Datasheet SAA7111 Datasheet (Philips)

Page 1
INTEGRATED CIRCUITS
DATA SH EET
SAA7111
Video Input Processor (VIP)
Preliminary specification Supersedes data of 1996 May 15 File under Integrated Circuits, IC22
1996 Oct 30
Page 2
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
CONTENTS
1 FEATURES 2 APPLICATIONS 3 GENERAL DESCRIPTION 4 QUICK REFERENCE DATA 5 ORDERING INFORMATION 6 BLOCK DIAGRAM 7 PINNING 8 FUNCTIONAL DESCRIPTION
8.1 Analog input processing
8.2 Analog control circuits
8.2.1 Clamping
8.2.2 Gain control
8.3 Chrominance processing
8.4 Luminance processing
8.5 RGB matrix
8.6 VPO-bus (digital outputs)
8.7 Synchronization
8.8 Clock generation circuit
8.9 Power-on reset and CE input
8.10 RTCO output
8.11 The Line-21 text slicer
8.11.1 Suggestions for I2C-bus interface of the display software reading line-21 data
9 GAIN CHARTS 10 LIMITING VALUES 11 CHARACTERISTICS 12 TIMING DIAGRAMS 13 CLOCK SYSTEM
13.1 Clock generation circuit
13.2 Power-on control
14 OUTPUT FORMATS 15 APPLICATION EXAMPLES 16 I2C-BUS DESCRIPTION
16.1 I2C-bus format
16.2 I2C-bus detail
16.2.1 Subaddress 00
16.2.2 Subaddress 02
16.2.3 Subaddress 03
16.2.4 Subaddress 04
16.2.5 Subaddress 05
16.2.6 Subaddress 06
16.2.7 Subaddress 07
16.2.8 Subaddress 08
16.2.9 Subaddress 09
16.2.10 Subaddress 0A
16.2.11 Subaddress 0B
16.2.12 Subaddress 0C
16.2.13 Subaddress 0D
16.2.14 Subaddress 0E
16.2.15 Subaddress 10
16.2.16 Subaddress 11
16.2.17 Subaddress 12
16.2.18 Subaddress 1A (read-only register)
16.2.19 Subaddress 1B (read-only register)
16.2.20 Subaddress 1C (read-only register)
16.2.21 Subaddress 1F (read-only register) 17 FILTER CURVES
17.1 Anti-alias filter curve
17.2 Luminance filter curves
17.3 Chrominance filter curves 18 I2C START SET-UP 19 PACKAGE OUTLINE 20 SOLDERING
20.1 Introduction
20.2 Reflow soldering
20.3 Wave soldering
20.3.1 PLCC
20.3.2 QFP
20.3.3 Method (PLCC and QFP)
20.4 Repairing soldered joints 21 DEFINITIONS 22 LIFE SUPPORT APPLICATIONS 23 PURCHASE OF PHILIPS I2C COMPONENTS
Page 3
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
1 FEATURES
Four analog inputs, internal analog source selectors,
e.g. 4 × CVBS or 2 × Y/C or (1 × Y/C and 2 × CVBS)
Two analog preprocessing channels
Fully programmable static gain for the main channels or
automatic gain control for the selected CVBS or Y/C channel
Switchable white peak control
Two built-in analog anti-aliasing filters
Two 8-bit video CMOS analog-to-digital converters
(ADCs)
On-chip clock generator
Line-locked system clock frequencies
Digital PLL for H-sync processing and clock generation
Requires only one crystal (24.576 MHz) for all standards
Horizontal and vertical sync detection
Automatic detection of 50/60 Hz field frequency, and
automatic switching between standards PAL and NTSC
Luminance and chrominance signal processing for
PAL BGHI, PAL N, PAL M, NTSC M, NTSC N and NTSC 4.43
User programmable luminance peaking or aperture
correction
Cross-colour reduction for NTSC by chrominance comb
filtering
PAL delay line for correcting PAL phase errors
Real time status information output (RTCO)
Brightness Contrast Saturation (BCS) control on-chip
The YUV (CCIR-601) bus supports a data rate of:
– 864 × f
= 13.5 MHz for 625 line sources
H
– 858 × fH= 13.5 MHz for 525 line sources
Data output streams for 16, 12 or 8-bit width with the
following formats: – 411 YUV (12-bit) – 422 YUV (16-bit) – 422 YUV [CCIR-656] (8-bit) – 565 RGB (16-bit) with dither – 888 RGB (24-bit) with special application
720 active samples per line on the YUV bus
One user programmable general purpose switch on an
output pin
Built in line-21 text slicer
Power-on control
Two switchable outputs for the digitized CVBS or Y/C
input signals AD1 (7 to 0) and AD2 (7 to 0) via the
2
I
C-bus
Chip enable function (reset for the clock generator)
Compatible with memory-based features (line-locked
clock)
Boundary scan test circuit complies with the
“IEEE Std. 1149.1−1990”
(ID-Code = 0 7111 02 B)
I2C-bus controlled (full read-back ability by an external controller).
2 APPLICATIONS
Desktop video
Multimedia
Digital television
Image processing
Video phone.
3 GENERAL DESCRIPTION
The Video Input Processor (VIP) is a combination of a two-channel analog preprocessing circuit including source selection, anti-aliasing filter and ADC, an automatic clamp and gain control, a Clock Generation Circuit (CGC), a digital multi-standard decoder (PAL BGHI, PAL M, PAL N, NTSC M and NTSC N), a brightness/contrast/saturation control circuit and a colour space matrix (see Fig.1).
The CMOS circuit SAA7111, analog front-end and digital video decoder, is a highly integrated circuit for desktop video applications. The decoder is based on the principle of line-locked clock decoding and is able to decode the colour of PAL and NTSC signals into CCIR-601 compatible colour component values. The SAA7111 accepts as analog inputs CVBS or S-video (Y/C) from
2
TV or VTR sources. The circuit is I
C-bus controlled.
Page 4
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
4 QUICK REFERENCE DATA
SYMBOL PARAMETER MIN. TYP. MAX. UNIT
V
DDD
V
DDA
T
amb
P
A+D
5 ORDERING INFORMATION
digital supply voltage 4.5 5.0 5.5 V analog supply voltage 4.75 5.0 5.25 V operating ambient temperature 0 25 70 °C analog and digital power 0.77 1.0 1.26 W
TYPE NUMBER
PACKAGE
NAME DESCRIPTION VERSION
SAA7111 PLCC68 plastic leaded chip carrier; 68 leads SOT188-2 SAA7111 QFP64 plastic quad flat package; 64 leads (lead length 1.6 mm);
SOT393-1
body 14 × 14 × 2.7 mm
Page 5
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
6 BLOCK DIAGRAM
handbook, full pagewidth
BYPASS
AI11 AI12
AI21 AI22
n.c.
V
SS
n.c.
TDI
TCK
TMS
TDO
23 (14)
21 (12) 19 (10)
17 (8) 15 (6)
7,8,9 (64) 22 (13)
10,36, 37
18,14 (9,5) 20,16 (11,7)
12 (3) 2 (59) 13 (4) 1 (58)
11 (2)
ANALOG
PROCESSING
AND
ANALOG-TO-
DIGITAL
CONVERSION
AD2 AD1
ANALOG
PROCESSING
CONTROL
TEST
CONTROL
BLOCK
FOR BOUNDARY SCAN TEST
AND SCAN TEST
CON
C/CVBS
Y/CVBS
Y
SYNCHRONIZATION
CHROMINANCE
CIRCUIT
AND
BRIGHTNESS
CONTRAST
SATURATION
CONTROL
LUMINANCE
CIRCUIT
SAA7111
CIRCUIT
Y
UV
LFCO
45 to 50
YUV-to-RGB
CONVERSION
AND
OUTPUT
FORMATTER
Y
2
I C-BUS
CONTROL
2
I C-BUS
INTERFACE
CLOCKS
CLOCK
GENERATION
CIRCUIT
POWER-ON
CONTROL
53 to 62
(34 to 39) (42 to 51)
(52) 63 (31) 42
(53) 64
(61) 4 (62) 5 (63) 6
(54) 65 (55) 66
(21) 30 (22) 31 (20) 29
(23) 32
VPO (0 : 15)
FEI HREF
GPSW
IICSA SDA SCL
XTAL XTALI
LLC2 CREF LLC RES
AOUT
V
SSA1-2
V
DDA1-2
TRST
(57,41,33,25,18) 68,52,44,34,27
V
DD1-5
The pin numbers given in parenthesis refer to the 64-pin package.
(56,40,32,26,19) 67,51,43,35,28
V
SS1-5
(30)41(27)38(17)26(29)40(28)39(60)
HSVS
VREF
Fig.1 Block diagram.
RTS0
RTS1
RTCO
3
(15)24(16)25(24)
DDA0
V
SSA0
V
33
MGC653
CE
Page 6
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
7 PINNING
SYMBOL
I/O DESCRIPTION
PLCC68 QFP64
TRST 1 58 I Test reset input not (active LOW), for boundary scan test;
notes 1, 2, 3 and 4. TCK 2 59 I Test clock input for boundary scan test; note 3> RTCO 3 60 O Real time control output: contains information about actual system
clock frequency, subcarrier frequency and phase and PAL sequence>
PINS
2
IICSA 4 61 I I
C-bus slave address select input; 0 = > 48h for write, 49h for read,
1 = > 4Ah for write, 4Bh for read.
2
SDA 5 62 I/O I SCL 6 63 I/O I
C-bus serial data input/output.
2
C-bus serial clock input/output. n.c. 7 64 Not connected. n.c. 8 −−Not connected. n.c. 9 −−Not connected. n.c. 10 1 Not connected. TDO 11 2 O Test data output for boundary scan test; note 3. TDI 12 3 I Test data input for boundary scan test; note 3. TMS 13 4 I Test mode select input for boundary scan test or scan test; note 3. V
SSA2
14 5 GND Ground for analog supply voltage channel 2. AI22 15 6 I Analog input 22. V
DDA2
16 7 P Positive supply voltage (+5 V) for analog channel 2. AI21 17 8 I Analog input 21. V
SSA1
18 9 GND Ground for analog supply voltage channel 1. AI12 19 10 I Analog input 12. V
DDA1
20 11 P Positive supply voltage (+5 V) for analog channel 1. AI11 21 12 I Analog input 11. V
SSS
22 13 GND Substrate (connected to analog ground). AOUT 23 14 O Analog test output; for testing the analog input channels. V
DDA0
V
SSA0
VREF 26 17 O Vertical reference output signal (I
24 15 P Positive supply voltage (+5 V) for internal CGC.
25 16 GND Ground for internal CGC.
2
C-bit COMPO = 0) or inverse composite blank signal (I2C-bit COMPO = 1) (enabled via I2C-bit OEHV).
V V
DD5 SS5
27 18 P Positive digital supply voltage 5 (+5 V). 28 19 GND Digital ground for positive supply voltage 5.
LLC 29 20 O Line-locked system clock output (27 MHz).
1
LLC2 30 21 O Line-locked clock
⁄2output (13.5 MHz).
CREF 31 22 O Clock reference output: this is a clock qualifier signal distributed by
the CGC for a data rate of LLC2. Using CREF all interfaces on the VPO-bus are able to generate a bus timing with identical phase. If CCIR-656 format is selected (OFTS0 = 1 and OFTS1 = 1) an inverse composite blank signal (pixel qualifier) is provided on this pin.
Page 7
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
SYMBOL
I/O DESCRIPTION
PLCC68 QFP64
RES 32 23 O Reset output (active LOW); sets the device into a defined state. All
data outputs are in high impedance state. The I2C-bus is reset (waiting for start condition) note 4.
CE 33 24 I Chip enable; connection to ground forces a reset.
PINS
V V
DD4 SS4
34 25 P Positive digital supply voltage 4 (+5 V).
35 26 GND Digital ground for positive supply voltage 4. n.c. 36 −−Not connected. n.c. 37 −−Not connected. HS 38 27 O Horizontal sync output signal (programmable); the positions of the
positive and negative slopes are programmable in 8 LLC increments
2
over a complete line (= 64 µs) via I
C-bus bytes HSB and HSS. Fine position adjustment in 2 LLC increments can be performed via I2C-bits HDEL1 and HDEL0.
