formats is given in Table 6.
handbook, full pagewidth
2.4 V
t
LLC
t
f
t
PD
t
OHD;DAT
t
LLCL
t
LLCH
OUTPUTS VPO, HREF, VREF, VS, HS
CLOCK OUTPUT LLC
t
r
0.6 V
2.6 V
1.5 V
0.6 V
MGC658
Fig.16 Clock/data timing (12 and 16-bit CCIR-601 format of the VPO-bus).
An explanation of the output formats is given in Table 6. The FEI timing of the VPO-bus is illustrated in Figs 18 and 19.
handbook, full pagewidth
2.4 V
0.6 V
t
LLC
t
f
t
PD
t
OHD;CREF
t
dLLC2
t
r
t
LLCL
t
LLCH
2.4 V
0.6 V
OUTPUTS VPO, HREF,
CLOCK OUTPUT LLC
CLOCK OUTPUT LLC2
1.5 V
0.6 V
2.6 V
1.5 V
0.6 V
2.6 V
VREF, VS, HS
OUTPUT CREF
t
OHD;DAT
t
dLLC2
t
PD
MGC659
t
LLC
t
PD
t
OHD;CREF
Page 28
1998 May 15 28
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.17 Clock/data timing for RGB (8, 8 and 8) output format.
An explanation of the output formats is given in Table 6.
handbook, full pagewidth
MBH227
2.4 V
1.5 V
0.6 V
2.4 V
1.5 V
0.6 V
2.4 V
1.5 V
0.6 V
CLOCK OUTPUT LLC
OUTPUT CREF
RGB (8, 8, 8) data
VPO15 to VPO8
RGB (8, 8, 8) data
VPO7 to VPO0
2.4 V
1.5 V
0.6 V
t
OHD;DAT
t
OHD;DAT
t
OHD;CREF
t
OHD;CREF
t
OHD;CREF
t
PD;CREF
t
PD
t
PD;CREF
R(7 : 3) G(7 : 5)
G(4 : 2) B(7 : 3)
R(2 : 0) G(1 : 0) B(2 : 0)
t
LLCL
t
LLC
t
LLC
t
f
t
r
t
LLCH
Fig.18 FEI timing diagram (FEI sampling at CREF = HIGH) for OFTS = 0, 1 or 2).
I2C-bus bit FECO = 1.
handbook, full pagewidth
LLC
CREF
HREF
FEI
VPO
to 3-state
from 3-state
MGC656
t
PDZ
t
PD
t
HD;DAT
t
SU;DAT
t
OHD;DAT
Page 29
1998 May 15 29
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.19 FEI timing diagram (FEI sampling at CREF = LOW) for OFTS = 0, 1 or 2).
Timing is compatible with SAA7110; I2C-bus bit FECO = 0.
handbook, full pagewidth
LLC
CREF
HREF
VPO
t
SU;DAT
t
HD;DAT
to 3-state
MGC657
from 3-state
t
OHD;DAT
t
PD
t
PDZ
FEI
Fig.20 Real time control output.
(1) Set to zero for one transmission, if a phase reset of the fsc− DTO is applied via I2C-bus bit CDTO. RTCO sequence is generated in LLC/4.
The HPLL increment represents the actual LFCO frequency (f
LFCO
× 4=f
LLC
); 16 LSB from 20, upper four bits are fixed to 0100b.
Where: f
XTAL
= 24.576 MHz, word length DTO2 = 20 bits.
The f
sc
increment represents the actual subcarrier frequency (related to the actual clock); 23 LSB from 24, MSB is 0b.
Where: word length DTO1 = 24 bits.
f
LFCO
INCR
HPLLfXTAL
×
2
word lengthDTO2
------------------------------------------------ -
=
f
sc
INCR
FSCPLLfXTAL
×
2
word lengthDTO1
-------------------------------------------------------
INCR
HPLL
2
19
----------------------------
×=
handbook, full pagewidth
TIME SLOT:
BIT NO.:
transmitted once per line
22
1
21
1920
15
1617
18
7
8
9
11 1012
13
14
SEQUENCE
19
0 67
2
3
6
452
3
0
16
45
RESERVED
16
INCR
FSCPLL
MGC649
63
0
1
RESERVED
128
HIGH
LOW
15
INCR
HPLL
RESERVED
1
68
DTO RESET
(1)
50 Hz fields: 235 60 Hz fields: 232
Page 30
1998 May 15 30
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.21 HREF timing diagram.
handbook, full pagewidth
0
LLC
CREF
LLC2
HREF
Yn
UVn
HREF
Yn
UVn
1234
U0 V0 U2 V2 U4
END OF ACTIVE LINE
START OF ACTIVE LINE
719718717716715
U718 V718
MGC646
V716U716V714
Fig.22 FEI timing in CCIR 656 mode [OFTS (1 : 0) = 3].
handbook, full pagewidth
MBH766
t
PD
t
PDZ
t
OHD
t
HD
t
SU
LLC
FEI
VPO
Page 31
1998 May 15 31
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.23 Horizontal timing diagram.
(1) PLIN is switched to output RTS1 via I2C-bus bit RTSE1 = 0. (2) See Table 2. (3) HDEL (1 : 0) = 0 0, YDEL (2 : 0) = 0 0 0.
handbook, full pagewidth
0
108
107
107
106
MGD701
CVBS
VBI
26 × 1/LLC
179 × 1/LLC
27 × 2/LLC
Y - output
HREF (50 Hz)
12 × 2/LLC
720 × 2/LLC
144 × 2/LLC
23 × 2/LLC
138 × 2/LLC
720 × 2/LLC
burst
burst
RTS1 (PLIN)
(1)
processing delay CVBS->VPO
(2)
0
0
4/LLC
HREF (60 Hz)
HS (60 Hz)
sync clipped
16 × 2/LLC
HS (50 Hz)
programming range
(step size: 8/LLC)
HS (60 Hz)
programming range
(step size: 8/LLC)
HS
43 × 2/LLC
Page 32
1998 May 15 32
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.24 Vertical timing diagram for 50 Hz [nominal input signal VNL in normal mode (VNOI = 00b)].
(1) ODD is switched to output RTS0 via I2C-bus bit RTSE0 = 0. (2) Additional VREF positions can be achieved via I2C-bits VCTR1 and VCTR0 (see Fig.9). The luminance peaking and the chrominance trap are bypassed during VREF = 0 if I2C-bus bit VBLB is set to logic 1. The chrominance delay line (chrominance-comb filter for NTSC, phase error correcting for PAL) is disabled during VREF = 0.
handbook, full pagewidth
313 314
315 316
317
318
319
335 336
1234567822625
HREF
input CVBS
(b) 2nd field
(a) 1st field
VREF VREF
VREF
VREF
VRLN = 1
(2)
VRLN = 0
(2)
624
623
622
23
HREF
input CVBS
312
311
310
VRLN = 0
(2)
337
MGG069
535 x 2/LLC
VS
RTS0 (ODD)
(1)
RTS0 (ODD)
(1)
320
VS
77 x 2/LLC
VRLN = 1
(2)
Page 33
1998 May 15 33
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.25 Vertical timing diagram for 60 Hz [nominal input signal VNL in normal mode (VNOI = 00b)].
