Datasheet SAA7110WP-01 Datasheet (Philips)

Page 1
DATA SH EET
Product specification File under Integrated Circuits, IC22
1995 Oct 18
INTEGRATED CIRCUITS
SAA7110; SAA7110A
One Chip Front-end 1 (OCF1)
Page 2
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
CONTENTS
1 FEATURES 2 APPLICATIONS 3 GENERAL DESCRIPTION 4 QUICK REFERENCE DATA 5 ORDERING INFORMATION 6 SYSTEM VIEW 7 BLOCK DIAGRAM 8 PINNING 9 FUNCTIONAL DESCRIPTION
9.1 Analog input processing (see Fig.5)
9.2 Analog control circuits
9.3 Chrominance processing (see Fig.6)
9.4 Luminance processing (see Fig.7)
9.5 YUV-bus (digital outputs)
9.6 Synchronization (see Fig.7)
9.7 Clock generation circuit
9.8 Power-on reset
9.9 RTCO output 10 GAIN CHARTS 11 LIMITING VALUES 12 CHARACTERISTICS 13 TIMING 14 OUTPUT FORMATS 15 CLOCK SYSTEM
15.1 Clock generation circuit
15.2 Power-on control 16 I2C-BUS DESCRIPTION
16.1 I2C-bus format
16.2 I2C-bus receiver/transmitter tables
16.3 I2C-bus detail
16.4 I2C-bus detail (continued) 17 SOURCE SELECTION MANAGEMENT 18 ANTI-ALIAS FILTER GRAPHS 19 CORING FUNCTION
19.1 Coring function adjustment by subaddress 06H to affect band filter output adjustment
20 LUMINANCE FILTER GRAPHS 21 I2C-BUS START SET-UP
21.1 Remarks to Table 66
22 APPLICATION INFORMATION 23 START-UP, SOURCE SELECT AND
STANDARD DETECTION FLOW EXAMPLE
23.1 CODE 0 STARTUP and STANDARD Procedure
23.2 MODE 0 Source Select Procedure
23.3 MODE 1 Source Select Procedure
23.4 MODE 2 Source Select Procedure
23.5 MODE 3 Source Select Procedure
23.6 MODE 4 Source Select Procedure
23.7 MODE 5 Source Select Procedure
23.8 MODE 6 Source Select Procedure
23.9 MODE 7 Source Select Procedure
23.10 MODE 8 Source Select Procedure
24 PACKAGE OUTLINE 25 SOLDERING
25.1 Introduction
25.2 Reflow soldering
25.3 Wave soldering
25.4 Repairing soldered joints
26 DEFINITIONS 27 LIFE SUPPORT APPLICATIONS 28 PURCHASE OF PHILIPS I2C COMPONENTS
Page 3
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
1 FEATURES
Six analog inputs (6 × CVBS or 3 × Y/C or combinations)
Three analog processing channels
Three built-in analog anti-aliasing filters
Analog signal adding of two channels
Two 8-bit video CMOS analog-to-digital converters
Fully programmable static gain for the main channels or
automatic gain control for the selected CVBS/Y channel
Selectable white peak control signal
Luminance and chrominance signal processing for
PAL B/G, NTSC M and SECAM
Full range HUE control
Automatic detection of 50/60 Hz field frequency, and
automatic switching between standards PAL and NTSC, SECAM forceable
Horizontal and vertical sync detection for all standards
Cross-colour reduction by chrominance comb filtering
for NTSC or special cross-colour cancellation for SECAM
UV signal delay lines for PAL to correct chrominance phase errors
The YUV-bus supports a data rate of: – 780 × f
h
= 12.2727 MHz for 60 Hz (NTSC)
– 944 × fh= 14.75 MHz for 50 Hz (PAL/SECAM)
Square pixel format with 768/640 active samples per line on the YUV-bus
CCIR 601 level compatible
4:2:2 and 4:1:1 YUV output formats in 8-bit
resolution
User programmable luminance peaking for aperture correction
Compatible with memory-based features (line-locked clock, square pixel)
Requires only one crystal (26.8 MHz) for all standards
Real time status information output (RTCO)
Brightness Contrast Saturation (BCS) control for the
YUV-bus
Negation of picture possible
One user programmable general purpose switch on an
output pin
Switchable between on-chip Clock Generation Circuit (CGC) and external CGC (SAA7197)
Power-on control
I
2
C-bus controlled.
2 APPLICATIONS
Desktop video
Multimedia
Digital television
Image processing
Video phone
Video picture grabbing.
3 GENERAL DESCRIPTION
The one chip front-end SAA7110; SAA7110A is a digital multistandard colour decoder (OCF1) on the basis of the DIG-TV2 system with two integrated Analog-to-Digital Converters (ADCs), a Clock Generation Circuit (CGC) and Brightness Contrast Saturation (BCS) control.