2
RTS1 39 28 O Two functions output; controlled by I
C-bit RTSE1. RTSE1 = 0: PAL line identifier (LOW = PAL line); indicates the inverted and non-inverted R Y component for PAL signals. RTSE1 = 1: H-PLL locked indicator; a high state indicates that the internal horizontal PLL has locked.
2
RTS0 40 29 O Two functions output; controlled by I
C-bit RTSE0. RTSE0 = 0: odd/even field identification (HIGH = odd field). RTSE0 = 1: vertical locked indicator; a HIGH state indicates that the internal VNL has locked.
2
VS 41 30 O Vertical sync output signal (enabled via I
C-bit OEHV); this signal indicates the vertical sync with respect to the YUV output. The HIGH period of this signal is approximately six lines if the vertical noise limiter (VNL) function is active. The positive slope contains the phase information for a deflection controller.
2
HREF 42 31 O Horizontal reference output signal (enabled via I
C-bit OEHV); this signal is used to indicate data on the digital YUV bus. The positive slope marks the beginning of a new active line. The HIGH period of HREF is 720 Y samples long. HREF can be used to synchronize data multiplexer/demultiplexers. HREF is also present during the vertical blanking interval.
V V
SS3 DD3
43 32 GND Digital ground for positive supply voltage 3. 44 33 P Positive digital supply voltage 3 (+5 V).
VPO (15 to 10) 45 to 50 34 to 39 O Digital VPO-bus (Video Port Out) output signal; higher bits of the
16-bit YUV-bus or the 16-bit RGB-bus output signal. The output data rate, the format and multiplexing scheme of the VPO-bus are
2
controlled via I
C-bits OFTS0 and OFTS1. With I2C-bit VIPB = 1 the six MSBs of the digitized input signal (AD1 [7 to 2]) are connected to these outputs.
V V
SS2 DD2
51 40 GND Digital ground for positive supply voltage 2. 52 41 P Positive digital supply voltage 2 (+5 V).
Page 8
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
SYMBOL
I/O DESCRIPTION
PLCC68 QFP64
VPO (9 to 0) 53 to 62 42 to 51 O Digital VPO-bus output signal; lower bits of the 16-bit YUV-bus or the
16-bit RGB-bus output signal. The output data rate, the format and multiplexing schema of the VPO-bus are controlled via I2C-bits OFTS0 and OFTS1. With I2C-bit VIPB = 1 the digitized input signals (AD1 [1 and 0] and AD2 [7 to 0]) are connected to these outputs.
FEI 63 52 I Fast enable input signal (active LOW); this signal is used to control
fast switching on the digital YUV-bus. A HIGH at this input forces the IC to set its Y and UV outputs to the high impedance state; note 4.
GPSW 64 53 O General purpose switch output; the state of this signal is set via
PINS
2
C-bus control and the levels are TTL compatible.
I
XTAL 65 54 O Second output terminal of crystal oscillator; not connected if external
clock signal is used.
XTALI 66 55 I Input terminal for 24.576 MHz crystal oscillator or connection of
external oscillator with CMOS compatible square wave clock signal.
V V
SS1 DD1
67 56 GND Digital ground for positive supply voltage 1. 68 57 P Positive digital supply voltage 1 (+5 V).
Notes
1. For board design without boundary scan implementation (pin compatibility with the SAA7110) connect theTRST pin to ground.
2. This pin provides easy initialization of BST circuit. TRST can be used to force the TAP (Test Access Port) controller to the Test-Logic-Reset state (normal operation) at once.
3. In accordance with the
“IEEE1149.1”
standard the pads TCK, TDI, TMS and TRST are input pads with an internal
pull-up transistor and TDO a 3-state output pad.
4. All pin names that carry an ‘overscore’ have been renamed due to Philips pin name conventions. In previous data sheet versions these pins were marked by the suffix ‘N’, e.g. TRST = TRSTN.
Page 9
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
DD1VSS1
handbook, full pagewidth
n.c. 9
n.c.
8
n.c. 7
SCL 6
SDA 5
IICSA 4
RTCO 3
TCK 2
TRST 1
V
68
67
66 XTALI
XTAL 65
GPSW 64
FEI 63
VPO0 62
VPO1
61
V
SSA2
V
DDA2
V
SSA1
V
DDA1
AOUT
V
DDA0
V
SSA0
VREF
n.c.
TDO
TDI
TMS
AI22
AI21
AI12
AI11
V
SS
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
SAA7111
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44
VPO3 VPO3 VPO4 VPO5 VPO6 VPO7 VPO8 VPO9
V
DD2
V
SS2
VPO10 VPO11 VPO12 VPO13 VPO14 VPO15
V
DD3
27
28
29LLC
30
31
32
33
34
V
DD5
V
SS5
LLC2
CREF
RES
CE
V
DD4
Fig.2 Pin configuration (PLCC68).
35
V
SS4
36 n.c.
37
n.c.
38 HS
39
RTS1
40
RTS0
41 VS
42
HREF
43
V
MGC636
SS3
Page 10
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
handbook, full pagewidth
SS1
DD1
TRST
V
58
57
SAA7111
23
24 CE
RES
V
56
25
DD4
V
XTALI 55
26
SS4
V
XTAL 54
27 HS
GPSW 53
28
RTS1
FEI
52
29
RTS0
VPO0
51
30 VS
VPO1 50
31
HREF
VPO2 49
32
MBH226
SS3
V
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
VPO3 VPO4 VPO5
VPO6 VPO7 VPO8 VPO9 V
DD2
V
SS2
VPO10 VPO11 VPO12 VPO13 VPO14 VPO15
V
DD3
V
SSA2
V
DDA2
V
SSA1
V
DDA1
AOUT
V
DDA0
V
SSA0
n.c.
TDO
TDI
TMS
AI22
AI21
AI12
AI11
V
SS
RTCO 60
21
LLC2
TCK 59
22
CREF
IICSA
SDA
SCL
n.c. 64
63
62
61 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17
18
19
20
LLC
SS5
DD5
V
V
VREF
Fig.3 Pin configuration (QFP64).
1996 Oct 30 10
Page 11
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
8 FUNCTIONAL DESCRIPTION
8.1 Analog input processing
The SAA7111 offers four analog signal inputs, two analog main channels with clamp circuit, analog amplifier, anti-alias filter and video CMOS ADC (see Fig.6).
8.2 Analog control circuits
The anti-alias filters are adapted to the line-locked clock frequency with help from a filter control. During the vertical blanking, time gain and clamping control are frozen.
8.2.1 C
LAMPING
The clamp control circuit controls the correct clamping of the analog input signals. The coupling capacitor is also used to store and filter the clamping voltage. An internal digital clamp comparator generates the information with respect to clamp-up or clamp-down. The clamping levels for the two ADC channels are fixed for luminance (60) and chrominance (128). Clamping time in normal use is set with the HCL pulse at the back porch of the video signal.
control (AGC) as part of the Analog Input Control (AICO). The AGC (automatic gain control for luminance) is used to amplify a CVBS or Y signal to the required signal amplitude, matched to the ADCs input voltage range. The AGC active time is the sync bottom of the video signal.
handbook, halfpage
(1 V(p-p) 75 )
analog input level
maximum
+4 dB
6 dB
minimum
range 10 dB0 dB
controlled
ADC input level
0 dB
MGC660
Fig.5 Automatic gain range.
HSY
TV line
HCL
MGC661
handbook, halfpage
225
60
1
analog line blanking
GAIN CLAMP
Fig.4 Analog line with clamp (HCL) and gain
range (HSY).
8.2.2 G
AIN CONTROL
Signal (white) peak control limits the gain at signal overshoots. The flow charts (see Figs 10 and 11) show more details of the AGC. The influence of supply voltage variation within the specified range is automatically eliminated by clamp and automatic gain control.
The gain control circuit receives (via the I2C-bus) the static gain levels for the two analog amplifiers or controls one of these amplifiers automatically via a built-in automatic gain
8.3 Chrominance processing
The 8-bit chrominance signal is fed to the multiplication inputs of a quadrature demodulator, where two subcarrier signals from the local oscillator DTO1 are applied (0 and 90° phase relationship to the demodulator axis). The frequency is dependent on the present colour standard. The output signals of the multipliers are low-pass filtered (four programmable characteristics) to achieve the desired bandwidth for the colour difference signals.
The colour difference signals are fed to the Brightness/Contrast/Saturation block (BCS), which includes the following five functions;
1. AGC (automatic gain control for chrominance).
2. Chroma amplitude matching [different gain factors for (RY) and (BY) to achieve CCIR-601 levels Cr and Cb].
3. Chroma saturation control.
4. Luminance contrast and brightness.
5. Limiting YUV to the values 1 (min.) and 254 (max.) to fulfil CCIR-601 requirements.
1996 Oct 30 11
Page 12
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
The burst processing block provides the feedback loop of the chroma PLL and contains;
Burst gate accumulator Colour identification and killer Comparison nominal/actual burst amplitude Loop filter chroma gain control Loop filter chroma PLL PAL sequence generation Increment generation for DTO1 with divider to generate
stable subcarrier for non-standard signals.
The chroma comb filter block eliminates crosstalk between the chrominance channels in accordance with the PAL standard requirements. For NTSC colour standards the chroma comb filter can be used to eliminate crosstalk from luminance to chrominance (cross-colour) for vertical structures. The comb filter can be switched off if desired.
The resulting signals are fed to the variable Y-delay compensation, RGB matrix, dithering circuit and output interface, which contains the VPO output formatter and the output control logic (see Fig.7).
8.4 Luminance processing
The 8-bit luminance signal, a digital CVBS format or a luminance format (S-VHS, HI8), is fed through a switchable prefilter. High frequency components are emphasized to compensate for loss. The following chrominance trap filter (f frequency selectable) eliminates most of the colour carrier signal, therefore, it must be bypassed for S-video (S-VHS, HI8) signals.
The high frequency components of the luminance signal can be peaked (control for sharpness improvement via I2C-bus) in two band-pass filters with selectable transfer characteristic. This signal is then added to the original (unpeaked) signal. A switchable amplifier achieves common DC amplification, because the DC gains are different in both chrominance trap modes. The improved luminance signal is fed to the BCS control located in the chrominance processing block (see Fig.8).
= 4.43 or 3.58 MHz centre
0
8.5 RGB matrix
Y data and Cr, Cb data are converted after interpolation into RGB data in accordance with CCIR-601 recommendation. The realized matrix equations consider the digital quantization:
R = Y + 1.371 Cr G=Y0.336 Cb 0.698 Cr B = Y + 1.732 Cb
After dithering (noise shaping) the RGB data is fed to the output interface within the VPO-bus output formatter.
8.6 VPO-bus (digital outputs)
The 16-bit VPO-bus transfers digital data from the output interfaces to a feature box or a field memory, a digital colour space converter (SAA7192 DCSC), a video enhancement and digital-to-analog processor (SAA7165 VEDA2) or a colour graphics board (Targa-format) as a graphical user interface.
The output data formats are controlled via the I OFTS0, OFTS1 and RGB888. Timing for the data stream formats, 411 YUV (12-bit), 422 YUV (16-bit), 565 RGB (16-bit) and 888 RGB (24-bit) with an LLC2 data rate, is achieved by marking each second positive rising edge of the clock LLC in conjunction with CREF (clock reference) (except RGB 888, see special application in Fig.27). The higher output signals VPO15 to VPO8 in the YUV format perform the digital luminance signal. The lower output signals VPO7 to VPO0 in the YUV format are the bits of the multiplexed colour difference signals (BY) and (RY). The arrangement of the RGB 565 and RGB 888 data stream bits on the VPO-bus is given in Table 5.
The data stream format 422 YUV (the 8 higher output signals VPO15 to VPO8) in LLC data rate fulfils the CCIR-656 standard with its own timing reference code at the start and end of each video data block.
A pixel in the format tables is the time required to transfer a full set of samples. In the event of a 4 :2:2format two luminance samples are transmitted in comparison to one (BY) and one (RY) sample within a pixel. The time frames are controlled by the HREF signal.
2
C-bus bits
1996 Oct 30 12
Page 13
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
Fast enable is achieved by setting input FEI to LOW. The signal is used to control fast switching on the digital VPO-bus. HIGH on this pin forces the YUV outputs to a high-impedance state (see Figs 15 and 17).