(1) ODD is switched to output RTS0 via I2C-bus bit RTSE0 = 0. (2) Line numbers in parenthesis refer to CCIR line counting. (3) Additional VREF positions can be achieved via I2C-bus bits VCTR1 and VCTR0 (see Fig.9). The luminance peaking and the chrominance trap are bypassed during VREF = 0 if I2C-bus bit VBLB is set to logic 1. The chrominance delay line (chrominance-comb filter for NTSC, phase error correcting for PAL) is disabled during VREF = 0.
handbook, full pagewidth
VS
(266) (267) (268) (269) (270) (271) (272) (273) (274)
(4) (5) (6) (7) (8) (9)
(10)
(11)
(20)
(3)
HREF
(b) 2nd field
(a) 1st field
input CVBS
(2)(1)
(525)
(21)
(22)
(283)
(284)
(265)
(264)
(263)
(262)
VRLN = 1
(3)
VRLN = 0
(3)
VRLN = 1
(3)
VRLN = 0
(3)
1234567
8
17
525
524
523
522
18 19
263 264 265 266 267 268 269 270 271
280
281
262
261
260
259
(285)
282
(2)
(2)
MGG070
520 x 2/LLC
RTS0 (ODD)
(1)
81 x 2/LLC
VREF
VREF
VREF
VREF
VS
HREF
input CVBS
RTS0 (ODD)
(1)
Page 34
1998 May 15 34
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Table 3 Digital output control
Note
1. Only active in 656-format (OFTS = 3).
OEYC FEI TCLO
(1)
VPO
15 to 8
VPO
7to0
000 Z 1 0 0 active 010 Z 110 Z 001ZZ 1 0 1 active Z 011ZZ 111ZZ
14 CLOCK SYSTEM
14.1 Clock generation circuit
The internal CGC generates the system clocks LLC, LLC2 and the clock reference signal CREF. The internally generated LFCO (triangular waveform) is multiplied by 4 via the analog PLL (including phase detector, loop filter, VCO and frequency divider). The rectangular output signals have a 50% duty factor.
Table 4 Clock frequencies
CLOCK FREQUENCY (MHz)
XTAL 24.576
LLC 27 LLC2 13.5 LLC4 6.75 LLC8 3.375
Fig.26 Block diagram of clock generation circuit.
handbook, full pagewidth
BAND PASS
FC = LLC/4
ZERO
CROSS
DETECTION
PHASE
DETECTION
LOOP
FILTER
DIVIDER
1/2
DIVIDER
1/2
OSCILLATOR
DELAY CREF
MGC632
LLC2
LLC
LFCO
Page 35
1998 May 15 35
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
14.2 Power-on control
Power-on reset is activated at power-on, chip enable, PLL clock generation failure and if the supply voltage falls below
2.7 V. The RES signal can be applied to reset other circuits of the digital picture processing system.
Fig.27 Power-on control circuit.
CE = chip enable input; XTAL = crystal oscillator output; LLCINT = internal system clock; RESINT = internal reset; LLC = line-locked clock output;
RES = reset output (active LOW).
handbook, full pagewidth
MGC633
128 LCC
896 LCC
digital delay
some ms
20 to 200 µs
PLL-delay
<
1 ms
RES
LLC
RESINT
LLCINT
XTAL
CE
POC V
DDA
POC
LOGIC
ANALOG
POC V
DDD
DIGITAL
POC
DELAY
CLOCK
PLL
CE
LLC
CLK0
RES
Page 36
1998 May 15 36
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Table 5 Power-on control sequence
15 OUTPUT FORMATS Table 6 Output formats of the VPO bus (note 1)
INTERNAL POWER-ON CONTROL
SEQUENCE
PIN OUTPUT STATUS FUNCTION
Directly after power-on asynchronous reset
VPO15 to VPO0, RTCO, RTS0, RTS1, GPSW, HREF, VREF, HS, VS, LLC, LLC2 and CREF are in high-impedance state
direct switching to high impedance for 20 to 200 ms
Synchronous reset sequence LLC, LLC2, CREF, RTCO, RTS0,
RTS1, GPSW and SDA become active; VPO15 to VPO0, HREF , VREF, HS and VS are held in high-impedance state
internal reset sequence
Status after power-on control sequence
VPO15 to VPO0, HREF , VREF, HS and VS are held in high-impedance state
after power-on (reset sequence) a complete I
2
C-bus transmission is
required
BUS
SIGNAL
411 (12-BIT)
422
(16-BIT)
(2)
CCIR-656 (8-BIT)
(3)
RGB (16-BIT)
(4)
RGB (24-BIT)
(4)
VPO15 Y
07Y17Y27Y37
Y
07
Y
17
U07Y07V07Y
17
R4 R7 R7
VPO14 Y
06Y16Y26Y36
Y
06
Y
16
U06Y06V06Y
16
R3 R6 R6
VPO13 Y
05Y15Y25Y35
Y
05
Y
15
U05Y05V05Y
15
R2 R5 R5
VPO12 Y
04Y14Y24Y34
Y
04
Y
14
U04Y04V04Y
14
R1 R4 R4
VPO11 Y
03Y13Y23Y33
Y
03
Y
13
U03Y03V03Y
13
R0 R3 R3
VPO10 Y
02Y12Y22Y32
Y
02
Y
12
U02Y02V02Y
12
G5 G7 G7
VPO9 Y
01Y11Y21Y31
Y
01
Y
11
U
01Y01V01Y11
G4 G6 G6
VPO8 Y
00Y10Y20Y30
Y
00
Y
10
U00Y00V00Y
10
G3 G5 G5
VPO7 U
07U05U03U01
U
07
V
07
X X X X G2 G4 R2
VPO6 U
06U04U02U00
U
06
V
06
X X X X G1 G3 R1
VPO5 V
07V05V03V01
U
05
V
05
X X X X G0 G2 R0
VPO4 V
06V04V02V00
U
04
V
04
X X X X B4 B7 G1
VPO3 X X X X U
03
V
03
X X X X B3 B6 G0
VPO2 X X X X U
02
V
02
X X X X B2 B5 B2
VPO1 X X X X U
01
V
01
X X X X B1 B4 B1
VPO0 X X X X U
00
V
00
X X X X B0 B3 B0
Pixel order Y
0123 0 1 0 1 note 5 note 6
Pixel order UV
000 −−
Data rates LLC2 LLC2 LLC LLC2 I2C-bus
control signals
OFTS0 = 0 OFTS0 = 1 OFTS0 = 1 OFTS0 = 0 OFTS0 = 0 OFTS1 = 1 OFTS1 = 0 OFTS1 = 1 OFTS1 = 0 OFTS1 = 0
RGB888 = X RGB888 = X RGB888 = X RGB888 = 0 RGB888 = 1
Page 37
1998 May 15 37
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Notes to Table 5
1. VPO bus allows connection to 5 V video data bus systems.
2. Values in accordance with CCIR 601.
3. Before and after the video data, video timing codes are inserted in accordance with CCIR 656. a) VPO15 to VPO8 = VPO7 to VPO0 = CCIR 656 data if I2C-bus bit TCLO = 0 b) VPO15 to VPO8 = CCIR 656 data, VPO7 to VPO0 = 3-state if I2C-bus bit TCLO = 1.
4. During HREF = LOW RGB levels are set to 16 (10 hex). RGB 16-bit is achieved by dropping the LSBs of the 8-bit signals (after dithering if desired).
5. CREF = 0 (see Fig.17).
6. CREF = 1 (see Fig.17).
Fig.28 VPO output signal range with default BCS settings.
Equations for modification to the YUV levels via BCS control I2C-bus bytes BRIG, CONT and SATN. Luminance:
Chrominance:
It should be noted that the resulting levels are limited to 1 to 254 in accordance with CCIR-601/656 standard.
Y
OUT
Int
CONT
71
----------------- -
Y128()× BRIG+=
UV
OUT
Int
SATN
64
---------------- -
Cr Cb, 128()× 128+=
CCIR Rec. 602 digital levels.
a. Y output range. b. U output range (Cb). c. V output range (Cr).
handbook, full pagewidth
LUMINANCE 100%
+255 +235
+128
+16
0
white
black
U-COMPONENT
+255 +240
+212 +212
+128
+16
+44
0
blue 100%
blue 75%
yellow 75%
yellow 100%
colourless
V-COMPONENT
+255 +240
+128
+16
+44
0
red 100%
red 75%
cyan 75% cyan 100%
colourless
MGC634
Page 38
1998 May 15 38
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.29 VBI data bypass output range.