The CMOS circuit SAA7110; SAA7110A, analog front-end and digital video decoder, is a highly integrated circuit for desktop video applications. The decoder is based on the principle of line-locked clock decoding. It operates square-pixel frequencies to achieve correct aspect ratio. Monitor controls are provided to ensure best display. The circuit is I
2
C-bus controlled.
4 QUICK REFERENCE DATA
SYMBOL PARAMETER MIN. MAX. UNIT
V
DDA
analog supply voltage 4.75 5.25 V
V
DDD
digital supply voltage 4.5 5.5 V
T
amb
operating ambient temperature 0 70 °C
Page 4
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
5 ORDERING INFORMATION
6 SYSTEM VIEW
TYPE NUMBER
PACKAGE
NAME DESCRIPTION VERSION
SAA7110 PLCC68 plastic leaded chip carrier; 68 leads SOT188-2
SAA7110A PLCC68 plastic leaded chip carrier; 68 leads SOT188-2
Fig.1 System diagram.
handbook, full pagewidth
VIDEO
MEMORY
CONTROLLER
VMC
ONE
CHIP
FRONT-END
OCF1
VIDEO
FRAME
MEMORY
six
video inputs
PC ISA - BUS
YUV - BUS
I
2
C
clock
MGC821
Page 5
1995 Oct 18 5
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
7 BLOCK DIAGRAM
handbook, full pagewidth
FEIN (MUXC)
XTALO XTALI
RESET
Y7 to Y0
SCL
SDA
SA
GPSW (VBLK)
AP
SP
HS
RTCO
HSY HCLVS
SAA7110 SAA7110A
Y
Y
AD2 AD3
ANALOG
CONTROL
TEST
CONTROL
BLOCK
ANALOG
PROCESSING
CON
BYPASS
41 38
37
36
30
66
65
42
63
64
8
6
5
4
31 29 32
LLC2 CREF
UV7 to UV0
i.c.
7, 8, 9
AI42 AI41 AI32 AI31 AI22 AI21
11 13 15 17 19 21
39
MGC820
40
ODD (VL)
PLIN (HL)
CGCE
LFCO
LLC
V
SSA0
V
DDA0
2524
68, 52, 44, 34, 27
67, 51, 43, 35, 28
V
SSA2
to V
SSA4
V
DDA2
to V
DDA4
V
SS
V
DD
V
SS(S)
18, 14, 10 20, 16, 12 22
Y/CVBS
C/CVBS
1
2
3 26
33
AOUT
23
HREF
CHROMINANCE
CIRCUIT
LUMINANCE
CIRCUIT
SYNCHRONIZATION
CIRCUIT
CLOCK
GENERATION
CIRCUIT
BRIGHTNESS
CONTRAST
SATURATION
CONTROL
AND
OUTPUT
FORMATTER
POWER-ON
CONTROL
UV
Y
55 to 62
45 to 50,
53, 54
I
2
C-BUS
INTERFACE
I
2
C-BUS
CONTROL
CLOCKS
Fig.2 Block diagram.
Page 6
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
8 PINNING
SYMBOL PIN DESCRIPTION
SP 1 test pin input; (shift pin) connect to ground for normal operation AP 2 test pin input; (action pin) connect to ground for normal operation RTCO 3 Real Time Control Output. This pin is used to fit serially the increments of the HPLL and
FSC-PLL and information of the PAL or SECAM sequence.
SA 4 I
2
C-bus slave address select input. LOW: slave address = 9CH for write, 9DH for read;
HIGH = 9DH for write, 9FH for read.
SDA 5 I
2
C-bus serial data input/output
SCL 6 I
2
C-bus serial clock input i.c. 7 reserved pin; do not connect i.c. 8 reserved pin; do not connect i.c. 9 reserved pin; do not connect V
SSA4
10 ground for analog input 4 AI42 11 analog input 42 V
DDA4
12 supply voltage (+5 V) for analog input 4 AI41 13 analog input 41 V
SSA3
14 ground for analog input 3 AI32 15 analog input 32 V
DDA3
16 supply voltage (+5 V) for analog input 3 AI31 17 analog input 31 V
SSA2
18 ground for analog input 2 AI22 19 analog input 22 V
DDA2
20 supply voltage (+5 V) for analog input 2 AI21 21 analog input 21 V
SS(S)
22 substrate ground AOUT 23 analog test output; do not connect V
DDA0
24 supply voltage (+5 V) for internal CGC (Clock Generation Circuit) V
SSA0
25 ground for internal CGC LFCO 26 Line Frequency Control output; this is the analog clock control signal driving the external
CGC. The frequency is a multiple of the actual line frequency (nominally 7.375/6.13636 MHz). The signal has a triangular form with 4-bit accuracy.