The digitized analog PAL or NTSC signals AD1 (7 to 0) and AD2 (7 to 0) are connected directly to the VPO-bus via I2C-bit VIPB = 1.
AD1 (7 to 0) -> VPO (15 to 8) and AD2 (7 to 0) ->VPO (7 to 0)
The selection of the analog input channels are controlled via I2C-bus subaddress 02 MODE select.
8.7 Synchronization
The prefiltered luminance signal is fed to the synchronization stage. Its bandwidth is reduced to 1 MHz in a low-pass filter. The sync pulses are sliced and fed to the phase detectors where they are compared with the sub-divided clock frequency. The resulting output signal is applied to the loop filter to accumulate all phase deviations. Internal signals (e. g. HCL and HSY) are generated in accordance with analog front-end requirements. The output signals HS, VS, and PLIN are locked to the timing reference, guaranteed between the input signal and the HREF signal, as further improvements to the circuit may change the total processing delay. It is therefore not recommended to use them for applications which require absolute timing accuracy on the input signals. The loop filter signal drives an oscillator to generate the line frequency control signal LFCO (see Fig.8).
8.8 Clock generation circuit
The internal CGC generates all clock signals required for the video input processor. The internal signal LFCO is a digital-to-analog converted signal provided by the horizontal PLL. It is the multiple of the line frequency (6.75 MHz = 432 × f
). Internally the LFCO signal is
h
multiplied by a factor of 2 or 4 in the PLL circuit (including phase detector, loop filtering, VCO and frequency divider) to obtain the LLC and LLC2 output clock signals. The rectangular output clocks have a 50% duty factor (see Fig.22).
8.9 Power-on reset and CE input
A missing clock, insufficient digital or analog V
DDA0
supply voltages (below 3.5 V) will initiate the reset sequence; all outputs are forced to 3-state. The indicator output RES is LOW for approximately 128 LLC after the internal reset and can be applied to reset other circuits of the digital TV system.
It is possible to force a reset by pulling the CE (chip enable) to ground. After the rising edge of CE and sufficient power supply voltage, the outputs LLC, LLC2, CREF, RTCO, RTS0, RTS1, GPSW and SDA return from 3-state to active, while HREF, VREF, HS and VS remain in
2
3-state and have to be activated via I
C-bus programming
(see Table 4).
8.10 RTCO output
The real time control and status output signal contains serial information about the actual system clock (increment of the HPLL), subcarrier frequency [increment and phase (via reset) of the FSC-PLL] and PAL sequence bit. The signal can be used for various applications in external circuits, e.g. in a digital encoder to achieve clean encoding (see Fig.16).
8.11 The Line-21 text slicer
The text slicer block detects and acquires Line-21 Closed Captioning data from a 525-line CVBS signal. Extended data services on Line-21 Field 2 are also supported. If valid data is detected the two data bytes are stored in two
2
C-bus registers. A parity check is also performed and the
I result is stored in the MSB of the corresponding byte. A third I2C-bus register is provided for data valid and data ready flags. The two bits F1VAL and F2VAL indicate that the input signal carries valid Closed Captioning data on the corresponding fields. The data ready bits F1RDY and F2RDY have to be evaluated if asynchronous I2C-bus reading is used.
8.11.1 S
UGGESTIONS FOR I
DISPLAY SOFTWARE READING LINE
2
C-BUS INTERFACE OF THE
-21 DATA
There are two methods by which the software can acquire the data;
1. Synchronous reading once per frame (or once per field): It can use either the rising edge (Line-21 Field 1) or both edges (Line-21 Field 1 or 2) of the ODD signal (pin RTSO) to initiate an I2C-bus read transfer of the three registers 1A, 1B and 1C.
2. Asynchronous reading: It can poll either the F1RDY bit (Line-21 Field 1) or both F1RDY/F2RDY bits (Line-21 Field 1 or 2). After valid data has been read the corresponding F*RDY bit is set to LOW until new data has arrived. The polling frequency has to be slightly higher than the frame or field frequency, respectively.
1996 Oct 30 13
Page 14
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
AOUT
(14) 23
AND
TEST
BUFFER
SELECTOR
ADC2
AOSL (1 : 0)
SWITCH
BYPASS
FILTER
ANTI-ALIAS
ANALOG
AMPLIFIER
DAC9
FUSE (1 : 0)
ANALOG
ADC1
SWITCH
BYPASS
FILTER
ANTI-ALIAS
DAC9
AMPLIFIER
VERTICAL
FUSE (1 : 0)
CONTROL
BLANKING
CONTROL
ANTI-ALIAS
GAIN
CONTROL
VBLNK
SVREF
VBSL 8 8
HOLDG
GAFIX
HSY
GLIMB
GLIMT
WPOFF
GAI20-GAI28
GAI10-GAI18
GUDL0-GUDL2
HLNRS
WIPA
SLTCA
AD1BYPAD2BYP
handbook, full pagewidth
CROSS MULTIPLEXER
UPTCV
Fig.6 Analog input processing.
987 (64)
n.c.
n.c.
n.c.
18 (9)
SSA1
V
14 (5)
SSA2
V
CLAMP
CIRCUIT
SWITCH
SOURCE
15 (6)
17 (8)
AI22
AI21
20 (11)
DDA1
V
16 (7)
DDA2
V
CLAMP
SOURCE
19 (10)
21 (12)
AI12
CIRCUIT
SWITCH
AI11
1996 Oct 30 14
CLAMP
CONTROL
MODE
CONTROL
HCL
MODE 0
MODE 1
MODE 2
ANALOG
CONTROL
22 (13)
SSS
V
CHRLUM
MGC655
The pin numbers given in parenthesis refer to the 64-pin package.
Page 15
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
AD1BYPAD2BYP
FEI
(52) 63
(42 to 51),
AND
CONTRAST,
BRIGHTNESS,
LOW-PASS
VPO
(9 : 0)VPO
45 to 50
53 to 62
(34 to 39),
AND 
OUTPUT
INTERFACE
FORMATTER
RGB
dithering
interpolation
RGB MATRIX
Y
CONTROL
SATURATION
PHASE
DEMOD.
AMPLITUDE
(15 : 10)
(31) 42
COMB
DIT CBR
UV
GAIN
CONTROL
AND Y-DELAY
DETECTOR
BURST GATE
ACCUMULATOR
HREF
GPSW
RTSE1
OFTS0
OFTS1
FILTERS
DCCF
COMPENSATION
BRIG
CODE
LOOP FILTER
FCTCCSTD 1
CONT
RTSE0
VIPB
RGB888
OEYC
SATN
VLOF
COLO
OEHV
FECO
RTCO
(60) 3
COMPO
VRLN
MGC645
Y
handbook, full pagewidth
CHBW0
CHBW1
INCREMENT
SUBCARRIER
CHRLUM
QUADRATURE
10 (1)
n.c.
DEMODULATOR
TEST
CONTROL
1 (58)
2 (59)
12 (3)
TDI
TCK
TRST
BLOCK
13 (4)
TMS
SUBCARRIER
11 (2)
TDO
GENERATION
(57,41,33,
25,18)
V
1996 Oct 30 15
AND
DIVIDER
GENERATION
HUEC
CONTROL
POWER-ON
32 (23)
68,52,44,
34,27
RES
DD1-5
INCS
CSTD 0
CLOCKS CE
(56,40,32,26,19)
67,51,43,35,28
SS1-5
V
Fig.7 Chrominance circuit.
LUM
The pin numbers given in parenthesis refer to the 64-pin package.
Page 16
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
DDA0VSSA0
CREF
LLC
LLC2
CE
V
XTALI
XTAL
(22) 31
CLOCKS
(21)30
(20) 29
CLOCK
GENERATOR
LINE-LOCKED
(24)33
(16) 25
(15) 24
CLOCK
CIRCUIT
GENERATION
(54) 65
(55) 66
CLOCK
CRYSTAL
GENERATOR
MGC654
CLOCK CIRCUIT
DAC6
INCS
APER0
APER1
Y
AND
ADDING
STAGE
WEIGHTING
VBLB
MATCHING
AMPLIFIER
VBLB
PHASE
FINE
PHASE
DETECTOR
COARSE
DETECTOR
AUFD
HSB
HPLL
HSS
VTRC
VTRC
EXFIL
STTC
HLCK
FSEL
VTRC
TIME
DISCRETE
OSCILLATOR 2
2
LOOP FILTER
(28)
(27)
COUNTER
39
RTS1
38
HS
handbook, full pagewidth
BPSS0
BPSS1
FILTER
VARIABLE
BAND-PASS
PREF
SYNC SLICER
LUMINANCE CIRCUIT
TRAP
CHROMINANCE
LUM
PREFILTER
BYPS
VBLB
PREF
SYNC
PREFILTER
TEXT
LINE 21
1996 Oct 30 16
FIDT
VNOI0
VNOI1
VTRC
SYNCHRONIZATION CIRCUIT
BYTE1
SLICER
BYTE2
STATUS
2
I C BUS CONTROL
VERTICAL
PROCESSOR
2
I C-BUS
INTERFACE
64 (53)
GPSW
(17) (29)
(30)
(62)
(63)
(61)
26
VREF
40
RTS0
41
VS
5
SDASCLIICSA
6
4
Fig.8 Luminance and sync processing.
The pin numbers given in parenthesis refer to the 64-pin package.
Page 17
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
9 GAIN CHARTS
handbook, full pagewidth
handbook, halfpage
7.5
factor
dB
5.5
3.5
bit [8] = 1
1.5
0.5
2.5
4.5
0
= 20 x log10 gain =
dB
i > 256
bit [8] = 0
= 20 x log10 gain =
factor
dB
256 512
gain value (i)
Fig.9 Amplifier curve.
ANALOG INPUT
(
512
768 i
(
i < 256
(
MGC648
257 + i
512
(
ADC
NO BLANKING ACTIVE
10 10
10
CLL
+ CLAMP CLAMP
WIPE = white peak level (254); SBOT = sync bottom level (1); CLL = clamp level [60 Y (128 C)]; HSY = horizontal sync pulse; HCL = horizontal clamp pulse.
10
VBLK
GAIN -><- CLAMP
HCL HSY
01 10
SBOT
NO CLAMP
+ GAIN GAIN
Fig.10 Clamp and gain flow.
fast GAIN
WIPE
slow + GAIN
MGC647
1996 Oct 30 17
Page 18
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
handbook, full pagewidth
NO ACTION
0
1
ANTI-ALIAS FILTER
0
1
<4
0
>248
ANALOG INPUT
AMPLIFIER
ADC
1
VBLK
1
HOLDG
1
>254
X = 0
gain
8
0
0
1
X
1
1
<1
0
DAC
LUMA/CHROMA DECODER
0
0
HSY
1
>254
X = 1
9
0
+1/F
STOP
X = system variable; Y = AGV FGVI > GUDL; VBLK = vertical blanking pulse; HSY = horizontal sync pulse; AGV = actual gain value; FGV = frozen gain value.
1/LLC2
+1/L
GAIN ACCUMULATOR (18 BITS)
ACTUAL GAIN VALUE 9-BIT (AGV) [6/+6 dB]
1
AGV
Fig.11 Gain flow chart.
+1/LLC2 1/LLC2
0
X
1
HSY
1
UPDATE
GAIN VALUE 9-BIT
+/ 0
0
0
Y
FGV
MGC652
1996 Oct 30 18
Page 19
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
10 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DDD
V
DDA
V
diff
T
stg
T
amb
T
amb(bias)
V
esd
Note
1. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k resistor.