VBI data levels are not dependent on BCS settings.
a. For sources containing 7.5 IRE black level offset (e.g. NTSCM). b. For sources not containing black level offset.
handbook, full pagewidth
LUMINANCE
+255 +209
+71 +60
1
white
sync bottom
black shoulder
black
SYNC
LUMINANCE
+255
+199
+60
1
white
sync bottom
black shoulder = black
SYNC
MGD700
Fig.30 Oscillator application.
Order number: Philips 4322 143 05291.
a. With quartz crystal. b. With external clock.
handbook, full pagewidth
XTAL
XTALI
54
55
MGG072
XTAL
L = 10 µH ± 20%
C = 10 pF
C = 10 pF
C = 1 nF
quartz (3rd harmonic)
24.576 MHz
XTALI
54
55
SAA7111A SAA7111A
Page 39
1998 May 15 39
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
16 APPLICATION INFORMATION
Fig.31 Application diagram.
handbook, full pagewidth
Q1(24.576 MHz)
VPO(15 : 0)
SCL
V
DDD
AI22
FEI
SDA
RTCO
VS
HS
AOUT
GPSW
RTS0
RTS1
RES
CREF
LLC2
LLC
HREF
V
SS
V
SS
V
SSA
V
DDA
V
SSA
V
DD
V
SS
V
SS
VREF
V
SS
SAA7111A
R4
47
C4
22 nF
C7
100 nF
100 nF
100 nF
100 nF
C8
C9
C11
C12
C13
C14
C15
R6
1 k
n.c.
n.c.
V
SSA2
V
SSS
V
SS1VSS2VSS3VSS4VSS5
IICSA
V
SSA1
V
SSA0
V
DDA0VDDA1VDDA2
V
DD1VDD2VDD3VDD4VDD5
TMS
TDI
TDO
TCK
TRST
C17
L1
10 µH
C16 1 nF
10 pF
10 pF
C18
R5
1 k
18
2533
41
57
3
7
11
15
34 35 36 37 38 39 42 43 44 45 46 47 48
31
27 30 60
14
53
28 29
20 21 22 23
17
64
58
59
61
19
26
32
40
56
13
5
9
1
16
2
4
6
63
62
52
24
55
54
XTAL
XTALI
MGG071
V
SSA
BST
V
SS
n.c.
n.c.
n.c.
49 50 51
100 nF
100 nF
100 nF
100 nF
R3
47
C3
22 nF
V
SSA
AI21
R2
47
C2
22 nF
V
SSA
8
AI12
R1
47
C1
22 nF
V
SSA
10
AI11
12
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R10
27
R9
27
R8
27
R7
27
Page 40
1998 May 15 40
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.32 Application diagram for RGB 24-bit output format.
I2C-bus control bits: OFTS(1 : 0) = 00 (subaddress 10H, bits D7 and D6). RGB888 = 1 (subaddress 12H, bit D3).
handbook, full pagewidth
OEN D7
7 6 5 4 3 2 1 0
D6 D5 D4
e.g.
74HCT574
D3 D2 D1 D0
44 45 46 47 48 49 50 51
31
HREF 17 27 30 60 28 29 53 14 20 21 32 23
V
SS
V
SS
V
SS
CLK
O7
3
R (2 : 0)
R (7 : 0) O6 O5 O4 O3 O2 O1
00
V
DDVDD
3
3
3
2
G (1 : 0)
G (7 : 0)
3
B (2 : 0)
B (7 : 0)
LLC2N
MGG073
LLC2
e.g. 74HCT240
B (7 : 3)VPO (4 : 0)
VPO
(7 : 0)
SAA7111A
VPO (15 : 11) R (7 : 3)
G (7 : 5)
G (4 : 2)
VPO (10 : 8)
VPO (7 : 5)
5
8
8
VREF HS VS RTCO RTS1 RTS0 GPSW AOUT LLC
CREF RES
8
15 14 13 12 11 10 9 8
34 35 36 37 38 39 42 43
VPO
(15 : 8)
16.1 Layout hints
Use separate ground planes for analog and digital ground. Connect these planes at one point directly under the device, by using a zero resistor. Use separate supply lines for analog and digital supply. Place the supply decoupling capacitors close to the supply pins.
Place the coupling (clamp) capacitors close to the analog input pins. Place the termination resistors close to the coupling capacitors. Care should be exercised concerning the hidden layout capacitors around the crystal application. To avoid reflection effects use serial resistors in the clock, sync and data lines.
Page 41
1998 May 15 41
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
17 I2C-BUS DESCRIPTION
17.1 I
2
C-bus format
Table 7 Write procedure
Table 8 Read procedure (combined format)
Table 9 Description of I
2
C-bus format
Notes
1. If more than one byte DATA is transmitted then the auto-increment of the subaddress is performed.
2. During slave transmitter mode the SCL-LOW period may be extended by pulling SCL to LOW (in accordance with the I
2
C-bus specification).
3. The I2C-bus subaddress 00 has to be initialized with 0 before being read.
S SLAVE ADDRESS W ACK-s SUBADDRESS ACK-s DATA (N BYTES) ACK-s P
S SLAVE ADDRESS W ACK-s SUBADDRESS ACK-s
Sr SLAVE ADDRESS R ACK-s DATA (N BYTES) ACK-m P
CODE DESCRIPTION
S START condition Sr repeated START condition Slave address W 0100 1000b (IICSA = LOW) or 0100 1010b (IICSA = HIGH) Slave address R 0100 1001b (IICSA = LOW) or 0100 1011b (IICSA = HIGH) ACK-s acknowledge generated by the slave ACK-m acknowledge generated by the master Subaddress subaddress byte; see Table 10 Data data byte; see Table 10; note 1 P STOP condition X = LSB slave
address
read/write control bit; X = 0, order to write (the circuit is slave receiver); X = 1, order to read (the circuit is slave transmitter)
Slave address read = 49H or 4BH; note 2
write = 48H or 4AH IICSA = 0 or 1
Subaddresses 00H chip version read and write; note 3
01H reserved 02h to 05H front-end part read and write 06H to 13H decoder part read and write 14H reserved 15H to 17H decoder part read and write 18H to 19H reserved 1AH to 1CH Line-21 text slicer part read only 1DH to 1EH reserved 1FH status byte read only
Page 42
1998 May 15 42
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Table 10 I2C-bus receiver/transmitter overview