V
DD
27 supply voltage (+5 V) V
SS
28 ground LLC 29 Line-Locked Clock input/output (CGCE = 1, output; CGCE = 0, input). This is the system
clock, its frequency is 1888 × f
h
for 50 Hz/625 lines per field systems and 1560 × fh for
60 Hz/525 lines per field systems; or variable input clock up to 32 MHz in input mode.
LLC2 30 Line-Locked Clock
1
⁄2output; f
LLC2
= 0.5 × f
LLC
(CGCE = 1, output; CGCE = 0, high
impedance).
CREF 31 Clock reference input/output (CGCE = 1, output; CGCE = 0, input). This is a clock qualifier
signal distributed by the internal or an external clock generator circuit (CGC). Using CREF all interfaces on the YUV-bus are able to generate a bus timing with identical phase.
Page 7
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
RESET 32 Reset active LOW input/output (CGCE = 1, output; CGCE = 0, input); sets the device into a
defined state. All data outputs are in high impedance state. The I2C-bus is reset (waiting for START condition). Using the external CGC, the LOW period must be maintained for at least 30 LLC clock cycles.
CGCE 33 CGC Enable active HIGH input (CGCE = 1, on-chip CGC active; CGCE = 0, external CGC
mode, use SAA7197).
V
DD
34 supply voltage (+5 V) V
SS
35 ground HCL 36 Horizontal Clamping input/output pulse (programmable via I
2
C-bus bit PULIO: PULIO = 1, output; PULIO = 0, input). This signal is used to indicate the black level clamping period for the analog input interface. The beginning and end of its HIGH period (only in the output mode) can be programmed via the I2C-bus registers 03H, 04H in 50 Hz mode and registers 16H, 17H in 60 Hz mode, active HIGH.
HSY 37 Horizontal Synchronization input/output indicator (programmable via I
2
C-bus bit PULIO: PULIO = 1, output; PULIO = 0, input). This signal is fed to the analog interface. The beginning and end of its HIGH period (only in the output mode) can be programmed via the I2C-bus registers 01H, 02H in 50 Hz mode and registers 14H, 15H in 60 Hz mode, active HIGH.
HS 38 Horizontal Synchronization output (programmable; the HIGH period is 128 LLC clock cycles).
The position of the positive slope is programmable in 8 LLC increments over a complete line (64 µs) via the I
2
C-bus register 05H in 50 Hz mode or register 18H in 60 Hz mode.
PLIN (HL) 39 PAL Identifier Not output; marks for demodulated PAL signals the inverted line (PLIN = LOW)
and a non-inverted line (PLIN = HIGH) and for demodulated SECAM the DR line (PLIN = LOW) and the DB line (PLIN = HIGH). Select PLIN function via I
2
C-bus bit RTSE = 0. (H-PLL locked output; a HIGH state indicates that the internal PLL has locked. Select HL function via I2C-bus bit RTSE = 1).
ODD (VL) 40 ODD/EVEN field identification output; a HIGH state indicates the odd field. Select ODD
function via I
2
C-bus bit RTSE = 0. (Vertical Locked output; a HIGH state indicates that the internal Vertical Noise Limiter (VNL) is in a locked state. Select VL function via I2C-bus bit RTSE = 1).
VS 41 Vertical Synchronization input/output (programmable via I
2
C-bus bit OEHV: OEHV = 1, output; OEHV = 0, input). This signal indicates the vertical synchronization with respect to the YUV output. The high period of this signal is approximately six lines if the VNL function is active. The positive slope contains the phase information for a deflection controller, for example the TDA9150. In input mode this signal is used to synchronize the vertical gain and clamp blanking stage, active HIGH.
HREF 42 Horizontal Reference output; this signal is used to indicate data on the digital YUV-bus. The
positive slope marks the beginning of a new active line. The HIGH period of HREF is either 768 Y samples or 640 Y samples long depending on the detected field frequency (50/60 Hz mode). HREF is used to synchronize data multiplexer/demultiplexers. HREF is also present during the vertical blanking interval.
V
SS
43 ground
V
DD
44 supply voltage (+5 V)
SYMBOL PIN DESCRIPTION
Page 8
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Y7 45
Upper 6 bits of the 8-bit luminance (Y) digital output. As part of the digital YUV-bus (data rate LLC/2), or A/D2(3) output (data rate LLC/2) selectable via I
2
C-bus bit SQPB = 1.
Y6 46 Y5 47 Y4 48 Y3 49 Y2 50 V
SS
51 ground
V
DD
52 supply voltage (+5 V)
Y1 53
Lower 2 bits of the 8-bit luminance (Y) digital output. As part of the digital YUV-bus (data rate LLC/2), or A/D2(3) output (data rate LLC/2) selectable via I
2
C-bus bit SQPB = 1.