11 CHARACTERISTICS
= 4.5 to 5.5 V; V
V
DDD
digital supply voltage 0.5 +6.5 V analog supply voltage 0.5 +6.5 V voltage difference between V
SSAall
and V
SSall
100 mV storage temperature 65 +150 °C operating ambient temperature 0 +70 °C operating ambient temperature under bias 10 +80 °C electrostatic discharge all pins note 1 2000 +2000 V
= 4.75 to 5.25 V; T
DDA
=25°C; unless otherwise specified.
amb
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Supplies
V I
DDD
P V I
DDA
P P
DDD
D DDA
A A+D
digital supply voltage 4.5 5.0 5.5 V digital supply current 100 130 160 mA digital power 0.45 0.65 0.88 W analog supply voltage 4.75 5.0 5.25 V analog supply current 60 70 80 mA analog power 0.32 0.35 0.38 W analog and digital power 0.77 1.0 1.26 W
Analog part
I
clamp
V
i(p-p)
|Z
| input impedance clamping current off 200 −− k
i
C
i
α
cs
clamping current VI= 1.25 V DC 2 −µA input voltage (peak-to-peak
value), AC coupling required
coupling capacitor = 10 nF; note 1
0.55 1.0 1.5 V
input capacitance −− 10 pF channel crosstalk fi= 5 MHz −−50 dB
Analog-to-digital converters
B bandwidth at 3dB 15 MHz φ
diff
differential phase (amplifier
2 deg
plus anti-alias filter = bypass)
G
diff
differential gain (amplifier plus
2 %
anti-alias filter = bypass)
f
ADC
ADC clock frequency 11 16 MHz
DLE DC differential linearity error 0.5 LSB ILE DC integral linearity error 1 LSB
1996 Oct 30 19
Page 20
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Digital inputs
V
IL
V
IH
V
IL(xtalI)
V
IH(xtalI)
V
ILn
V
IHn
I
LI
C
i(I/O)
C
i(n)
LOW level input voltage pins SDA and SCL
HIGH level input voltage pins SDA and SCL
LOW level CMOS input voltage pin XTALI
HIGH level CMOS input voltage pin XTALI
LOW level input voltage all other inputs
HIGH level input voltage all other inputs
input leakage current −− 1 µA input capacitance inputs and outputs at
high-impedance
input capacitance all other inputs
0.5 +1.5 V
0.7V
−− 0.3V
0.7V
V
DDD
−− V
DDD
DDD
+ 0.5 V
DDD
V
0.5 +0.8 V
2.0 V
DDD
+ 0.5 V
−− 8pF
−− 8pF
Digital outputs
V
OL
LOW level output voltage pins SDA and SCL
V
OL
V
OH
V
OL(clk)
LOW level output voltage note 2 0 0.6 V HIGH level output voltage note 2 2.4 V LOW level output voltage for
clocks
V
OH(clk)
HIGH level output voltage for clocks
FEI input timing
t
SU;DAT
t
HD;DAT
input data set-up time 13 −− ns input data hold time 3 −− ns
Data and control output timing
C
L
t
OHD;DAT
t
PD
t
PDZ
output load capacitance 15 50 pF output hold time CL=15pF 5 −− ns propagation delay CL=40pF −− 21 ns propagation delay to 3-state −− 21 ns
SDA/SCL at 3 mA sink current
−− 0.4 V
DDD
0.5 +0.6 V
2.6 V
DDD
+ 0.5 V
V
1996 Oct 30 20
Page 21
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Clock output timing (LLC and LLC2)
C
L(LLC)
T
cy
δLLC duty factors for t
t
r
t
f
t
dLLC2
Data qualifier output timing (CREF)
t
OHD;CREF
t
PD;CREF
output load capacitance 15 40 pF cycle time LLC 35 39 ns
LLC2 70 78 ns
t
LLC2H/tLLC2
LLCH/tLLC
and
CL=40pF 40 60 %
rise time Vi= 0.6 to 2.6 V −− 5ns fall time Vi= 2.6 to 0.6 V −− 5ns delay time LLC output to LLC2
output
Vi= 1.5 V; LLC/LLC2 = 40 pF
1 +1 ns
output hold time CL=15pF 4 −− ns propagation delay from
CL=40pF −− 20 ns
positive edge of LLC
Clock input timing (XTALI)
δXTALI duty factor for t
Horizontal PLL
f
f
Hn
H/fHn
nominal line frequency 50 Hz field 15625 Hz
permissible static deviation −− 5.7 %
Subcarrier PLL
f
SCn
f
SCH/fSCHn
nominal subcarrier frequency PALBGHI, NTSC 443 4433619 Hz
lock-in range ±400 −− Hz
XTALIH/tXTALI
nominal frequency 40 60 %
60 Hz field 15734 Hz
NTSC M 3579545 Hz PAL M 3575612 Hz PAL N 3582056 Hz
1996 Oct 30 21
Page 22
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Crystal oscillator
f
n
f/f
n
Tf/f
n
CRYSTAL SPECIFICATION (X1) T
ambX1
C
L
R
s
C
1
C
0
Notes
1. The levels must be measured with load circuits; 1.2 k at 3 V (TTL load); CL= 50 pF.
2. The effects of rise and fall times are included in the calculation of t drawings and conditions illustrated in Figs 12 and 13.
nominal frequency 3rd harmonic 24.576 MHz permissible nominal
−− ±50 10
6
frequency deviation permissible nominal
−− ±20 10
6
frequency deviation with temperature
operating ambient
0 70 °C
temperature load capacitance 8 −− pF series resonance resistor 40 80 motional capacitance 1.5 ±20% fF parallel capacitance 3.5 ±20% pF
OHD;DAT
, tPD and t
. Timings and levels refer to
PDZ
Table 1 Processing delay
FUNCTION
TYPICAL ANALOG DELAY
AI22 −> ADCIN (AOUT) (ns)
Without amplifier or anti-alias filter 14
With amplifier plus anti-alias filter 72
DIGITAL DELAY
ADCIN -> VPO (LLC-CLOCKS)
[YDEL(2 to 0) = 000]
139With amplifier, without anti-alias filter 30
1996 Oct 30 22
Page 23
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
12 TIMING DIAGRAMS
t
handbook, full pagewidth
CLOCK OUTPUT LLC
OUTPUTS VPO, HREF, VREF, VS, HS
t
OHD;DAT
t
LLCH
LLC
t
LLCL
t
f
t
PD
t
r
2.6 V
1.5 V
0.6 V
MGC658
2.4 V
0.6 V
An explanation of the output formats is given in Table 5.
Fig.12 Clock/data timing (8-bit CCIR-656 format of the VPO-bus).
handbook, full pagewidth
CLOCK OUTPUT LLC
OUTPUT CREF
CLOCK OUTPUT LLC2
OUTPUTS VPO, HREF, VREF, VS, HS
t
LLCH
t
OHD;CREF
t
dLLC2
t
LLC
t
PD
t
OHD;DAT
t
LLCL
t
f
t
r
t
OHD;CREF
t
LLC
2.6 V
1.5 V
0.6 V
t
PD
t
dLLC2
t
PD
MGC659
2.4 V
0.6 V
2.6 V
1.5 V
0.6 V
2.4 V
0.6 V
An explanation of the output formats is given in Table 5. The FEI timing of the VPO-bus is illustrated in Figs 15 and 17.
Fig.13 Clock/data timing (12/16-bit CCIR-601 format of the VPO-bus).
1996 Oct 30 23
Page 24
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
handbook, full pagewidth
CLOCK OUTPUT LCC
t
LLCH
t
PD
OUTPUT CREF
t
OHD;CREF
RGB (8, 8, 8) data
VPO15 to VPO8
RGB (8, 8, 8) data
VPO7 to VPO0
An explanation of the output formats is given in Table 5.
t
LLC
t
LLCL
t
f
R(2 : 0) G(1 : 0) B(2 : 0)
t
r
R(7 : 3) G(7 : 5)
t
LLC
t
OHD;CREF
t
PD
t
OHD;DAT
G(4 : 2) B(7 : 3)
t
OHD;CREF
t
OHD;DAT
MBH227 
2.4 V
1.5 V
0.6 V
2.4 V
1.5 V
0.6 V
2.4 V
1.5 V
0.6 V
2.4 V
1.5 V
0.6 V
handbook, full pagewidth
I2C-bit FECO = 1.
LLC
CREF
HREF
FEI
VPO
Fig.14 Clock/data timing for RGB888 output format.
t
PDZ
t
HD;DAT
from 3-state
t
PD
t
SU;DAT
t
OHD;DAT
to 3-state
Fig.15 FEI timing diagram (FEI sampling at CREF = HIGH).
MGC656
1996 Oct 30 24
Page 25
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
handbook, full pagewidth
transmitted once per line
SEQUENCE
LOW
HIGH
128
BIT NO.:
TIME SLOT:
INCR
HPLL
INCR
FSCPLL
RESERVED
16
15
1
0 67
2
0
21
22
19
16
1617
1920
15
18
45
9
13
14
11 1012
6
8
7
3
452
3
0
1
63
RESERVED
1
68
(1) Set to zero for one transmission, if a phase reset of the fsc- DTO is applied via I2C-bit CDTO. RTCO sequence is generated in LLC/4. The HPLL increment represents the actual LFCO frequency (f
INCR
=
f
-------------------------------------------------
LFCO
Where: f The f
2
XTAL
increment represents the actual subcarrier frequency (related to the actual clock); 23 LSB from 24, MSB is 0b.
sc
INCR
f
-------------------------------------------------------
sc
×
HPLLfXTAL
word length DTO2
= 24.576 MHz, word length DTO2 = 20 bits.
FSCPLLfXTAL
word length DTO1
2
×
INCR
×=
---------------------------­2
HPLL
19
LFCO
× 4=f
); 16 LSB from 20, upper four bits are fixed to 0100b
LLC
Where: word length DTO1 = 24 bits.
Fig.16 Real time control output.
DTO RESET
RESERVED
50 Hz fields: 235
60 Hz fields: 232
MGC649
(1)
handbook, full pagewidth
LLC
CREF
HREF
t
SU;DAT
FEI
t
PDZ
VPO
to 3-state
Timing is compatible with SAA7110; I2C-bit FECO = 0.
Fig.17 FEI timing diagram (FEI sampling at CREF = LOW).
1996 Oct 30 25
t
OHD;DAT
t
HD;DAT
from 3-state
t
PD
MGC657
Page 26
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
handbook, full pagewidth
LLC
CREF
LLC2
HREF
Yn
UVn
HREF
Yn
UVn
START OF ACTIVE LINE
0
U0 V0 U2 V2 U4
1234
END OF ACTIVE LINE
719718717716715
V716U716V714
U718 V718
MGC646
Fig.18 HREF timing diagram.
1996 Oct 30 26
Page 27
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
handbook, full pagewidth
CVBS
Y - output
HREF (50 Hz)
RTS1 (PLIN)
HS
HS (50 Hz)
programming range
(step size: 8/LLC)
HREF (60 Hz)
HS (60 Hz)
(1)
108
50 x 2/LLC
139 x 1/LLC
720 x 2/LLC
7 x 2/LLC
3 x 2/LLC
720 x 2/LLC
0
0
burst
processing delay CVBS->VPO
sync clipped
12 x 2/LLC
144 x 2/LLC
113 x 2/LLC
4/LLC
16 x 2/LLC
138 x 2/LLC
(2)
107
HS (60 Hz)
programming range
(step size: 8/LLC)
(1) PLIN is switched to output RTS1 via I2C-bit RTSE1 = 0. (2) See Table 1.
107
0
Fig.19 Horizontal timing diagram.
1996 Oct 30 27
106
MGC664
Page 28
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
handbook, full pagewidth
23
input CVBS
HREF
VREF
VRLN = 1
VREF
VRLN = 0
VS
622
623
624
1234567822625
503 x 2/LLC
RTS0 (ODD)
input CVBS
HREF
VRLN = 1
VREF
VRLN = 0
VREF
VS
RTS0 (ODD)
(1)
310
(1)
311
312
313 314
a: 1st field
315 316
b: 2nd field
317
318
319
320
335 336
71 x 2/LLC
337
MGC662
(1) ODD is switched to output RTS0 via I2C-bit RTSE0 = 0. The luminance peaking and the chrominance trap are bypassed during VREF = 0 if I2C-bit VBLB is set to logic 1. The chrominance delay line (chroma-comb filter for NTSC, phase error correcting for PAL) is disabled during VREF = 0.
Fig.20 Vertical timing diagram for 50 Hz [nominal input signal VNL in normal mode (VNOI = 00b)].