Note
1. All unused control bits must be programmed with logic 0.
SLAVE ADDRESS
READ WRITE IICSA
49H
4BH
48H 4AH
0 1
REGISTER
FUNCTION
SUB-
ADDR
D7 D6 D5 D4 D3 D2 D1 D0
Chip version 00 ID07 ID06 ID05 ID04 ID03 ID02 ID01 ID00 Reserved 01
(1) (1) (1) (1) (1) (1) (1) (1)
Analog input contr 1 02 FUSE1 FUSE0 GUDL2 GUDL1 GUDL0 MODE2 MODE1 MODE0 Analog input contr 2 03
(1)
HLNRS VBSL WPOFF HOLDG GAFIX GAI28 GAI18 Analog input contr 3 04 GAI17 GAI16 GAI15 GAI14 GAI13 GAI12 GAI11 GAI10 Analog input contr 4 05 GAI27 GAI26 GAI25 GAI24 GAI23 GAI22 GAI21 GAI20 Horizontal sync start 06 HSB7 HSB6 HSB5 HSB4 HSB3 HSB2 HSB1 HSB0 Horizontal sync stop 07 HSS7 HSS6 HSS5 HSS4 HSS3 HSS2 HSS1 HSS0 Sync control 08 AUFD FSEL EXFIL
(1)
VTRC HPLL VNOI1 VNOI0 Luminance control 09 BYPS PREF BPSS1 BPSS0 VBLB UPTCV APER1 APER0 Luminance
brightness
0A BRIG7 BRIG6 BRIG5 BRIG4 BRIG3 BRIG2 BRIG1 BRIG0
Luminance contrast 0B CONT7 CONT6 CONT5 CONT4 CONT3 CONT2 CONT1 CONT0 Chroma saturation 0C SATN7 SATN6 SATN5 SATN4 SATN3 SATN2 SATN1 SATN0 Chroma Hue control 0D HUEC7 HUEC6 HUEC5 HUEC4 HUEC3 HUEC2 HUEC1 HUEC0 Chroma control 0E CDTO CSTD2 CSTD1 CSTD0 DCCF FCTC CHBW1 CHBW0 Reserved 0F
(1) (1) (1) (1) (1) (1) (1) (1)
Format/delay control 10 OFTS1 OFTS0 HDEL1 HDEL0 VRLN YDEL2 YDEL1 YDEL0 Output control 1 11 GPSW CM99 FECO COMPO OEYC OEHV VIPB COLO Output control 2 12 RTSE1 RTSE0 TCLO CBR RGB888 DIT AOSL1 AOSL0 Output control 3 13 VCTR1 VCTR0 CCTR1 CCTR0 BCHI1 BCHI0 BCLO1 BCLO0 Reserved 14
(1) (1) (1) (1) (1) (1) (1) (1)
V_GATE1_START 15 VSTA7 VSTA6 VSTA5 VSTA4 VSTA3 VSTA2 VSTA1 VSTA0 V_GATE1_STOP 16 VSTO7 VSTO6 VSTO5 VSTO4 VSTO3 VSTO2 VSTO1 VSTO0 V_GATE1_MSB 17
(1) (1) (1) (1) (1) (1)
VSTO8 VSTA8
Reserved 18-19
(1) (1) (1) (1) (1) (1) (1) (1)
Text slicer status 1A
(1) (1) (1) (1)
F2VAL F2RDY F1VAL F1RDY
Decoded bytes of the text slicer
1B P1 BYTE16 BYTE15 BYTE14 BYTE13 BYTE12 BYTE11 BYTE10 1C P2 BYTE26 BYTE25 BYTE24 BYTE23 BYTE22 BYTE21 BYTE20
Reserved 1D-1E
(1) (1) (1) (1) (1) (1) (1) (1)
Status byte 1F STTC HLCK FIDT GLIMT GLIMB WIPA SLTCA CODE
Page 43
1998 May 15 43
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
17.2 I2C-bus detail
The I2C-bus receiver slave address is 48H/49H. Subaddresses 0F, 14, 18, 19, 1D and 1E are reserved; subaddress 01 is reserved for chip version.
17.2.1 S
UBADDRESS 00
Table 11 Chip version SA00; note 1
Note
1. X = reserved.
17.2.2 S
UBADDRESS 02
Table 12 Analog control 1 SA02; note 1
Notes
1. Mode select (see Figs 33 to 40).
2. For modes 0 to 3 use BYPS(SA09,D7) = 0 (chrominance trap active), for modes 4 to 7 use BYPS = 1 (chrominance trap bypassed).
Table 13 Analog control 1 SA 02, D5 to D3 (see Fig.14)
FUNCTION
LOGIC LEVELS
ID07 ID06 ID05 ID04 ID03 ID02 ID01 ID00
Chip version
V1 0001XXXX V2 0010XXXX
FUNCTION
(2)
CONTROL BITS D2 TO D0
MODE 2 MODE 1 MODE 0
Mode 0 : CVBS (automatic gain) 0 0 0 Mode 1 : CVBS (automatic gain) 0 0 1 Mode 2 : CVBS (automatic gain) 0 1 0 Mode 3 : CVBS (automatic gain) 0 1 1 Mode4:Y (automatic gain) + C (gain channel 2 fixed to GAI2 level) 1 0 0 Mode5:Y (automatic gain) + C (gain channel 2 fixed to GAI2 level) 1 0 1 Mode6:Y (automatic gain) + C (gain channel 2 adapted to Y gain) 1 1 0 Mode7:Y (automatic gain) + C (gain channel 2 adapted to Y gain) 1 1 1
DECIMAL VALUE UPDATE HYSTERESIS FOR 9-BIT GAIN
CONTROL BITS D5 TO D3
GUDL 2 GUDL 1 GUDL 0
0.... off 0 0 0
....7 ±7 LSB 1 1 1
Page 44
1998 May 15 44
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Table 14 Analog control
ANALOG FUNCTION SELECT FUSE
CONTROL BITS D7 AND D6 FUSE 1 FUSE 0
Amplifier plus anti-alias filter bypassed 0 0
01 Amplifier active 1 0 Amplifier plus anti-alias filter active 1 1
Fig.33 Mode 0; CVBS (automatic gain).
handbook, halfpage
AI22 AI21
AI12 AI11
CHROMA
LUMA
AD2
AD1
MGC637
Fig.34 Mode 1; CVBS (automatic gain).
handbook, halfpage
MGC638
AI22 AI21
AI12 AI11
CHROMA
LUMA
AD2
AD1
Fig.35 Mode 2; CVBS (automatic gain).
handbook, halfpage
MGC639
AI22 AI21
AI12 AI11
CHROMA
LUMA
AD2
AD1
Fig.36 Mode 3; CVBS (automatic gain).
handbook, halfpage
MGC640
AI22 AI21
AI12 AI11
CHROMA
LUMA
AD2
AD1
Fig.37 Mode 4 Y (automatic gain) + C
(gain channel 2 fixed to GAI2 level).
handbook, halfpage
MGC641
AI22 AI21
AI12 AI11
CHROMA
LUMA
AD2
AD1
Fig.38 Mode 5 Y (automatic gain) + C
(gain channel 2 fixed to GAI2 level).
handbook, halfpage
MGC642
AI22 AI21
AI12 AI11
CHROMA
LUMA
AD2
AD1
Page 45
1998 May 15 45
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.39 Mode 6 Y (automatic gain) + C
(gain channel 2 adapted to Y gain).
handbook, halfpage
MGC643
AI22 AI21
AI12 AI11
CHROMA
LUMA
AD2
AD1
Fig.40 Mode 7 Y (automatic gain) + C
(gain channel 2 adapted to Y gain).