Y0 54 UV7 55
8-bit digital UV (colour difference) output; multiplexed colour difference signal for U and V component of demodulated CVBS or chrominance signal. The format and multiplexing scheme can be selected via I
2
C-bus control. These signals are part of the digital YUV-bus
(data rate LLC/2), or A/D3(2) output (data rate LLC/2) selectable via I2C-bus bit SQPB = 1.
UV6 56 UV5 57 UV4 58 UV3 59 UV2 60 UV1 61 UV0 62 FEIN
(MUXC)
63 Fast Enable input (active LOW); this signal is used to control fast switching on the digital
YUV-bus. A high at this input forces the IC to set its Y and UV outputs to the high impedance state. To use this function set I2C-bus bits MS24 and MS34 and MUYC to LOW. (Multiplex Components input; control signal for the analog multiplexers for fast switching between locked Y/C signals or locked CVBS signals. FEIN automatically fixed to LOW (digital YUV-bus enabled), if one of the three MUXC functions are selected (MS24 or MS34 or MUYC = HIGH).
GPSW (VBLK)
64 General Purpose Switch output; the state of this signal is programmable via I
2
C-bus register 0Dh, bit 1. Select GPSW function via I2C-bus bit VBLKA = 0. (Vertical Blank test output; select VBLK via I2C-bus bit VBLKA = 1).
XTALO 65 Crystal oscillator output (to 26.8 MHz crystal); not used if TTL clock is used. XTALI 66 Crystal oscillator input (from 26.8 MHz crystal) or connection of external oscillator with TTL
compatible square wave clock signal.
V
SS
67 ground
V
DD
68 supply voltage (+5 V)
SYMBOL PIN DESCRIPTION
Page 9
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.3 Pin configuration.
handbook, full pagewidth
SAA7110
SAA7110A
MGC822
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45
Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0
UV7
UV6
UV5
UV4
UV3
UV2
44
27
28
29LLC
LLC2
CREF
RESET
CGCE
HS
VS
PLIN (HL)
ODD (VL)
HREF
HCL
HSY
30
31
32
33
34
35
36
37
38
39
40
41
42
43
9
8
7
6
5
4
3
2
1
68
67
66 XTALI
XTALO
SP
AP
RTCO
SA
i.c.
i.c.
i.c.
SDA
SCL
GPSW (VBLK)
FEIN (MUXC)
UV0
UV1
65
64
63
62
61
V
SSA4
AI42
V
DDA4
AI41
AI32
AI31
AI22
AI21
AOUT
V
SSA3
VDDV
SS
V
DDA3
V
SSA2
V
DDA2
V
SS(S)
V
DDA0
V
DD
V
SS
V
DD
V
SS
V
SS
V
DD
V
SS
V
DD
V
SSA0 LFCO
Page 10
1995 Oct 18 10
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
9 FUNCTIONAL DESCRIPTION
9.1 Analog input processing (see Fig.5)
The SAA7110; SAA7110A offers six analog signal inputs, two analog main channels with clamping circuit, analog amplifier, anti-alias filter and video CMOS ADC. A third analog channel also with clamping circuit, analog amplifier and anti-alias filter can be added or switched to both main channels directly before the ADCs.
9.2 Analog control circuits
The clamping control circuit controls the correct clamping of the analog input signals. The coupling capacitor is also used to store and filter the clamping voltage. The normal digital clamping level for luminance or CVBS signals is 64 and for chrominance signals is128.
The gain control circuits generate via I
2
C-bus the static gain levels for the three analog amplifiers or controls one of these amplifiers automatically via a built-in Automatic Gain Control (AGC). The AGC is used to amplify a CVBS or Y signal to the required signal amplitude, matched to the ADCs input voltage range.
The anti-alias filters are adapted to the clock frequency. The vertical blanking control circuit generates an I2C-bus programmable vertical blanking pulse. During the vertical blanking time gain and clamping control are frozen.
The fast switch control circuit is used for special applications.
9.2.1 C
LAMPING
The coupling capacitor is used as clamp capacitance for each input. An internal digital clamp comparator generates the information concerning clamp-up or clamp-down. The clamping levels for the two ADC channels are adjustable over the 8-bit range (1 to 254). Clamping time in normal use is set with the HCL pulse at the back porch of the video signal. The clamping pulse HCL is user adjustable.
9.2.2 G
AIN CONTROL (see Fig.4)
The luminance AGC can be used for every channel were luminance or CVBS is being received. AGC active time is the sync tip of the video signal. The sync tip pulse HSY is user adjustable. The AGC can be switched off and the gain for the three main input channels can be adjusted independently. Signal (white) peak control limits the gain at signal overshoots. The flow charts (see Figs 8 and 9) show more details of the AGC. The influence of supply voltage variation within the specified range is automatically eliminated by clamp and automatic gain control.