1996 Oct 30 28
Page 29
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
1234567
andbook, full pagewidth
input CVBS
HREF
VREF
VREF
VS
522
(525)
VRLN = 1
VRLN = 0
523
524
(2)(1)
525
(3)
(4) (5) (6) (7) (8) (9)
(10)
8
(11)
17
(20)
493 x 2/LLC
18 19
(21)
(22)
(2)
RTS0 (ODD)
input CVBS
HREF
VREF
VREF
RTS0 (ODD)
(1)
VS
(1)
259
(262)
VRLN = 1
VRLN = 0
260
(263)
261
(264)
a: 1st field
263 264 265 266 267 268 269 270 271
262
(266) (267) (268) (269) (270) (271) (272) (273) (274)
(265)
b: 2nd field
61 x 2/LLC
280
(283)
281
(284)
MGC663
282
(285)
(2)
(1) ODD is switched to output RTS0 via I2C-bit RTSE0 = 0. (2) Line numbers in parenthesis refer to CCIR line counting. The luminance peaking and the chrominance trap are bypassed during VREF = 0 if I2C-bit VBLB is set to logic 1. The chrominance delay line (chroma-comb filter for NTSC, phase error correcting for PAL) is disabled during VREF = 0.
Fig.21 Vertical timing diagram for 60 Hz [nominal input signal VNL in normal mode (VNOI = 00b)].
1996 Oct 30 29
Page 30
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
Table 2 Digital output control
VPO
OEYC FEI
15 to 0
(1)
15 to 8
(2)
7to0
00 Z Z Z 1 0 active active Z 01 Z Z Z 1 1 Z active Z
Notes
1. OFTS(1 : 0) = 10 or 01 or 00.
2. OFTS(1 : 0) = 11.
(2)
13 CLOCK SYSTEM
13.1 Clock generation circuit
The internal CGC generates the system clocks LLC, LLC2 and the clock reference signal CREF. The internal generated LFCO (triangular waveform) is multiplied by 2 or 4 via the analog PLL (including phase detector, loop filter, VCO and frequency divider). The rectangular output signals have a 50% duty factor.
Table 3 Clock frequencies
CLOCK FREQUENCY (MHz)
XTAL 24.576
LLC 27 LLC2 13.5 LLC4 6.75 LLC8 3.375
handbook, full pagewidth
LFCO
BAND PASS
FC = LLC/4
ZERO
CROSS
DETECTION
PHASE
DETECTION
LOOP
FILTER
DIVIDER
1/2
Fig.22 Block diagram of clock generation circuit.
OSCILLATOR
DIVIDER
1/2
DELAY CREF
MGC632
LLC
LLC2
1996 Oct 30 30
Page 31
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
13.2 Power-on control
Power-on reset is activated at power-on, chip enable, PLL clock generation failure and if the supply voltage falls below
3.5 V. The RES signal can be applied to reset other circuits of the digital picture processing system.
ndbook, full pagewidth
CE
XTAL
LLCINT
RESINT
CE
CLOCK
PLL
LLC
POC V
ANALOG
POC
LOGIC
DDA
POC V
DIGITAL
POC
DELAY
CLK0
DDD
RES
LLC
RES
some ms
CE = chip enable input; XTAL = crystal oscillator output; LLCINT = internal system clock; RESINT = internal reset; LLC = line-locked system clock output; RES = reset output (active LOW).
20 to 200 µs
PLL-delay
<
digital delay
1 ms
Fig.23 Power-on control circuit.
1996 Oct 30 31
896 LCC
128 LCC
MGC633 
Page 32
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
Table 4 Power-on control sequence
INTERNAL POWER-ON CONTROL SEQUENCE
Directly after power-on asynchronous reset
VPO15 to VPO0, RTCO, RTS0, RTS1, GPSW, HREF, VREF, HS, VS, LLC, LLC2
PIN OUTPUT STATUS FUNCTION
direct switching to high impedance for 20 to 200 ms
and CREF are in high-impedance state
Synchronous reset sequence
LLC, LLC2, CREF, RTCO, RTS0, RTS1, GPSW and SDA become active;
internal reset sequence
VPO15 to VPO0, HREF, VREF, HS and VS are held in high-impedance state
Status after power-on control sequence
VPO15 to VPO0, HREF, VREF, HS and VS are held in high-impedance state
after power-on (reset sequence) a complete
2
C-bus transmission is required
I
14 OUTPUT FORMATS Table 5 Output formats
BUS SIGNAL 411 (12-BIT) 422 (16-BIT)
VPO15 Y07Y17Y27Y VPO14 Y VPO13 Y VPO12 Y VPO11 Y VPO10 Y VPO9 Y VPO8 Y VPO7 U VPO6 U VPO5 V VPO4 V
06Y16Y26Y36 05Y15Y25Y35 04Y14Y24Y34 03Y13Y23Y33 02Y12Y22Y32 01Y11Y21Y31 00Y10Y20Y30
07U05U03U01
06U04U02U00 07V05V03V01 06V04V02V00
VPO3 X X X X U VPO2 X X X X U VPO1 X X X X U VPO0 X X X X U
Y
37
07
Y
06
Y
05
Y
04
Y
03
Y
02
Y
01
Y
00
U
07
U
06
U
05
U
04 03 02 01 00
(1)
CCIR-656 (8-BIT)
Y Y Y Y Y Y Y Y V V V V V V V V
U07Y07V07Y
17
U06Y06V06Y
16
U05Y05V05Y
15
U04Y04V04Y
14
U03Y03V03Y
13
U02Y02V02Y
12
U01Y01V01Y
11
U00Y00V00Y
10
XXXX G2 G4 R2
07
XXXX G1 G3 R1
06
XXXX G0 G2 R0
05
XXXX B4 B7 G1
04
XXXX B3 B6 G0
03
XXXX B2 B5 B2
02
XXXX B1 B4 B1
01
XXXX B0 B3 B0
00
(2)
RGB (16-BIT)
17 16 15 14 13 12 11 10
(3)
RGB (24-BIT)
R4 R7 R7 R3 R6 R6 R2 R5 R5 R1 R4 R4 R0 R3 R3 G5 G7 G7 G4 G6 G6 G3 G5 G5
(3)
Pixel order Y 0 1 2 3 0 1 0 1 note 5 note 4 Pixel order UV 0 0 0 −− Data rates LLC2 LLC2 LLC LLC2 LLC
2
C-bus
I control signals
OFTS0 = 0 OFTS0 = 1 OFTS0 = 1 OFTS0 = 0 OFTS0 = 0 OFTS1 = 1 OFTS1 = 0 OFTS1 = 1 OFTS1 = 0 OFTS1 = 0
RGB888 = X RGB888 = X RGB888 = X RGB888 = 0 RGB888 = 1
Notes
1. Values in accordance with CCIR-601.
2. Before and after the video data, video timing codes are inserted in accordance with CCIR-656.
3. Values not defined during HREF = LOW.
4. CREF = 1 (see Fig.14).
5. CREF = 0 (see Fig.14).
1996 Oct 30 32
Page 33
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
handbook, full pagewidth
CCIR Rec. 602 digital levels.
Equations for modification to the YUV levels via BCS control I2C bytes BRIG, CONT and SATN. Luminance:
Y
OUT
Chrominance:
UV
OUT
It should be noted that the resulting levels are limited to 1 to 254 in accordance with CCIR-601/656 standard.
+255 +235
LUMINANCE 100%
+128
+16
0
(a) Y output range. (b) U output range (Cb). (c) V output range (Cr).
CONT
Int
----------------- -
Int
71
SATN
---------------- ­64
Y128()× BRIG+=
Cr Cb, 128()× 128+=
white
black
+255 +240
+212 +212
+128
U-COMPONENT
+44 +16
0
blue 100% blue 75%
colourless
yellow 75% yellow 100%
+255 +240
+128
+44 +16
V-COMPONENT
0
red 100% red 75%
colourless
cyan 75%
cyan 100%
MGC634
Fig.24 VPO output signal range with default BCS settings.
handbook, full pagewidth
The pin numbers given in parenthesis refer to the 64-pin package.
quartz (3rd harmonic)
24.576 MHz
C = 10 pF
C = 10 pF
(a) With quartz crystal. (b) With external clock.
XTAL
65 (54)
XTALI
66 (55)
L = 10 µH ±20%
C = 1 nF
Fig.25 Oscillator application.
XTAL
65 (54)
SAA7111 SAA7111
XTALI
66 (55)
MGC635
1996 Oct 30 33
Page 34
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
15 APPLICATION INFORMATION
handbook, full pagewidth
Q1(24.576 MHz)
AI22
V
AI21
V
AI12
V
AI11
V
L1
V
V
SSA
SSA
SSA
SSA
V
SDA
FEI
V DDA
SSA
DDD
SCL
C16
1 nF
DD
10 µH
R4
75
R3
75
R2
75
R1
75
R6
100 nF
1 k
C17 10 pF
C8
C4
10 nF
C3
10 nF
C2
10 nF
C1
10 nF
R5
1 k
V
SS
100 nF
100 nF
XTAL
XTALI
C18
10 pF
V
SS
C9
C7
15 (6)
17 (8)
19 (10)
21 (12)
33 (24)
6 (63) 5 (62)
63 (52)
65 (54)
66 (55)
(16)
25
SSA0
V
DDA0VDDA1VDDA2
V
20
24
(11)
(15)
V
(9) 18
SSA1
V
SSA
(5) 14
SSA2
V
(7)
n.c.
n.c.
TMS
TDI
13
16
(4)
12 (3)
SAA7111
(40)
(13)
(56)
51
22
67
SS
SS1VSS2VSS3VSS4VSS5
V
V
V
SS
TDO
11
(2)
BST
n.c.
(32)
43
TCK 2
(59)
(26)
C15
C14
100 nF
C13
100 nF
V
SS
DD1VDD2VDD3VDD4VDD5
TRST
V
1
68
(61)
4
IICSA
SS
(57)
(64)
n.c.
52
(41)
(33)
8
7
n.c.
n.c.
(58)
(19)
35
28
V
27
34
44
(18)
(25)
(34) 45 (35) 46 (36) 47 (37) 48 (38) 49 (39) 50 (42) 53 (43) 54 (44) 55 (45) 56 (46) 57 (47) 58
(48) 59 (49) 60 (50) 61 (51) 62
(31) 42 (17) 26 (27) 38 (30) 41
(60) 3 (28) 39 (29) 40 (53) 64 (14) 23
(20) 29 (21) 30 (22) 31 (23) 32
37
36
9
10
n.c.
n.c.
n.c.
100 nF
C11
100 nF
15 14 13 12
11 10 9 8 7 6 5 4 3 2 1 0
C12
100 nF
MGC651
VPO(15 : 0)
HREF
VREF HS VS
RTCO RTS1 RTS0 GPSW
AOUT
LLC
LLC2
CREF
RES
V
SS
The pin numbers given in parenthesis refer to the QFP64 package.
Fig.26 Application diagram.
1996 Oct 30 34
Page 35
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
handbook, full pagewidth
VPO
(15 : 8)
VPO
(7 : 0)
(34) 45
(35) 46 (36) 47 (37) 48 (38) 49 (39) 50 (42) 53 (43) 54
(44) 55 (45) 56 (46) 57 (47) 58 (48) 59 (49) 60 (50) 61 (51) 62
SAA7111
(31) 42 (17) 26 (27) 38
(30) 41
(60) 3 (28) 39 (29) 40 (53) 64 (14) 23 (20) 29 (21) 30 (32) 31 (23) 32
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
VPO (15 : 11) R (7 : 3)
VPO (10 : 8)
VPO (7 : 5)
V
SS
OEN D7 D6 D5 D4 D3 D2 D1 D0 V
SS
V
SS
HREF VREF HS VS RTCO RTS1 RTS0 GPSW AOUT LLC
LLC2
CREF RES
3
3
3
e.g.
74HCT574
5
V
DDVDD
O7 O6 O5 O4 O3 O2 O1
CLK
00
G (7 : 5)
G (4 : 2)
R (2 : 0)
G (1 : 0)
B (2 : 0)
B (7 : 3)VPO (4 : 0)
3
2
3
e.g. 74F240
8
8
8
R (7 : 0)
G (7 : 0)
B (7 : 0)
LLC2N
MGD137
The pin numbers given in parenthesis refer to the QFP64 package. I2C-bus control bits: OFTS(1 : 0) = 00 (subaddress 10h, bits D7 and D6). RGB888 = 1 (subaddress 12h, bit D3).
Fig.27 Application diagram for RGB 24-bit output format.