handbook, halfpage
MGC644
AI22 AI21
AI12 AI11
CHROMA
LUMA
AD2
AD1
17.2.3 SUBADDRESS 03
Table 15 Analog control 2 (AICO2) SA03
FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT
Static gain control channel 1 (GAI18) (see SA04)
Sign bit of gain control GAI18 see Table16 D0
Static gain control channel 2 (GAI28) (see SA05)
Sign bit of gain control GAI28 see Table17 D1
Gain control fix (GAFIX)
Automatic gain controlled by MODE 1 and MODE 0 GAFIX 0 D2 Gain control is user programmable via GAI1 + GAI2 GAFIX 1 D2
Automatic gain control integration (HOLDG)
AGC active HOLDG 0 D3 AGC integration hold (freeze) HOLDG 1 D3
White peak off (WPOFF)
White peak control active WPOFF 0 D4 White peak off WPOFF 1 D4
Vertical blanking select (VBSL)
Long vertical blanking VBSL 0 D5 Short vertical blanking VBSL 1 D5
HL not reference select (HLNRS)
Normal clamping by HL not HLNRS 0 D6 Reference select by HL not HLNRS 1 D6
Page 46
1998 May 15 46
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
17.2.4 SUBADDRESS 04 Table 16 Gain control analog (AIC03); static gain control channel 1 GAI1 SA 04, D7 to D0
17.2.5 S
UBADDRESS 05
Table 17 Gain control analog (AIC04); static gain control channel 2 GAI2 SA 05, D7 to D0
17.2.6 S
UBADDRESS 06
Table 18 Horizontal sync begin SA 06, D7 to D0
DECIMAL
VALUE
GAIN
(dB)
SIGN
BIT
CONTROL BITS D7 TO D0
GAI18 GAI17 GAI16 GAI15 GAI14 GAI13 GAI12 GAI11 GAI10
0.... 5.98 0 0 0000000
....255 0 0 1 1111111
256.... 0 1 0 0000000
....511 5.98 1 1 1111111
DECIMAL
VALUE
GAIN
(dB)
SIGN BIT
(SA 03, D1)
CONTROL BITS D7 to D0
GAI28 GAI27 GAI26 GAI25 GAI24 GAI23 GAI22 GAI21 GAI20
0.... 5.98 0 00000000
....255 0 0 11111111
256.... 0 1 00000000
....511 5.98 1 11111111
DELAY TIME
(STEP SIZE = 8/LLC)
CONTROL BITS D7 to D0
HSB7 HSB6 HSB5 HSB4 HSB3 HSB2 HSB1 HSB0
128...108 forbidden (outside available central counter range)
107... 1 0 0 1 0101
...108 (50Hz) 0 1 1 0 1100 ...107 (60Hz) 0 1 1 0 1011
109...127 (50Hz) forbidden (outside available central counter range)
108...127 (60Hz)
Page 47
1998 May 15 47
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
17.2.7 SUBADDRESS 07 Table 19 Horizontal sync stop SA 07, D7 to D0
17.2.8 S
UBADDRESS 08
Table 20 Sync control SA 08, D7 to D5, D3 to D0
DELAY TIME
(STEP SIZE = 8/LLC)
CONTROL BITS D7 to D0
HSS7 HSS6 HSS5 HSS4 HSS3 HSS2 HSS1 HSS0
128...108 forbidden (outside available central counter range)
107... 1 0 0 1 0 1 0 1
...108 (50Hz) 0 1 1 0 1 1 0 0 ...107 (60Hz) 0 1 1 0 1 0 1 1
109...127 (50Hz) forbidden (outside available central counter range)
108...127 (60Hz)
FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT
Vertical noise reduction (VNOI)
Normal mode VNOI1 0 D1
VNOI0 0 D0
Searching mode VNOI1 0 D1
VNOI0 1 D0
Free running mode VNOI1 1 D1
VNOI0 0 D0
Vertical noise reduction bypassed VNOI1 1 D1
VNOI0 1 D0
Horizontal PLL (HPLL)
PLL closed HPLL 0 D2 PLL open, horizontal frequency fixed HPLL 1 D2
TV/VTR mode select (VTRC)
TV mode (recommended for poor quality TV signals only)
VTRC 0 D3
VTR mode (recommended as default setting) VTRC 1 D3
Extended loop filter (EXFIL)
Word width of the loop filter (LF2) amplification = 16-bit EXFIL 0 D5 Word width of the loop filter (LF2) amplification = 14-bit EXFIL 1 D5
Field selection (FSEL)
50 Hz, 625 lines FSEL 0 D6 60 Hz, 525 lines FSEL 1 D6
Automatic field detection (AUFD)
Field state directly controlled via FSEL AUFD 0 D7 Automatic field detection AUFD 1 D7
Page 48
1998 May 15 48
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
17.2.9 SUBADDRESS 09
Table 21 Luminance control SA 09, D7 to D0
Note
1. Not to be used with bypassed chrominance trap.
FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT
Aperture factor (APER)
Aperture factor = 0 APER1 0 D1
APER0 0 D0
Aperture factor = 0.25 APER1 0 D1
APER0 1 D0
Aperture factor = 0.5 APER1 1 D1
APER0 0 D0
Aperture factor = 1.0 APER1 1 D1
APER0 1 D0
Update time interval for AGC value (UPTCV)
Horizontal update (once per line) UPTCV 0 D2 Vertical update (once per field) UPTCV 1 D2
Vertical blanking luminance bypass (VBLB)
Active luminance processing VBLB 0 D3 Luminance bypass during vertical blanking VBLB 1 D3
Aperture band pass (centre frequency) (BPSS)
Centre frequency = 4.1 MHz BPSS1 0 D5
BPSS0 0 D4
Centre frequency = 3.8 MHz; note 1 BPSS1 0 D5
BPSS0 1 D4
Centre frequency = 2.6 MHz; note 1 BPSS1 1 D5
BPSS0 0 D4
Centre frequency = 2.9 MHz; note 1 BPSS1 1 D5
BPSS0 1 D4
Prefilter active (PREF)
Bypassed PREF 0 D6 Active PREF 1 D6
Chrominance trap bypass (BYPS)
Chrominance trap active; default for CVBS mode BYPS 0 D7 Chrominance trap bypassed; default for S-Video mode BYPS 1 D7
Page 49
1998 May 15 49
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
17.2.10 SUBADDRESS 0A Table 22 Luminance brightness control BRIG7 to BRIG0 SA 0A
17.2.11 S
UBADDRESS 0B
Table 23 Luminance contrast control CONT7 to CONT0 SA 0B
17.2.12 S
UBADDRESS 0C
Table 24 Chrominance saturation control SATN7 to SATN0 SA 0C
17.2.13 S
UBADDRESS 0D
Table 25 Chrominance hue control HUEC7 to HUEC0 SA 0D
OFFSET
CONTROL BITS D7 to D0
BRIG7 BRIG6 BRIG5 BRIG4 BRIG3 BRIG2 BRIG1 BRIG0
255 (bright) 1 1 1 1 1 1 1 1
128 (CCIR level) 1 0 0 0 0 0 0 0
0 (dark) 0 0 0 0 0 0 0 0
GAIN
CONTROL BITS D7 to D0
CONT7 CONT6 CONT5 CONT4 CONT3 CONT2 CONT1 CONT0
1.999 (maximum) 0 1 1 1 1 1 1 1
1.109 (CCIR level) 0 1 0 0 0 1 1 1
1.0 01000000
0 (luminance off) 0 0 0 0 0 0 0 0
1 (inverse luminance) 1 1 0 0 0 0 0 0
2 (inverse luminance) 1 0 0 0 0 0 0 0
GAIN
CONTROL BITS D7 to D0
SATN7 SATN6 SATN5 SATN4 SATN3 SATN2 SATN1 SATN0
1.999 (maximum) 0 1 1 1 1 1 1 1
1.0 (CCIR level) 0 1 0 0 0 0 0 0 0 (colour off) 0 0 0 0 0 0 0 0
1 (inverse
chrominance)
11000000
2 (inverse
chrominance)
10000000
HUE PHASE (DEG)
CONTROL BITS D7 to D0
HUEC7 HUEC6 HUEC5 HUEC4 HUEC3 HUEC2 HUEC1 HUEC0
+178.6.... 0 1 1 1 1 1 1 1
....0.... 0 0 0 0 0 0 0 0
....180 10000000
Page 50
1998 May 15 50
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
17.2.14 SUBADDRESS 0E
Table 26 Chrominance control SA 0E
FUNCTION BIT NAME
LOGIC LEVEL
CONTROL
BIT
Chroma bandwidth (CHBW0 and CHBW1)
Small bandwidth (620 kHz) CHBW1 0 D1
CHBW0 0 D0
Nominal bandwidth (800 kHz) CHBW1 0 D1
CHBW0 1 D0
Medium bandwidth (920 kHz) CHBW1 1 D1
CHBW0 0 D0
Wide bandwidth (1000 kHz) CHBW1 1 D1
CHBW0 1 D0
Fast colour time constant (FCTC)
Nominal time constant FCTC 0 D2 Fast time constant FCTC 1 D2
Disable chrominance comb filter (DCCF)
Chrominance comb filter on (during VREF = 1) (see Figs 24 and 25) DCCF 0 D3 Chrominance comb filter off DCCF 1 D3
Colour standard (CSTD0 to CSTD2); logic levels 100, 110 and 111 are reserved, do not use
Colour standard control automatic switching between PAL BGHI and NTSC M (NTSC-Japan with special level adjustment; luminance brightness subaddress 0A = 95H, luminance contrast subaddress 0BH = 48H)
CSTD2 0 D6 CSTD1 0 D5 CSTD0 0 D4
Colour standard control automatic switching between NTSC 4.43 (50 Hz) and PAL 4.43 (60 Hz)
CSTD2 0 D6 CSTD1 0 D5 CSTD0 1 D4
Colour standard control automatic switching between PAL N and NTSC 4.43 (60 Hz)
CSTD2 0 D6 CSTD1 1 D5 CSTD0 0 D4
Colour standard control automatic switching between NTSC N and PAL M
CSTD2 0 D6 CSTD1 1 D5 CSTD0 1 D4
Colour standard control automatic switching between SECAM and PAL 4.43 (60 Hz)
CSTD2 1 D6 CSTD1 0 D5 CSTD0 1 D4
Clear DTO (CDTO)
Disabled CDTO 0 D7 Every time CDTO is set, the internal subcarrier DTO phase is reset to 0°
and the RTCO output generates a logic 0 at time slot 68 (see RTCO description Fig.20). So an identical subcarrier phase can be generated by an external device (e.g. an encoder).