9.3 Chrominance processing (see Fig.6) The 8-bit chrominance signal passes the input interface,
the chrominance bandpass filter to eliminate DC components, and is finally fed to the multiplication inputs of a quadrature demodulator, where two subcarrier signals from the local oscillator DTO1 with 90 degrees phase shift are applied. The frequency is dependent on the present colour standard.
The multiplier operates as a quadrature demodulator for all PAL and NTSC signals; it operates as a frequency down mixer for SECAM signals.
The two multiplier output signals are converted to a serial UV data stream and applied to two low-pass filter stages, then to a gain controlled amplifier. A final multiplexed low-pass filter achieves, together with the preceding stages, the required bandwidth performance.
The PAL and NTSC originated signals are applied to a comb filter.
The signal originated from SECAM is fed through a Cloche filter (0 Hz centre frequency), a phase demodulator and a differentiator to obtain frequency demodulated colour difference signals. The SECAM signal is fed after de-emphasis to a cross-over switch, to provide both the serial transmitted colour difference signals. These signals are fed to the BCS control and finally to the output fomatter stage and to the output interface.
Fig.4 Automatic gain control range.
handbook, halfpage
analog input level
controlled
ADC input level
maximum
minimum
range 8.8 dB
0 dB
0 dB
MGC823
+2.8 dB
6 dB
Page 11
1995 Oct 18 11
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
9.4 Luminance processing (see Fig.7) The 8-bit luminance signal, a digital CVBS format or a
luminance format (S-VHS, HI8), is fed through a switchable prefilter. High frequency components are emphasized to compensate for loss. The following chrominance trap filter (fc= 4.43 or 3.58 MHz centre frequency selectable) eliminates most of the colour carrier signal, therefore, it must be bypassed for S-Video (S-VHS, HI8) signals.
The high frequency components of the luminance signal can be peaked (control for sharpness improvement via I
2
C-bus) in two bandpass filters with selectable transfer
characteristics. A coring circuit with selectable characteristics improves
the signal once more. This signal is then added to the original (unpeaked) signal. A switchable amplifier achieves common DC amplification, because the DC gains are different in both chrominance trap modes.
The improved luminance signal is fed via the variable delay to the BCS control and the output interface.
9.5 YUV-bus (digital outputs)
The 16-bit YUV-bus transfers digital data from the output interfaces to a feature box, or a field memory, a digital colour space converter (SAA 7192 DCSC) or a video enhancement and digital-to-analog processor (SAA7165 VEDA2). The outputs are controlled by an output enable chain (
FEIN on pin 63).
The YUV data rate equals LLC2. Timing is achieved by marking each second positive rising edge of the clock LLC in conjunction with CREF (clock reference).
The output signals Y7 to Y0 are the bits of the digital luminance signal. The output signals UV7 to UV0 are the bits of multiplexed colour difference signals (BY) and (RY). The frame in the format tables is the time, required to transfer a full set of samples. In the event of 4 :2:2 format two luminance samples are transmitted in comparison to one U and one V sample within the frame. The time frames are controlled by the HREF signal.
Fast enable is achieved by setting inputFEIN to LOW. The signal is used to control fast switching on the digital YUV-bus. HIGH on this pin forces the Y and UV outputs to a high-impedance state.
9.6 Synchronization (see Fig.7) The pre-filtered luminance signal is fed to the
synchronization stage. It's bandwidth is reduced to 1 MHz in a low-pass filter.
The synchronization pulses are sliced and fed to the phase detectors where they are compared with the sub-divided clock frequency. The resulting output signal is applied to the loop filter to accumulate all phase deviations. Adjustable output signals HCL and HSY are generated in accordance with analog front end requirements. The output signals HS, VS, and PLIN are locked to the timing reference, guaranteed between the input signal and the HREF signal, as further improvements to the circuit may change the total processing delay. It is therefore not recommended to use them for applications which require absolute timing accuracy to the input signals. The loop filter signal drives an oscillator to generate the line frequency control signal LFCO.
9.7 Clock generation circuit
The internal CGC generates all clock signals required for the one chip front-end. The output signal LFCO is a digital-to-analog converted signal provided by the horizontal PLL. It is the multiple of the line frequency (7.38 MHz = 472 × f
h
in 50 Hz systems and
6.14 MHz = 360 × fh in 60 Hz systems). Internally the LFCO signal is multiplied by a factor of 2 or 4 in the PLL circuit (including phase detector, loop filtering, VCO and frequency divider) to obtain the LLC and LLC2 output clock signals. The rectangular output clocks have a 50% duty factor.