1996 Oct 30 35
Page 36
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
16 I2C-BUS DESCRIPTION
2
16.1 I Table 6 Write procedure
Table 7 Read procedure (combined format)
Table 8 Description of I
S START condition Sr repeated START condition Slave address W 0100 1000b (IICSA = LOW) or 0100 1010b (IICSA = HIGH) Slave address R 0100 1001b (IICSA = LOW) or 0100 1011b (IICSA = HIGH) ACK s acknowledge generated by the slave ACK m acknowledge generated by the master Subaddress subaddress byte, see Table 9 Data data byte, see Table 9; note 1 P STOP condition X = LSB slave
address Slave address read = 49h or 4Bh; note 2
Subaddress 00h chip version read and write; note 3
C-bus format
S SLAVE ADDRESS W ACK s SUBADDRESS ACK s DATA (N BYTES) ACK s P
S SLAVE ADDRESS W ACK s SUBADDRESS ACK s
Sr SLAVE ADDRESS R ACK s DATA (N BYTES) ACK m P
2
C-bus format
CODE DESCRIPTION
read/write control bit; X = 0, order to write (the circuit is slave receiver); X = 1, order to read (the circuit is slave transmitter)
write = 48h or 4Ah IICSA = 0 or 1
01h reserved 02h to 05h front-end part read and write 06h to 12h decoder part read and write 13h to 19h reserved 1Ah to 1Ch Line-21 text slicer part read only 1Dh to 1Eh reserved 1Fh status byte read only
Notes
1. If more than one byte DATA is transmitted then the auto-increment of the subaddress is performed.
2. During slave transmitter mode the SCL-LOW period may be extended by pulling SCL to LOW (in accordance with
2
the I
C-bus specification).
3. The I2C-bus subaddress 00 has to be initialized with 0 before being read.
1996 Oct 30 36
Page 37
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
Table 9 I2C-bus receiver/transmitter overview
SLAVE ADDRESS
READ WRITE IICSA
49H and 4BH 48H and 4AH 0 and 1
REGISTER FUNCTION
SUB-
ADDR.
D7 D6 D5 D4 D3 D2 D1 D0
Chip version 00 ID07 ID06 ID05 ID04 ID03 ID02 ID01 ID00 Reserved 01
(1) (1) (1) (1) (1) (1) (1) (1)
Analog input control 1 02 FUSE1 FUSE0 GUDL2 GUDL1 GUDL0 MODE2 MODE1 MODE0 Analog input control 2 03
(1)
HLNRS VBSL WPOFF HOLDG GAFIX GAI28 GAI18 Analog input control 3 04 GAI17 GAI16 GAI15 GAI14 GAI13 GAI12 GAI11 GAI10 Analog input control 4 05 GAI27 GAI26 GAI25 GAI24 GAI23 GAI22 GAI21 GAI20 Horizontal sync start 06 HSB7 HSB6 HSB5 HSB4 HSB3 HSB2 HSB1 HSB0 Horizontal sync stop 07 HSS7 HSS6 HSS5 HSS4 HSS3 HSS2 HSS1 HSS0 Sync control 08 AUFD FSEL EXFIL
(1)
VTRC HPLL VNOI1 VNOI0 Luminance control 09 BYPS PREF BPSS1 BPSS0 VBLB UPTCV APER1 APER0 Luminance brightness 0A BRIG7 BRIG6 BRIG5 BRIG4 BRIG3 BRIG2 BRIG1 BRIG0 Luminance contrast 0B CONT7 CONT6 CONT5 CONT4 CONT3 CONT2 CONT1 CONT0 Chroma saturation 0C SATN7 SATN6 SATN5 SATN4 SATN3 SATN2 SATN1 SATN0 Chroma Hue control 0D HUEC7 HUEC6 HUEC5 HUEC4 HUEC3 HUEC2 HUEC1 HUEC0 Chroma control 0E CDTO CM99 CSTD1 CSTD0 DCCF FCTC CHBW1 CHBW0 Reserved 0F
(1) (1) (1) (1) (1) (1) (1) (1)
Format/delay control 10 OFTS1 OFTS0 HDEL1 HDEL0 VRLN YDEL2 YDEL1 YDEL0 Output control 1 11 GPSW Output control 2 12 RTSE1 RTSE0
(1)
FECO COMPO OEYC OEHV VIPB COLO
(1)
CBR RGB888 DIT AOSL1 AOSL0 Output control 3 13 VCTR1 VCTR0 CCTR1 CCTR0 BCHI1 BCHI0 BCLO1 BCLO0 Reserved 14
(1) (1) (1) (1) (1) (1) (1) (1)
V_GATE1_START 15 VSTA7 VSTA6 VSTA5 VSTA4 VSTA3 VSTA2 VSTA1 VSTA0 V_GATE1_STOP 16 VSTO7 VSTO6 VSTO5 VSTO4 VSTO3 VSTO2 VSTO1 VSTO0 V_GATE1_MSB 17 Reserved 18-19 Text slicer status 1A
Decoded bytes of the text slicer
1B P1 BYTE16 BYTE15 BYTE14 BYTE13 BYTE12 BYTE11 BYTE10 1C P2 BYTE26 BYTE25 BYTE24 BYTE23 BYTE22 BYTE21 BYTE20
Reserved 1D-1E
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
(1) (1) (1) (1) (1) (1) (1) (1)
F2VAL F2RDY F1VAL F1RDY
VSTO8 VSTA8
Status byte 1F STTC HLCK FIDT GLIMT GLIMB WIPA SLTCA CODE
Note
1. All unused control bits must be programmed with 0.
1996 Oct 30 37
Page 38
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
16.2 I2C-bus detail
The I2C-bus receiver slave address is 48h/49h. Subaddresses 0F, 1D, 1E and 13 to 19 are reserved; subaddress 01 is reserved for chip version.
16.2.1 S
UBADDRESS 00
Table 10 Chip version SA 00, D7 to D0
CONTROL BITS
FUNCTION
ID07 ID06 ID05 ID04 ID03 ID02 ID01 ID00
Chip version in read mode
(1)
0 0 00XXXX
chip version number reserved for chip name
Note
1. The I
16.2.2 S
2
C-bus subaddress 00 has to be initialized with 0 prior to reading it.
UBADDRESS 02
Table 11 Analog control 1 (Mode select; see Figs 28 to 35) SA 02, D2 to D0
CONTROL BITS D2 TO D0
FUNCTION
MODE 2 MODE 1 MODE 0
Mode 0: CVBS (automatic gain) 0 0 0 Mode 1: CVBS (automatic gain) 0 0 1 Mode 2: CVBS (automatic gain) 0 1 0 Mode 3: CVBS (automatic gain) 0 1 1 Mode 4: Y (automatic gain) + C (gain channel 2 fixed to GAI2 level) 1 0 0 Mode 5: Y (automatic gain) + C (gain channel 2 fixed to GAI2 level) 1 0 1 Mode 6: Y (automatic gain) + C (gain channel 2 adapted to Y gain) 1 1 0 Mode 7: Y (automatic gain) + C (gain channel 2 adapted to Y gain) 1 1 1
Table 12 Analog control 1 SA 02, D5 to D3 (see Fig.11)
CONTROL BITS D5 TO D3
DECIMAL VALUE UPDATE HYSTERESIS FOR 9-BIT GAIN
GUDL 2 GUDL 1 GUDL 0
0.... off 0 0 0
....7 ±7 LSB 1 1 1
Table 13 Analog control 1 SA 02, D7 and D6
CONTROL BITS D7 AND D6
ANALOG FUNCTION SELECT FUSE
FUSE 1 FUSE 0
Amplifier plus anti-alias filter bypassed 0 0
01 Amplifier active 1 0 Amplifier plus anti-alias filter active 1 1
1996 Oct 30 38
Page 39
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
AI22
handbook, halfpage
AI21
AD2
CHROMA
AI22
handbook, halfpage
AI21
AD2
CHROMA
AI21 AI11
Fig.28 Mode 0; CVBS (automatic gain).
AI22
handbook, halfpage
AI21
AI12 AI11
Fig.30 Mode 2; CVBS (automatic gain).
AI22
handbook, halfpage
AI21
AD1
AD2
AD1
AD2
LUMA
MGC637
CHROMA
LUMA
MGC639
CHROMA
AI21 AI11
Fig.29 Mode 1; CVBS (automatic gain).
AI22
handbook, halfpage
AI21
AI12 AI11
Fig.31 Mode 3; CVBS (automatic gain).
AI22
handbook, halfpage
AI21
AD1
AD2
AD1
AD2
LUMA
MGC638
CHROMA
LUMA
MGC640
CHROMA
AI12 AI11
AD1
LUMA
MGC641
Fig.32 Mode 4 Y (automatic gain) + C
(gain channel 2 fixed to GAI1 level).
AI22
handbook, halfpage
AI21
AI12 AI11
AD2
AD1
CHROMA
LUMA
MGC643
Fig.34 Mode 6 Y (automatic gain) + C
(gain channel 2 adapted to Y gain).
1996 Oct 30 39
AI12 AI11
AD1
Fig.33 Mode 5 Y (automatic gain) + C
(gain channel 2 fixed to GAI1 level).
AI22
handbook, halfpage
AI21
AI12 AI11
AD2
AD1
Fig.35 Mode 7 Y (automatic gain) + C
(gain channel 2 adapted to Y gain).
LUMA
MGC642
CHROMA
LUMA
MGC644
Page 40
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
16.2.3 SUBADDRESS 03
Table 14 Analog control 2 (AICO2)
FUNCTION LOGIC LEVEL DATA BIT
Static gain control channel 1 (GAI18)
Sign bit of gain control see Table 15 D0
Static gain control channel 2 (GAI28)
Sign bit of gain control see Table 16 D1
Gain control fix (GAFIX)
Automatic gain controlled by MODE 1 and MODE 0 0 D2 Gain control is user programmable via GAI1 + GAI2 1 D2
Automatic gain control integration (HOLDG)
AGC active 0 D3 AGC integration hold (freeze) 1 D3
White peak off (WPOFF)
White peak control active 0 D4 White peak off 1 D4
Vertical blanking select (VBSL)
Long vertical blanking 0 D5 Short vertical blanking 1 D5
HL not reference select (HLNRS)
Normal clamping by HL not 0 D6 Reference select by HL not 1 D6
16.2.4 S
Table 15 Gain control analog (AIC03); static gain control channel 1 GAI1 SA 04, D7 to D0
DECIMAL
UBADDRESS 04
GAIN
VALUE
0.... 5.98 0 0 0 000000
....255 0 0 1 1 111111
256.... 0 1 0 0 000000
....511 5.98 1 1 1 111111
(dB)
SIGN
BIT
GAI18 GAI17 GAI16 GAI15 GAI14 GAI13 GAI12 GAI11 GAI10
CONTROL BITS D7 TO D0
1996 Oct 30 40
Page 41
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
16.2.5 SUBADDRESS 05
Table 16 Gain control analog (AIC04); static gain control channel 2 GAI2 SA 05
DECIMAL
VALUE
0.... 5.98 0 00000000
....255 0 0 11111111
256.... 0 1 00000000
....511 5.98 1 11111111
16.2.6 S
Table 17 Horizontal sync begin SA 06, D7 to D0
(STEP SIZE = 8/LLC)
16.2.7 S
Table 18 Horizontal sync stop SA 07
GAIN
(dB)
UBADDRESS 06
DELAY TIME
128...108 forbidden (outside available central counter range)
107... 1 0 0 1 0 1 0 1
...108 0 1 1 0 1 1 0 0
109...127 forbidden (outside available central counter range)
UBADDRESS 07
SIGN BIT
(SA 03, D1)
GAI28 GAI27 GAI26 GAI25 GAI24 GAI23 GAI22 GAI21 GAI20
HSB7 HSB6 HSB5 HSB4 HSB3 HSB2 HSB1 HSB0
CONTROL BITS D7 to D0
CONTROL BITS D7 to D0
DELAY TIME
(STEP SIZE = 8/LLC)
128...108 forbidden (outside available central counter range)
107... 1 0 0 1 0 1 0 1
...108 0 1 1 0 1 1 0 0
109...127 forbidden (outside available central counter range)
HSS7 HSS6 HSS5 HSS4 HSS3 HSS2 HSS1 HSS0
CONTROL BITS D7 to D0
1996 Oct 30 41
Page 42
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
16.2.8 SUBADDRESS 08
Table 19 Sync control SA 08, D7 to D5, D3 to D0
FUNCTION VNOI BITS LOGIC LEVELS DATA BITS
Vertical noise reduction (VNOI)
Normal mode VNOI1 0 D1
VNOI0 0 D0
Searching mode VNOI1 0 D1
VNOI0 1 D0
Free running mode VNOI1 1 D1
VNOI0 0 D0
Vertical noise reduction bypassed VNOI1 1 D1
VNOI0 1 D0
Horizontal PLL (HPLL)
PLL closed 0D2 PLL open, horizontal frequency fixed 1D2
TV/VTR mode select (VTRC)
TV mode (recommended for poor quality TV signals only)
VTR mode (recommended as default setting) 1D3
Extended loop filter (EXFIL)
Word width of the loop filter (LF2) amplification = 16-bit 0D5 Word width of the loop filter (LF2) amplification = 14-bit 1D5
Field selection (FSEL)
50 Hz, 625 lines 0D6 60 Hz, 525 lines 1D6
Automatic field detection (AUFD)
Field state directly controlled via FSEL 0D7 Automatic field detection 1D7
0D3
1996 Oct 30 42
Page 43
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
16.2.9 SUBADDRESS 09
Table 20 Luminance control
FUNCTION
Aperture factor (APER)
Aperture factor = 0 APER1 0 D1
Aperture factor = 0.25 APER1 0 D1
Aperture factor = 0.5 APER1 1 D1
Aperture factor = 1.0 APER1 1 D1
Update time interval for AGC value (UPTCV)
Horizontal update (once per line) 0D2 Vertical update (once per field) 1D2
Vertical blanking luminance bypass (VBLB
Active luminance processing 0D3 Luminance bypass during vertical blanking 1D3
Aperture band pass (centre frequency) (BPSS) D5 and D4
Centre frequency = 4.1 MHz BPSS1 0 D5
Centre frequency = 3.8 MHz; note 1 BPSS1 0 D5
Centre frequency = 2.6 MHz; note 1 BPSS1 1 D5
Centre frequency = 2.9 MHz; note 1 BPSS1 1 D5
APER/BPSS
BITS
APER0 0 D0
APER0 1 D0
APER0 0 D0
APER0 1 D0
BPSS0 0 D4
BPSS0 1 D4
BPSS0 0 D4
BPSS0 1 D4
LOGIC LEVELS DATA BITS
Prefilter active (PREF)
Bypassed 0D6 Active 1D6
Chrominance trap bypass (BYPS)
Chrominance trap active; default for CVBS mode 0D7 Chrominance trap bypassed; default for S-Video mode 1D7