CDTO 1 D7
Page 51
1998 May 15 51
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
17.2.15 SUBADDRESS 10
Table 27 Format/delay control SA 10
Table 28 VREF pulse position and length VRLN SA 10 (D3)
Notes
1. Additional VREF positions can be achieved via I
2
C-bus bits VCTR1 and VCTR0 (see Fig.9).
2. The numbers given in parenthesis refer to CCIR line counting.
Table 29 Fine position of HS HDEL0 and HDEL1 SA 10
Table 30 Output format selection OFTS0 and OFTS1 SA 10
LUMINANCE DELAY COMPENSATION
(STEPS IN 2/LLC)
CONTROL BITS D2 to D0
YDEL2 YDEL1 YDEL0
4... 1 0 0
...0... 0 0 0
...3 0 1 1
VRLN
VREF at 60 Hz 525 LINES
(1)
VREF at 50 Hz 625 LINES
(1)
0101
Length 240 242 286 288 Line number first last first last first last first last Field 1
(2)
19 (22) 258 (261) 18 (21) 259 (262) 24 309 23 310
Field 2
(2)
282 (285) 521 (524) 281 (284) 522 (525) 337 622 336 623
FINE POSITION OF HS WITH A STEP SIZE
OF 2/LLC
CONTROL BITS D5 and D4
HDEL1 HDEL0
000 101 210 311
FORMATS
CONTROL BITS D7 and D6
OFTS1 OFTS0
RGB (5, 6 and 5), RGB (8, 8 and 8) (dependent on control bit RGB888); see Table 32
00
YUV 422 16 bits 0 1 YUV 411 12 bits 1 0 YUV CCIR-656 8 bits 1 1
Page 52
1998 May 15 52
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
17.2.16 SUBADDRESS 11
Table 31 Output control 1 SA 11
FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT
Colour on (COLO)
Automatic colour killer COLO 0 D0 Colour forced on COLO 1 D0
Decoder VIP bypassed (VIPB)
DMSD data to YUV output VIPB 0 D1 ADC data to YUV output; dependent on mode settings VIPB 1 D1
Output enable horizontal/vertical sync (OEHV)
HS, HREF, VREF and VS high-impedance inputs OEHV 0 D2 Outputs HS, HREF, VREF and VS active OEHV 1 D2
Output enable YUV data (OEYC)
VPO-bus high-impedance inputs OEYC 0 D3 Output VPO-bus active OEYC 1 D3
Inverse composite blank (COMPO)
VREF is vertical reference COMPO 0 D4 VREF is inverse composite blank COMPO 1 D4
FEI control (FECO)
FEI sampling at CREF = LOW (SAA7110 compatible); (see Fig.19)
FECO 0 D5
FEI sampling at CREF = HIGH FECO 1 D5
Compatibility to SAA7199 (CM99)
Default value CM99 0 D6 To be set if SAA7199 (digital encoder) is used for
re-encoding in conjunction with RTCO
CM99 1 D6
General purpose switch (GPSW)
Switches directly pin 64 GPSW GPSW 0 D7
GPSW 1 D7
Page 53
1998 May 15 53
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
17.2.17 SUBADDRESS 12
Table 32 Output control 2 SA 12, D7 to D6, D4 to D0
FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT
Analog test select (AOSL)
AOUT connected to internal test point 1 AOSL1 0 D1
AOSL0 0 D0
AOUT connected to input AD1 AOSL1 0 D1
AOSL0 1 D0
AOUT connected to input AD2 AOSL1 1 D1
AOSL0 0 D0
AOUT connected to internal test point 2 AOSL1 1 D1
AOSL0 1 D0
Dithering (noise shaping) control (DIT)
Dithering off DIT 0 D2 Dithering on DIT 1 D2
RGB output format selection (RGB888)
RGB (5, 6 and 5) RGB888 0 D3 RGB (8, 8 and 8) RGB888 1 D3
Chrominance interpolation filter function (CBR)
Cubic interpolation (default) CBR 0 D4 Linear interpolation (lower bandwidth) CBR 1 D4
3-state control VPO7 to VPO0 (TCLO)
VPO7 to VPO0 depends on OEYC,
FEI only (default)
(see Figs 18, 19 and 22)
TCLO 0 D5
VPO7 to VPO0 in 3-state [and OFTS (1 : 0) = 3] (see Tables 3 and 6)
TCLO 1 D5
Real time outputs mode select (RTSE0)
ODD switched to output pin 40 RTSE0 0 D6 VL switched to output pin 40 RTSE0 1 D6
Real time outputs mode select (RTSE1)
PLIN switched to output pin 39 RTSE1 0 D7 HL switched to output pin 39 RTSE1 1 D7
Page 54
1998 May 15 54
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
17.2.18 SUBADDRESS 13
Table 33 Output control 3 SA 13
FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT
Bypass control LOW for VPO7 to VPO0
No bypass BCLO1 0 D1
BCLO0 0 D0
Permanent bypass BCLO1 0 D1
BCLO0 1 D0
Bypass controlled by V_GATE BCLO1 1 D1
BCLO0 0 D0
Bypass controlled by delayed V_GATE BCLO1 1 D1
BCLO0 1 D0
Bypass control HIGH for VPO15 to VPO8
No bypass BCHI1 0 D3
BCHI0 0 D2
Permanent bypass BCHI1 0 D3
BCHI0 1 D2
Bypass controlled by V_GATE BCHI1 1 D3
BCHI0 0 D2
Bypass controlled by delayed V_GATE BCHI1 1 D3
BCHI0 1 D2
Clock Reference Output Control
CREF is independent of VREF CCTR1 0 D5
CCTR0 0 D4
CREF is LOW if VREF = 0 CCTR1 0 D5
CCTR0 1 D4
CREF is HIGH if VREF = 0 CCTR1 1 D5
CCTR0 0 D4
CREF always = 1 CCTR1 1 D5
CCTR0 1 D4
Vertical Reference Output Control (VREF)
Internal VREF VCTR1 0 D7
VCTR0 0 D6
VREF_CCIR VCTR1 0 D7
VCTR0 1 D6
Programmable V_GATE VCTR1 1 D7
VCTR0 0 D6
Delayed programmable V_GATE VCTR1 1 D7
VCTR0 1 D6
Page 55
1998 May 15 55
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
17.2.19 S
UBADDRESS 15
Table 34 Start of decoded data on VPO-port SA 15; note 1
Notes
1. Start of decoded data on VPO-port (end of bypassed region; start of VREF if selected by VCTR1 and VCTR0; see Figs 8 and 10).