It is also possible to operate the OCF1 with an external CGC (SAA7197) providing the signals LLC and CREF. The selection of the internal/external CGC will be controlled by the CGCE input signal.
9.8 Power-on reset
Power-on reset is activated at power-on (using only internal CGC), when the supply voltage decreases below
3.5 V. The indicator output
RESET is LOW for a time. The RESET signal can be applied to reset other circuits of the digital TV system.
9.9 RTCO output
The real time control and status output signal contains serial information about actual system clock, subcarrier frequency and PAL/SECAM sequence. The signal can be used for various applications in external circuits, for example, in a digital encoder to achieve clean encoding.
Page 12
1995 Oct 18 12
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
handbook, full pagewidth
ANALOG CONTROL
MGC824
SOURCE
SWITCH
CLAMP
CIRCUIT
ANALOG
AMPLIFIER
ANALOG
AMPLIFIER
ANALOG
AMPLIFIER
GAIN
CONTROL
CLAMP
CONTROL
CROSS
MULTIPLEXER
ANTI-ALIAS
FILTER
BYPASS SWITCH
SOURCE
SWITCH
CLAMP
CIRCUIT
ANTI-ALIAS
FILTER
BYPASS SWITCH
FAST
SWITCH
ADDER
FAST
SWITCH
ADDER
FAST
SWITCH
CONTROL
VERTICAL BLANKING CONTROL
SOURCE
SWITCH
CLAMP
CIRCUIT
ANTI-ALIAS
FILTER
ANTI-ALIAS
CONTROL
BYPASS SWITCH
TEST
SELECTOR
FUSE
FUSE
FUSE
REFS4AINS4
AIND4
REFS3
REFS2
AINS3 AIND3
AINS2 AIND2
CLTS CLS2 CLS3 CLS4
AOSL
ADC
ADC
YSEL CSEL
TWO2 TWO3
V
DDA2
to V
DDA4
V
SSA2
to V
SSA4
AI42 AI41
AI32 AI31
AI22 AI21
i.c. i.c. i.c.
V
SS(S)
11
20, 16, 12
18, 14, 10
13
15 17
19 21
9 8 7
22
CLL2n CLL3n
WIPA GLIM
HOLD WIPE SBOT GASL
GACO
GAI2 GAI3 GAI4
IWIP IGAI
VBPS VBPR
VBCO
MUYC
MS24 MS34
MX24 MX34 MUD1 MUD2
WISL
IVAL WVAL GUDL WIRS
GAS2 GAS3 GAD2 GAD3 WRSE
23
AOUT
Fig.5 Analog input processing and analog control part.
Page 13
1995 Oct 18 13
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
handbook, full pagewidth
INPUT
INTERFACE
CHROMINANCE
BANDPASS
OUTPUT
FORMATTER
AND INTERFACE
QUADRATURE
DEMODULATOR
LOW-PASS LOW-PASS
GAIN
CONTROL
CLOCH FILTER
LOOPFILTER
PI2
LOOP FILTER
PI1
SEQUENCE
PROCESSOR
PHASE
DEMODULATOR
AMPLITUDE DETECTOR
BRIGHTNESS
CONTRAST
SATURATION
CONTROL
COMB FILTERS
AND SECAM
RECOMBINATION
BURST GATE
ACCUMULATOR
DISCRETE TIME
OSCILLATOR
(DTO1)
AND DIVIDER
STANDARD
CONTROL
BRIG CONT SATN
DIFFERENTIATOR
DE-EMPHASIS
SXCRCODE
BYPS CHRS
COLO
SECS
CHCV CKTQ
CKTS
LFIS
SEQA
SESE PLSE
ALTD
V
DD
V
SS
CHROMINANCE CIRCUIT
68, 52, 44,
34, 27
67, 51, 43,
35, 28
63
42
OFTS CHSB OEYC OEHV
SQPB HRMV
HRFS
SEQA
HUEC
FEIN
(MUXC)
HREF
UV7 to UV0 Y7 to Y0
45 to 50,
53, 54
MGC825
55 to
62
Fig.6 Multi-standard decoder part.