Note
1. Not to be used with bypassed chrominance trap.
1996 Oct 30 43
Page 44
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
16.2.10 SUBADDRESS 0A
Table 21 Luminance brightness control BRIG7 to BRIG0 SA 0A
OFFSET
255 (bright) 1 1 1 1 1 1 1 1
128 (CCIR level) 1 0 0 0 0 0 0 0
0 (dark) 0 0 0 0 0 0 0 0
16.2.11 S Table 22 Luminance contrast control CONT7 to CONT0 SA 0B
1.109 (CCIR level) 0 1 0 0 0 1 1 1
1 (inverse luminance) 1 1 0 0 0 0 0 0
2 (inverse luminance) 1 0 0 0 0 0 0 0
16.2.12 SUBADDRESS 0C Table 23 Chrominance saturation control SATN7 to SATN0 SA 0C
UBADDRESS 0B
GAIN
1.999 (maximum) 0 1 1 1 1 1 1 1
1.0 01000000
0 (luminance off) 0 0 0 0 0 0 0 0
BRIG7 BRIG6 BRIG5 BRIG4 BRIG3 BRIG2 BRIG1 BRIG0
CONT7 CONT6 CONT5 CONT4 CONT3 CONT2 CONT1 CONT0
CONTROL BITS D7 to D0
CONTROL BITS D7 to D0
GAIN
1.999 (maximum) 0 1 1 1 1 1 1 1
1.0 (CCIR level) 0 1 0 0 0 0 0 0 0 (colour off) 0 0 0 0 0 0 0 0
1 (inverse chroma) 1 1 0 0 0 0 0 0
2 (inverse chroma) 1 0 0 0 0 0 0 0
16.2.13 S
Table 24 Chrominance hue control HUEC7 to HUEC0 SA 0D
HUE PHASE (DEG)
UBADDRESS 0D
+178.6.... 0 1 1 1 1 1 1 1
....0.... 0 0 0 0 0 0 0 0
....180 1 0 0 0 0 0 0 0
SATN7 SATN6 SATN5 SATN4 SATN3 SATN2 SATN1 SATN0
HUEC7 HUEC6 HUEC5 HUEC4 HUEC3 HUEC2 HUEC1 HUEC0
CONTROL BITS D7 to D0
CONTROL BITS D7 to D0
1996 Oct 30 44
Page 45
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
16.2.14 SUBADDRESS 0E
Table 25 Chrominance control SA 0E
FUNCTION CHBW/CSTD LOGIC LEVELS DATA BITS
Chroma bandwidth (CHBW0 and CHBW1)
Small bandwidth (620 kHz) CHBW1 0 D1
CHBW0 0 D0
Nominal bandwidth (800 kHz) CHBW1 0 D1
CHBW0 1 D0
Medium bandwidth (920 kHz) CHBW1 1 D1
CHBW0 0 D0
Wide bandwidth (1000 kHz) CHBW1 1 D1
CHBW0 1 D0
Fast colour time constant (FCTC)
Nominal time constant 0D2 Fast time constant 1D2
Disable chroma comb filter (DCCF)
Chroma comb filter on (during VREF = 1) (see Figures 20 and 21)
Chroma comb filter off 1D3
Colour standard (CSTD0 and CSTD1)
Colour standard control automatic switching between PAL BGHI and NTSC M
Colour standard control automatic switching between NTSC 4.43 (50 Hz) and PAL 4.43 (60 Hz)
Colour standard control automatic switching between PAL N and NTSC 4.43 (60 Hz)
Colour standard control automatic switching between NTSC N and PAL M
CM99 compatibility to SAA7199
Default value 0D6 To be set if SAA7199 (digital encoder) is used for
re-encoding in conjunction with RTCO
Clear DTO (CDTO)
Disabled 0D7 Every time CDTO is set, the internal subcarrier DTO
phase is reset to 0° and the RTCO output generates a logic 0 at time slot 68 (see RTCO description Fig.16). So an identical subcarrier phase can be generated by an external device (e.g. an encoder).
0D3
CSTD1 0 D5 CSTD0 0 D4 CSTD1 0 D5 CSTD0 1 D4 CSTD1 1 D5 CSTD0 0 D4 CSTD1 1 D5 CSTD0 1 D4
1D6
1D7
1996 Oct 30 45
Page 46
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
16.2.15 SUBADDRESS 10
Table 26 Format/delay control SA 10
LUMINANCE DELAY COMPENSATION
(STEPS IN 2/LLC)
4... 1 0 0
...0... 0 0 0
...3 0 1 1
Table 27 VREF pulse position and length VRLN SA 10 (D3)
VREF at 60 HZ 525 LINES
VRLN
0101
Length 240 242 286 288 Line number first last first last first last first last Field 1 19 (22) 258 (261) 18 (21) 259 (262) 24 309 23 310 Field 2 282 (285) 521 (524) 281 (284) 522 (525) 337 622 336 623
Note
1. The numbers given in parenthesis refer to CCIR line counting.
Table 28 Fine position of HS HDEL0 and HDEL1 SA 10
FINE POSITION OF HS WITH A STEP SIZE
OF 2/LLC
000 101 210 311
YDEL2 YDEL1 YDEL0
(1)
HDEL1 HDEL0
CONTROL BITS D2 to D0
VREF at 50 HZ 625 LINES
CONTROL BITS D5 and D4
Table 29 Output format selection OFTS0 and OFTS1 SA 10
FORMATS
OFTS1 OFTS0
RGB 565, RGB 888 (dependent on control bit RGB888) see Table 31
YUV 422 16 bits 0 1 YUV 411 12 bits 1 0 YUV CCIR-656 8 bits 1 1
1996 Oct 30 46
CONTROL BITS D7 and D6
00
Page 47
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
16.2.16 SUBADDRESS 11
Table 30 Output control 1 SA 11
FUNCTION LOGIC LEVELS DATA BIT
Colour on (COLO)
Automatic colour killer 0 D0 Colour forced on 1 D0
Decoder VIP bypassed (VIPB)
DMSD data to YUV output 0 D1 ADC data to YUV output; dependent on mode
settings
Output enable horizontal/vertical sync (OEHV)
HS, HREF, VREF and VS high impedance inputs 0 D2 Outputs HS, HREF, VREF and VS active 1 D2
1D1
Output enable YUV data (OEYC)
VPO-bus high-impedance inputs 0 D3 Output VPO-bus active 1 D3
Inverse composite blank (COMPO)
VREF is vertical reference 0 D4 VREF is inverse composite blank 1 D4
FEI control (FECO)
FEI sampling at CREF = LOW (SAA7110 compatible; see Fig.17
FEI sampling at CREF = HIGH 1 D5
General purpose switch (GPSW)
Switches directly pin 64 (53) GPSW; note 1 0 D7
Note
1. The pin number given in parenthesis refers to the 64-pin package.
0D5
1D7
1996 Oct 30 47
Page 48
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
16.2.17 SUBADDRESS 12
Table 31 Output control 2 SA 12
FUNCTION AOSL BITS LOGIC LEVELS DATA BITS
Analog test select (AOSL)
AOUT connected to internal test point 1 AOSL1 0 D1
AOSL0 0 D0
AOUT connected to input AD1 AOSL1 0 D1
AOSL0 1 D0
AOUT connected to input AD2 AOSL1 1 D1
AOSL0 0 D0
AOUT connected to internal test point 2 AOSL1 1 D1
AOSL0 1 D0
Dithering (noise shaping) control (DIT)
Dithering off 0D2 Dithering on 1D2
RGB output format selection (RGB888)
RGB565 0D3 RGB888 1D3
Chroma interpolation filter function (CBR)
Cubic interpolation (default) 0D4 Linear interpolation (lower bandwidth) 1D4
Real time outputs mode select (RTSE0)
ODD switched to output pin 40 (29); note 1 0D6 VL switched to output pin 40 (29); note 1 1D6
Real time outputs mode select (RTSE1)
PLIN switched to output pin 39 (28); note 1 0D7 HL switched to output pin 39 (28); note 1 1D7
Note
1. The pin number given in parenthesis refers to the 64-pin package.
1996 Oct 30 48
Page 49
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
16.2.18 SUBADDRESS 1A (READ-ONLY REGISTER)
Table 32 Line-21 text slicer status SA 1A
2
I
C-BUS
CONTROL BITS
F1RDY new data on field 1 has been acquired (for asynchronous reading); active HIGH D0
F1VAL Line-21 of field 1 carries valid data; active HIGH D1
F2RDY new data on field 2 has been acquired (for asynchronous reading); active HIGH D2
F2VAL Line-21 of field 2 carries valid data; active HIGH D3
FUNCTION DATA BIT
16.2.19 S
UBADDRESS 1B (READ-ONLY REGISTER)
Table 33 First decoded data byte of the text slicer SA 1B,
2
C-BUS
I
CONTROL BITS
FUNCTION DATA BIT
BYTE1 (6 to 0) data bit 6 to 0 of first data byte D6 to D0
P1 parity error flag bit; bit goes HIGH when a parity error has occurred D7
16.2.20 S
UBADDRESS 1C (READ-ONLY REGISTER)
Table 34 Second decoded data byte of the text slicer SA 1C
I2C-BUS
CONTROL BITS
FUNCTION DATA BIT
BYTE2 (6:0) data bit 6 to 0 of second data byte D6 to D0
P2 parity error flag bit; bit goes HIGH when a parity error has occurred D7
16.2.21 SUBADDRESS 1F (READ-ONLY REGISTER)
Table 35 Status byte SA 1F
2
C-BUS
I
CONTROL BITS
FUNCTION DATA BIT
CODE colour signal according to selected standard has been detected; active HIGH D0
SLTCA slow time constant active in WIPA-mode; active HIGH D1
WIPA white peak loop is activated; active HIGH D2 GLIMB gain value for active luminance channel is limited [min (bottom)]; active HIGH D3 GLIMT gain value for active luminance channel is limited [max (top)]; active HIGH D4
FIDT identification bit for detected field frequency; LOW = 50 Hz, HIGH = 60 Hz D5 HLCK status bit for locked horizontal frequency; LOW = locked, HIGH = unlocked D6 STTC status bit for horizontal phase loop; LOW = TV time-constant,
D7
HIGH = VTR time-constant
1996 Oct 30 49
Page 50
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
17 FILTER CURVES
17.1 Anti-alias filter curve
handbook, full pagewidth
6
V
(dB)
0
6
12
18
24
30
36
42
024 68101214
17.2 Luminance filter curves
MGD138
f (MHz)
Fig.36 Anti-alias filter.