2. Line numbers in brackets refer to CCIR line counting.
FIELD
FRAME
LINE
(2)
COUNTING
DECIMA
L VALUE
MSB
(SA 17,
D0)
CONTROL BITS D7 to D0
VSTA8 VSTA7 VSTA6 VSTA5 VSTA4 VSTA3 VSTA2 VSTA1 VSTA0
50Hz1st1 312100111000
2nd 314
1st 2 0.... 000000000
2nd 315
1st 312 ....310 100110111
2nd 625
60Hz1st1(4)262100000110
2nd 264 (267)
1st 2 (5) 0.... 000000000
2nd 265 (268)
1st 262 (265) ....260 100000101
2nd 525 (3)
Page 56
1998 May 15 56
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
17.2.20 S
UBADDRESS 16
T
ABLE 35STOP OF DECODED DATA ON VPO-PORT SA16;NOTE 1
NOTES
1. STOP OF DECODED DATA ON VPO-PORT (BEGIN OF BYPASSED REGION; STOP OF VREF IF SELECTED BY VCTR1 AND VCTR0; SEE FIGS 8 AND 10).
2. LINE NUMBERS IN BRACKETS REFER TO CCIR LINE COUNTING.
17.2.21 S
UBADDRESS 17
Table 36 Sign bits of the VBI-data stream control
FIELD
FRAME
LINE
(2)
COUNTING
DECIMAL
VALUE
MSB
(SA 17, D0)
CONTROL BITS D7 to D0
VSTO8 VSTO7 VSTO6 VSTO5 VSTO4 VSTO3 VSTO2 VSTO1 VSTO0
50Hz1st1 3121 00111000
2nd 314
1st 2 0.... 0 00000000
2nd 315
1st 312 ....310 1 00110111
2nd 625
60Hz1st1(4)2621 00000110
2nd 264 (267)
1st 2 (5) 0.... 0 00000000
2nd 265 (268)
1st 262 (265) ....260 1 00000101
2nd 525 (3)
FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT
VBI-data stream start (VSTA8); see SA 15
Sign bit VBI-data stream start VSTA8 see Table34 D0
VBI-data stream stop (VSTO8); see SA 16
Sign bit VBI-data stream stop VSTO8 seeTable 35 D1
Page 57
1998 May 15 57
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
17.2.22 SUBADDRESS 1A (READ-ONLY REGISTER) Table 37 Line-21 text slicer status SA 1A, D3 to D0
17.2.23 S
UBADDRESS 1B (READ-ONLY REGISTER)
Table 38 First decoded data byte of the text slicer SA 1B
17.2.24 SUBADDRESS 1C (READ-ONLY REGISTER) Table 39 Second decoded data byte of the text slicer SA 1C
17.2.25 S
UBADDRESS 1F (READ-ONLY REGISTER)
Table 40 Status byte SA 1F
I
2
C-BUS
STATUS BIT
NAME
FUNCTION STATUS BIT
F1RDY new data on field 1 has been acquired (for asynchronous reading); active HIGH D0
F1VAL line-21 of field 1 carries valid data; active HIGH D1
F2RDY new data on field 2 has been acquired (for asynchronous reading); active HIGH D2
F2VAL line-21 of field 2 carries valid data; active HIGH D3
I
2
C-BUS
TEXT DATA
BITS
FUNCTION DATA BITS
BYTE1 (6 to 0) data bit 6 to 0 of first data byte D6 to D0
P1 parity error flag bit; bit goes HIGH when a parity error has occurred D7
I
2
C-BUS
TEXT DATA
BITS
FUNCTION DATA BITS
BYTE2 (6 to 0) data bit 6 to 0 of second data byte D6 to D0
P2 parity error flag bit; bit goes HIGH when a parity error has occurred D7
I2C-BUS
STATUS BIT
NAME
FUNCTION STATUS BIT
CODE colour signal in accordance with selected standard has been detected; active
HIGH
D0
SLTCA slow time constant active in WIPA-mode; active HIGH D1
WIPA white peak loop is activated; active HIGH D2 GLIMB gain value for active luminance channel is limited [min (bottom)]; active HIGH D3 GLIMT gain value for active luminance channel is limited [max (top)]; active HIGH D4
FIDT identification bit for detected field frequency; LOW = 50 Hz, HIGH = 60 Hz D5
HLCK status bit for locked horizontal frequency; LOW = locked, HIGH = unlocked D6
STTC status bit for horizontal phase loop; LOW = TV time-constant,
HIGH = VTR time-constant
D7
Page 58
1998 May 15 58
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
18 FILTER CURVES
18.1 Anti-alias filter curve
18.2 TUF-block filter curve
Fig.41 Anti-alias filter.
handbook, full pagewidth
6
V
(dB)
42 024 68101214
f (MHz)
MGD138
6
12
18
24
30
36
0
Fig.42 Interpolation filter for the upsampled CVBS-signal.
handbook, full pagewidth
6
V
(dB)
42
48
54
024 68101214
f (MHz)
MGG067
6
12
18
24
30
36
0
Page 59
1998 May 15 59
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
18.3 Luminance filter curves
handbook, full pagewidth
f
Y (MHz)
18
30 024 86
MGD139
6
V
Y
(dB)
18
6
(1) (2) (4) (3)
(1) (2) (4) (3)
Fig.43 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter on, different aperture bandpass centre
frequencies.
(1) = 43H; (2) = 53H; (3) = 63H; (4) = 73H.
Fig.44 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter on, different aperture factors.
(1) = 40H; (2) = 41H; (3) = 42H; (4) = 43H.
handbook, full pagewidth
f
Y (MHz)
18
30 024 86
MGD140
6
18
6
(1) (2) (3) (4)
(4) (3) (2) (1)
V
Y
(dB)
Page 60
1998 May 15 60
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.45 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter off, different aperture band-pass centre
frequencies.
(1) = 03H; (2) = 13H; (3) = 23H; (4) = 33H.
handbook, full pagewidth
f
Y (MHz)
18
30 024 86
MGD141
6
18
6
(1) (2) (4) (3)
(1) (2) (4) (3)
V
Y
(dB)
Fig.46 Luminance control SA 09H, Y/C mode, prefilter on, different aperture factors.
(1) = C0H; (2) = C1H; (3) = C2H; (4) = C3H.
handbook, full pagewidth
f
Y (MHz)
18
30 024 86
MGD142
6
18
6
(1) (2) (3) (4)
V
Y
(dB)
Page 61
1998 May 15 61
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.47 Luminance control SA 09H, Y/C mode, prefilter off, different aperture factors.
(1) = 80H; (2) = 81H; (3) = 82H; (4) = 83H.
handbook, full pagewidth
f
Y (MHz)
18
30 024 86
MGD143
6
18
6
(1) (2) (3) (4)
V
Y
(dB)
Fig.48 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter on, different aperture band-pass centre
frequencies.
(1) = 43H; (2) = 53H; (3) = 63H; (4) = 73H.
handbook, full pagewidth
f
Y (MHz)
18
30 024 86
MGD144
6
18
6
(1) (2) (4) (3)
(1) (2) (4) (3)
V
Y
(dB)
Page 62
1998 May 15 62
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Fig.49 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter on, different aperture factors.
(1) = 40H; (2) = 41H; (3) = 42H; (4) = 43H.
handbook, full pagewidth
f
Y (MHz)
18
30 024 86
MGD145
6
18
6
(1) (2) (3) (4)
(4) (3) (2) (1)
V
Y
(dB)
Fig.50 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter off, different aperture band-pass centre
frequencies.
(1) = 03H; (2) = 13H; (3) = 23H; (4) = 33H.
handbook, full pagewidth
f
Y (MHz)
18
30 024 86
MGD146
6
18
6
(1) (2) (4) (3)
(1) (2) (4) (3)
V
Y
(dB)
Page 63
1998 May 15 63
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
18.4 Chrominance filter curves
19 I
2
C-BUS START SET-UP
The given values force the following behaviour of the SAA7111A: – The analog input AI11 expects a signal in CVBS format; analog anti-alias filter active – Automatic field detection – YUV 4:2:2 16-bit output format enabled – Outputs HS, HREF, VREF and VS active – Contrast, brightness and saturation control in accordance with CCIR standards – Chrominance processing with nominal bandwidth (800 kHz).