Page 14
1995 Oct 18 14
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
handbook, full pagewidth
PREFILTER
PREFILTER
SYNC
I2C-BUS
INTERFACE
I
2
C-BUS
CONTROL
SYNC
SLICER
TEST
CONTROL
BLOCK
CHROMINANCE
TRAP
PHASE
DETECTOR
FINE
PHASE
DETECTOR
COARSE
LOOP FILTER
2
DELAY
ADJUSTMENT
LINE-LOCKED
CLOCK
GENERATOR
DISCRETE TIME
OSCILLATOR
(DTO2)
CRYSTAL
CLOCK
GENERATOR
VARIABLE
BANDPASS
FILTER
CORING
WEIGHTING
AND
ADDING STAGE
VARIABLE
DELAY
POWER-ON
CONTROL
PREF BYPS CORI APER YDEL
CLOCK(3 to 0)
BFBY PREF BPSS
MATCHING AMPLIFIER
DAC6
CLOCK
GENERATION
CIRCUIT
DAC4
COUNTER
VERTICAL
PROCESSOR
FIDT
HLCK STTC
VBLKA
SSTB
GPSW
VNOI FSEI AUFD
HS6B HS6S HC6B HC6S PULIO OEHV SCEN
IDEL HSYB HSYS HCLB HCLS HPHI HP6I
SYNCHRONIZATION CIRCUIT
LUMINANCE CIRCUIT
HLCK VTRC
HPLL HLCK
AP SP
SA SCL SDA
36
64
456
4137 38 39 40 25 24 333
HCL HS VS
CGCEODD (VL)
V
SSA0
V
DDA0
RTCO
HSY
PLIN (HL)
26
65
66
30
29
31
32
RESET
CREF LLC LLC2
XTALI XTALO
LFCO
GPSW (VBLK)
2 1
MGC826
Fig.7 Luminance and synchronization part.
Page 15
1995 Oct 18 15
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
10 GAIN CHARTS
Fig.8 Clamp and gain flow chart.
CLAU = clamp up. VBLK = vertical blanking pulse. WIPE = white peak level (adjustable). SBOT = sync bottom level (adjustable). CLL = clamp level (adjustable). CLAA = clamp active. HSY = horizontal sync pulse. HCL = horizontal clamp pulse.
handbook, full pagewidth
ADC
ANALOG IN
VBLK
NO BLANKING ACTIVE
CLAA = 1
HCL
<
CCL
HSY
>
SBOT
> WIPE
CLAA = 0
CLAU = 1 CLAU = 0
10 10
MGC827
+ CLAMP CLAMP + GAIN GAIN GAIN SLOW + GAINNO CLAMP
10
10
10
10
<− CLAMP GAIN −>
Page 16
1995 Oct 18 16
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
handbook, full pagewidth
analog input
amplifier
anti-alias amplifier
ADC8
decoder input
X
HSY
WRSE
>WIPE
>WIPE
<SBOT<SBOT
WIRS
X = 1X = 0
IVAL
+IVAL WVAL
+/ 0
+4/F
+4/L
gain accumulator (20 bits)
actual gain value 8-bit (AGV) [3/+6 dB]
X
STOP
HSY
Y
update
FGV
MGC828
AGV
gain value 8-bit
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
1
0
1
0
VBLK
1
0
no action
MSB
6
LSB
2
*IWIP *IGAI *IWIP
Fig.9 Luminance AGC flow chart.
X = system variable (start with logic 0). Y = IAGV-FGVI > GUDL. VBLK = vertical blanking pulse. HSY = horizontal sync pulse. SBOT = sync bottom level (adjustable). WIPE = white peak level (adjustable). IVAL = integration value gain (adjustable). WVAL = integration value WIPE (adjustable). IGAI = integration factor gain (adjustable). IWIP = integration factor WIPE (adjustable). AGV = actual gain value. FGV = frozen gain value. GUDL = gain update level (adjustable). WRSE = white peak reset enable. WIRS = white peak reset select. L = line. F = field.
Page 17
1995 Oct 18 17
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
11 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134); all ground pins and all supply pins connected together.
Note
1. Compare with typical total power consumption in Chapter “Characteristics”.
2. Equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor.
12 CHARACTERISTICS
V
DDD
=5V; V
DDA
=5V; T
amb
=25°C; unless otherwise specified.