18
handbook, full pagewidth
V
Y
(dB)
6
6
18
30
024 86
(1) = 43h; (2) = 53h; (3) = 63h; (4) = 73h.
(1) (2) (4) (3)
(1) (2) (4) (3)
f
Y (MHz)
MGD139
Fig.37 Luminance control SA 09h, 4.43 MHz Trap/CVBS mode, prefilter on, different aperture band-pass centre
frequencies.
1996 Oct 30 50
Page 51
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
18
handbook, full pagewidth
V
Y
(dB)
6
6
18
30
024 86
(1) = 40h; (2) = 41h; (3) = 42h; (4) = 43h.
Fig.38 Luminance control SA 09h, 4.43 MHz Trap/CVBS mode, prefilter on, different aperture factors.
(1) (2) (3) (4)
(4) (3) (2) (1)
f
Y (MHz)
MGD140
18
handbook, full pagewidth
V
Y
(dB)
6
6
18
30
024 86
(1) = 03h; (2) = 13h; (3) = 23h; (4) = 33h.
(1) (2) (4) (3)
(1) (2) (4) (3)
f
Y (MHz)
MGD141
Fig.39 Luminance control SA 09h, 4.43 MHz Trap/CVBS mode, prefilter off, different aperture band-pass centre
frequencies.
1996 Oct 30 51
Page 52
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
18
handbook, full pagewidth
V
Y
(dB)
6
6
18
30
024 86
(1) = C0h; (2) = C1h; (3) = C2h; (4) = C3h.
Fig.40 Luminance control SA 09h, Y/C mode, prefilter on, different aperture factors.
(1) (2) (3) (4)
f
Y (MHz)
MGD142
18
handbook, full pagewidth
V
Y
(dB)
6
6
18
30
024 86
(1) = 80h; (2) = 81h; (3) = 82h; (4) = 83h.
Fig.41 Luminance control SA 09h, Y/C mode, prefilter off, different aperture factors.
(1) (2) (3) (4)
f
Y (MHz)
MGD143
1996 Oct 30 52
Page 53
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
18
handbook, full pagewidth
V
Y
(dB)
6
6
18
30
024 86
(1) = 43h; (2) = 53h; (3) = 63h; (4) = 73h.
(1) (2) (4) (3)
(1) (2) (4) (3)
f
Y (MHz)
MGD144
Fig.42 Luminance control SA 09h, 3.58 MHz Trap/CVBS mode, prefilter on, different aperture band-pass centre
frequencies.
18
handbook, full pagewidth
V
Y
(dB)
6
6
18
30
024 86
(1) = 40h; (2) = 41h; (3) = 42h; (4) = 43h.
(1) (2) (3) (4)
(4) (3) (2) (1)
Fig.43 Luminance control SA 09h, 3.58 MHz Trap/CVBS mode, prefilter on, different aperture factors.
f
Y (MHz)
MGD145
1996 Oct 30 53
Page 54
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
18
handbook, full pagewidth
V
Y
(dB)
6
(1) (2) (4)
6
18
30
024 86
(1) = 03h; (2) = 13h; (3) = 23h; (4) = 33h.
(3)
(1) (2) (4) (3)
f
Y (MHz)
MGD146
Fig.44 Luminance control SA 09h, 3.58 MHz Trap/CVBS mode, prefilter off, different aperture band-pass centre
frequencies.
1996 Oct 30 54
Page 55
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
17.3 Chrominance filter curves
handbook, full pagewidth
6
V
(dB)
0
6 (1)
12
18
24
30
36
42
48
54
0 0.54 1.08 1.62 2,16
Transfer characteristics of the chroma low-pass dependent on CHBW[1:0] settings. (1) CHBW [1 : 0] = 00; (2) CHBW [1 : 0] = 01; (3) CHBW [1 : 0] = 10; (4) CHBW [1 : 0] = 11.
(2) (3) (4)
Fig.45 Chrominance filter.
(4) (1) (3) (2)
f
(MHz)
MGD147
2.7
2
C-BUS START SET-UP
18 I
The given values force the following behaviour of the SAA7111: – the analog input AI11 expects a signal in CVBS format; analog anti-alias filter active – automatic field detection – YUV 422/16-bit output format enabled – outputs HS, HREF, VREF and VS active – contrast, brightness and saturation control in accordance with CCIR standards – chrominance processing with nominal bandwidth (800 kHz).
1996 Oct 30 55
Page 56
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
Table 36 I2C-bus start set-up values
SUB
(HEX)
FUNCTION NAME
(1)
VALUES (BIN) (HEX)
76543210START
00 chip version ID0(7 : 0); note 2 0 0 00000000 01 reserved 0 0 00000000 02 analog input control 1 FUSE(1 : 0), GUDL(2 : 0), MODE(2 : 0) 1 1 000000C0 03 analog input control 2 X, HLNRS, VBSL, WPOFF, HOLDG,
0010001123
GAFIX, GAI28, GAI18 04 analog input control 3 GAI(17 : 10) 0 0 00000000 05 analog input control 4 GAI(27 : 20) 0 0 00000000 06 horizontal sync start HSB(7 : 0) 1 1 101011EB 07 horizontal sync stop HSS(7 : 0) 1 1 100000E0 08 sync control AUFD, FSEL, EXFIL, X, VTRC, HPLL,
1000100088
VNOI(1 : 0) 09 luminance control BYPS, PREF, BPSS(1 : 0), VBLB,
0000000101
UPTCV, APER(1 : 0) 0A luminance brightness BRIG(7 : 0) 1 0 00000080 0B luminance contrast CONT(7 : 0) 0 1 00011147 0C chrominance saturation SATN(7 : 0) 0 1 00000040 0D chroma hue control HUEC(7 : 0) 0 0 00000000 0E chrominance control CDTO, CM99, CSTD(1 : 0), DCCF,
0000000101
FCTC, CHBW(1 : 0) 0F reserved 0 0 00000000 10 format/delay control OFTS(1 : 0), HDEL(1 : 0), VRLN,
0100000040
YDEL(2 : 0) 11 output control 1 GPSW, X, FECO, COMPO, OEYC,
000111001C
OEHV, VIPB, COLO 12 output control 2 RTSE(1: 0), X, CBR, RGB888, DIT,
0000000101
AOSL(1 : 0) 13-19 reserved 0 0 00000000 1A text slicer status 0, 0, 0, 0, F2VAL, F2RDY, F1VAL, F1RDY read only register 1B decoded bytes of the 1C P2, BYTE2(6 : 0) 1D-
text slicer reserved 0 0 00000000
P1, BYTE1(6 : 0)
1E 1F status byte STTC, HLCK, FIDT, GLIMT, GLIMB,
read only register
WIPA, SLTCA, CODE
Notes
1. All X values must be set to LOW.
2. The I
2
C-bus subaddress 00 has to be initialized with 0 prior to reading.
1996 Oct 30 56
Page 57
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
19 PACKAGE OUTLINES
PLCC68: plastic leaded chip carrier; 68 leads
e
y
61
68
1
pin 1 index
D
X
SOT188-2
e
E
4460
43
A
Z
E
b
p
b
1
w M
H
E
E
e
A
A
1
A
4
(A )
3
k
9
β
1
27
k
10 26
e
Z
D
H
D
v M
A
D
B
v M
B
0 5 10 mm
scale
DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)
UNIT A
mm
0.180
inches
0.165
A
1
min. max. max. max. max.
4.57
0.51
4.19
0.020
A
0.25
0.01
A
4
3
3.30
0.13
b
0.53
0.33
0.021
0.013
b
p
1
0.81
0.66
0.032
0.026
D
24.33
24.13
0.958
0.950
(1)
(1)
E
eH
e
D
1.27
0.05
23.62
22.61
0.930
0.890
24.33
24.13
0.958
0.950
e
E
23.62
22.61
0.930
0.890
H
25.27
25.02
0.995
0.985
D
25.27
25.02
0.995
0.985
Note
1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.
OUTLINE
VERSION
SOT188-2
IEC JEDEC EIAJ
112E10 MO-047AC
REFERENCES
k
1
k
E
1.22
1.07
0.048
0.042
0.51
0.020
L
1.44
1.02
0.057
0.040
detail X
p
EUROPEAN
PROJECTION
L
p
(1) (1)
Z
Z
E
D
ywv β
0.18 0.100.18
0.007 0.0040.007
2.16
0.085
2.16
0.085
o
45
ISSUE DATE
92-11-17 95-03-11
1996 Oct 30 57
Page 58
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
QFP64: plastic quad flat package; 64 leads (lead length 1.6 mm); body 14 x 14 x 2.7 mm
c
y
X
A
48 33
49
pin 1 index
64
1
32
Z
E
e
A
H
E
E
2
A
A
1
w M
b
p
17
16
detail X
SOT393-1
Q
(A )
3
θ
L
p
L
w M
b
e
p
D
H
D
Z
D
B
v M
0 5 10 mm
scale
DIMENSIONS (mm are the original dimensions)
mm
A
max.
3.00
0.25
0.10
2.75
2.55
0.25
UNIT A1A2A3b
cE
p
0.45
0.23
0.30
0.13
(1)
(1) (1)(1)
D
14.1
13.9
eH
H
14.1
13.9
0.8
17.45
16.95
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
IEC JEDEC EIAJ
REFERENCES
SOT393-1 MS-022
1996 Oct 30 58
v M
D
A
B
E
17.45
16.95
LLpQZywv θ
1.4
1.03
0.73
1.1
0.16 0.100.161.60
EUROPEAN
PROJECTION
Z
D
1.2
1.2
0.8
0.8
ISSUE DATE
E
o
7
o
0
94-06-22 96-05-21
Page 59
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
20 SOLDERING
20.1 Introduction
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our
“IC Package Databook”
20.2 Reflow soldering
Reflow soldering techniques are suitable for all PLCC and QFP packages.
The choice of heating method may be influenced by larger PLCC or QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our
Reference Handbook”
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.
(order code 9398 652 90011).
“Quality
(order code 9397 750 00192).
The package footprint must incorporate solder thieves at the downstream corners.
20.3.2 QFP
Wave soldering is not recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.
If wave soldering cannot be avoided, the following conditions must be observed:
A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.
Even with these conditions, do not consider wave soldering the following packages: QFP52 (SOT379-1), QFP100 (SOT317-1), QFP100 (SOT317-2), QFP100 (SOT382-1) or QFP160 (SOT322-1).
20.3.3 M
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.
ETHOD (PLCC AND QFP)
Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.
20.3 Wave soldering
20.3.1 PLCC Wave soldering techniques can be used for all PLCC
packages if the following conditions are observed:
A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
The longitudinal axis of the package footprint must be parallel to the solder flow.
1996 Oct 30 59
20.4 Repairing soldered joints
Fix the component by first soldering two diagonally­opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
Page 60
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
21 DEFINITIONS
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
22 LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
23 PURCHASE OF PHILIPS I
Purchase of Philips I components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
2
C COMPONENTS
2
C components conveys a license under the Philips’ I2C patent to use the
1996 Oct 30 60
Page 61
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
NOTES
1996 Oct 30 61
Page 62
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
NOTES
1996 Oct 30 62
Page 63
Philips Semiconductors Preliminary specification
Video Input Processor (VIP) SAA7111
NOTES
1996 Oct 30 63
Page 64
Philips Semiconductors – a worldwide company
Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580/xxx France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 247 9145, Fax. +7 095 247 9144 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1, P.O. Box 22978, TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381
Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
© Philips Electronics N.V. 1996 SCA52 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Internet: http://www.semiconductors.philips.com
Printed in The Netherlands 657021/1200/02/pp64 Date of release: 1996 Oct 30 Document order number: 9397 750 01185
Loading...