Fig.51 Chrominance filter.
(1) Transfer characteristics of the chrominance low-pass dependent on CHBW[1 : 0] settings. CHBW [1 : 0] = 00; (2) CHBW [1 : 0] = 01; (3)
CHBW [1 : 0] = 10; (4) CHBW [1 : 0] = 11.
handbook, full pagewidth
2.7
6
0
6
12
18
24
30
36
42
48
54
0 0.54 1.08 1.62 2,16
MGD147
f
(MHz)
V
(dB)
(1) (2) (3) (4)
(4) (1) (3) (2)
Page 64
1998 May 15 64
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
Table 41 I2C-bus start set-up values
Note
1. All X values must be set to LOW.
SUB
(HEX)
FUNCTION NAME
(1)
VALUES (BIN) (HEX)
76543210START
00 chip version ID07 to ID00; see Table 9 read only 01 reserved 0 0 0 0 0 0 0 0 00 02 analog input control 1 FUSE1 and FUSE0, GUDL2 to GUDL0,
MODE2 to MODE0
11000000 C0
03 analog input control 2 X, HLNRS, VBSL, WPOFF, HOLDG,
GAFIX, GAI28 and GAI18
00100011 33
04 analog input control 3 GAI17 to GAI10 0 0 0 0 0 0 0 0 00 05 analog input control 4 GAI27 to GAI20 0 0 0 0 0 0 0 0 00 06 horizontal sync start HSB7 to HSB0 1 1 1 0 1 0 1 1 EB 07 horizontal sync stop HSS7 to HSS0 1 1 1 0 0 0 0 0 E0 08 sync control AUFD, FSEL, EXFIL, X, VTRC, HPLL,
VNOI1 and VNOI0
10001000 88
09 luminance control BYPS, PREF , BPSS1 and BPSS0, VBLB,
UPTCV, APER1 and APER0
00000001 01
0A luminance brightness BRIG7 to BRIG0 1 0 0 0 0 0 0 0 80 0B luminance contrast CONT7 to CONT0 0 1 0 0 0 1 1 1 47 0C chrominance saturation SATN7 to SATN0 0 1 0 0 0 0 0 0 40 0D chroma hue control HUEC7 to HUEC0 0 0 0 0 0 0 0 0 00 0E chrominance control CDTO, CSTD2 to CSTD0, DCCF, FCTC,
CHBW1 and CHBW0
00000001 01
0F reserved 0 0 0 0 0 0 0 0 00
10 format/delay control OFTS1 and OFTS0, HDEL1 and HDEL0,
VRLN, YDEL2 to YDEL0
01000000 40
11 output control 1 GPSW, CM99, FECO, COMPO, OEYC,
OEHV, VIPB, and COLO
00011100 1C
12 output control 2 RTSE1 and RTSE0, TCLO, CBR,
RGB888 DIT, AOSL1 and AOSL0
00000001 00
13 output control 3 CCTR1 and CCTR0, BCHI1 and BCHI0,
BCLO1 and BCLO0, VCTR1 and VCTR0
00000000 00
14 reserved 0 0 0 0 0 0 0 0 00 15 VBI-data stream start VSTA7 to VSTA0 0 0 0 0 0 0 0 0 00 16 VBI-data stream stop VSTO7 to VSTO0 0 0 0 0 0 0 0 0 00 17 MSBs for VBI control X, X, X, X, X, X, VSTO8, and VSTA8 0 0 0 0 0 0 0 0 00
18-19 reserved 0 0 0 0 0 0 0 0 00
1A text slicer status 0, 0, 0, 0, F2VAL, F2RDY,
F1VAL, and F1RDY
read only register
1B decoded bytes of the
text slicer
P1, BYTE1 (6 to 0)
1C P2, BYTE2 (6 to 0)
1D-1E reserved 0 0 0 0 0 0 0 0 00
1F status byte STTC, HLCK, FIDT, GLIMT, GLIMB,
WIPA, SLTCA and CODE
read only register
Page 65
1998 May 15 65
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
20 PACKAGE OUTLINES
UNIT
A
max.
A1A2A3b
p
cE
(1)
eH
E
LL
p
Zywv θ
REFERENCES
OUTLINE VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC JEDEC EIAJ
mm
1.60
0.20
0.05
1.45
1.35
0.25
0.27
0.17
0.18
0.12
10.1
9.9
0.5
12.15
11.85
1.45
1.05
7 0
o o
0.12 0.11.0 0.2
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
0.75
0.45
SOT314-2
95-12-19 97-08-01
D
(1) (1)(1)
10.1
9.9
H
D
12.15
11.85
E
Z
1.45
1.05
D
b
p
e
θ
E
A
1
A
L
p
detail X
L
(A )
3
B
16
c
D
H
b
p
E
H
A
2
v M
B
D
Z
D
A
Z
E
e
v M
A
X
1
64
49
48 33
32
17
y
pin 1 index
w M
w M
0 2.5 5 mm
scale
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm
SOT314-2
Page 66
1998 May 15 66
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
UNIT A1A2A3b
p
cE
(1)
eH
E
LL
p
Zywv θ
REFERENCES
OUTLINE VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC JEDEC EIAJ
mm
0.25
0.10
2.75
2.55
0.25
0.45
0.30
0.23
0.13
14.1
13.9
0.8
17.45
16.95
1.2
0.8
7 0
o
o
0.16 0.100.161.60
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
1.03
0.73
SOT393-1 MS-022
96-05-21 97-08-04
D
(1) (1)(1)
14.1
13.9
H
D
17.45
16.95
E
Z
1.2
0.8
D
e
θ
E
A
1
A
L
p
detail X
L
(A )
3
B
16
y
c
E
H
A
2
D
Z
D
A
Z
E
e
v M
A
1
64
49
48 33
32
17
X
b
p
D
H
b
p
v M
B
w M
w M
0 5 10 mm
scale
pin 1 index
QFP64: plastic quad flat package; 64 leads (lead length 1.6 mm); body 14 x 14 x 2.7 mm
SOT393-1
A
max.
3.00
Page 67
1998 May 15 67
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
21 SOLDERING
21.1 Introduction
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our
“IC Package Databook”
(order code 9398 652 90011).
21.2 Reflow soldering
Reflow soldering techniques are suitable for all LQFP and QFP packages.
The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our
“Quality
Reference Handbook”
(order code 9397 750 00192).
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 50 and 300 seconds depending on heating method. Typical reflow peak temperatures range from 215 to 250 °C.
21.3 Wave soldering
Wave soldering is not recommended for LQFP and QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.
CAUTION
Wave soldering is NOT applicable for all LQFP and QFP packages with a pitch (e) equal or less than
0.5 mm.
If wave soldering cannot be avoided, for LQFP and QFP packages with a pitch (e) larger than 0.5 mm, the following conditions must be observed:
A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave) soldering technique should be used.
The footprint must be at an angle of 45° to the board
direction and must incorporate solder thieves downstream and at the side corners.
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.
21.4 Repairing soldered joints
Fix the component by first soldering two diagonally­opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
Page 68
1998 May 15 68
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
22 DEFINITIONS
23 LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
24 PURCHASE OF PHILIPS I
2
C COMPONENTS
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Purchase of Philips I
2
C components conveys a license under the Philips’ I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
Page 69
1998 May 15 69
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
NOTES
Page 70
1998 May 15 70
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
NOTES
Page 71
1998 May 15 71
Philips Semiconductors Product specification
Enhanced Video Input Processor (EVIP) SAA7111A
NOTES
Page 72
Internet: http://www.semiconductors.philips.com
Philips Semiconductors – a worldwide company
© Philips Electronics N.V. 1998 SCA60 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381
Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,
Fax. +43 160 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 0044 Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381
Printed in The Netherlands 655102/1200/04/pp72 Date of release: 1998May 15 Document order number: 9397 750 03118
Loading...