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DDA
analog supply voltage 0.5 +7.0 V
V
DDD
digital supply voltage 0.5 +7.0 V
V
I(A)
analog input voltage 0.5 +7.0 V
V
I(D)
digital input voltage 0.5 +7.0 V
V
diff
voltage difference between V
SSAall
and V
SSall
100 mV
T
stg
storage temperature 65 +150 °C
T
amb
operating ambient temperature 0 70 °C
T
amb(bias)
operating ambient temperature under bias 10 +80 °C
P
tot
total power dissipation V
DDA=VDDD
= 7 V; note 1 2.5 W
V
esd
electrostatic discharge all pins note 2 2000 +2000 V
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Supplies
V
DDA
analog supply voltage 4.75 5.0 5.25 V
V
DDD
digital supply voltage 4.5 5.0 5.5 V
I
DDA(tot)
total analog supply current −−150 mA
I
DDD(tot)
total digital supply current −−250 mA
P
tot
total power dissipation 1.2 1.7 W
Analog part
I
clamp
clamping current VI= 1.25 V DC 2 +2 µA
V
i(p-p)
input voltage (peak-to-peak value), AC coupling required
C
couple
= 10 nF 0.5 1.0 1.38 V
Z
i
input impedance clamping current off 200 −− k
C
i
input capacitance −−10 pF
α
ct
channel crosstalk fi< 5 MHz −−50 dB
Analog-to-digital converters
B analog bandwidth at 3dB 15 MHz φ
diff
differential phase amplifier + AAF = bypass 2 deg
G
diff
differential gain amplifier + AAF = bypass 2 %
f
LLC
ADC clock rate 11 16 MHz
DLE DC differential linearity error
1
2
LSB
ILE DC integral linearity error 1 LSB
Page 18
1995 Oct 18 18
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Digital inputs
V
IL
LOW level input voltage SDA and SCL
0.5 +1.5 V
V
IH
HIGH level input voltage SDA and SCL
3.0 VDD+ 0.5 V
V
IL(clk)
LOW level input voltage for clocks
0.5 +0.6 V
V
IH(clk)
HIGH level input voltage for clocks
2.4 VDD+ 0.5 V
V
IH(XTALI)
HIGH level input voltage XTALI 3.0 VDD+ 0.5 V
V
IL(n)
LOW level input voltage all other inputs
0.5 +0.8 V
V
IH(n)
HIGH level input voltage all other inputs
2.0 VDD+ 0.5 V
I
LI
input leakage current −−10 µA
C
i(clk)
input capacitance for clocks −−10 pF
C
i(I/O)
input capacitance I/Os at high impedance −−8pF
C
i(n)
input capacitance all other inputs −−8pF
Digital outputs
V
LFCO
LFCO output voltage (peak-to-peak value)
note 1 1.4 2.6 V
V
OL
LOW level output voltage note 2 0 0.6 V
V
OH
HIGH level output voltage note 2 2.4 V
DD
V
V
OL(clk)
LOW level output voltage for clocks
0.5 +0.6 V
V
OH(clk)
HIGH level output voltage for clocks
2.6 VDD+ 0.5 V
Clock input timing (LLC)
T
cy
cycle time 31 45 ns
δ duty factor for t
LLCH/Tcy
40 60 %
t
r
rise time Vi= 0.6 to 2.4 V −−5ns
t
f
fall time Vi= 2.4 to 0.6 V −−5ns Control and CREF input timing (note 3) t
SU;DAT
input data set-up time 11 −− ns t
HD;DAT
input data hold time 3 −− ns t
HD;FEIN
input data hold time for FEIN 3 −− ns t
HD;OTHER
input data hold time all other
inputs
note 3 6 −− ns
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Page 19
1995 Oct 18 19
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Data and control output timing (note 4) C
L(data)
output load capacitance
(data, HREF and VS)
15 50 pF
C
L(control)
output load capacitance (control) 7.5 25 pF t
HD;DAT
output data hold time CL=15pF 13 −− ns t
PD(data)
propagation delay from negative
edge of LLC (data, HREF and
VS)
CL=50pF −−29 ns
t
PD(control)
propagation delay from negative
edge of LLC (control)
CL=25pF −−29 ns
t
PD(Z))
propagation delay from negative
edge of LLC (to 3-state)
note 5 −−15 ns
Clock output timing (LLC and LLC2)
C
L(LLC)
output load capacitance 15 40 pF T
cy
cycle time LLC 31.5 45 ns
LLC2 63 90 ns
δ duty factors for t
LLCH/tLLC
and
t
LLC2H/tLLC2
40 60 %
t
r
rise time 0.6 to 2.6 V −−5ns t
f
fall time 2.6 to 0.6 V −−5ns t
d
delay time LLC output to LLC2
output
Vi= 1.5 V; C
LLC/LLC2
= 40 pF; note 6
−−8ns
Data qualifier output timing (CREF)
t
HD;CREF
output hold time CL=15pF 4 −− ns t
PD;CREF
propagation delay from positive
edge of LLC
CL=40pF −−20 ns
Horizontal PLL
f
Hnom
nominal line frequency 50 Hz field 15625 Hz
60 Hz field 15734 Hz
fH/f
Hnom
permissible static deviation 50 Hz field −−5.6 %
60 Hz field −−6.7 %
Subcarrier PLL
f
Hnom
nominal subcarrier frequency PAL 4433618 Hz
NTSC 3579545 Hz
f
H/fHnom
lock-in range 400 −− Hz
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Page 20
1995 Oct 18 20
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Notes
1. The LFCO output level must be measured with a load circuit of 10 k in parallel with 15 pF.
2. The levels must be measured with load circuits, the loads depend on the type of output stage. Control outputs (except HREF and VS); 1.2 k at 3 V (TTL load); CL= 25 pF: data outputs (plus HREF and VS); 1.2 k at 3 V (TTL load); CL=50pF.
3. Other control input signals are CGCE, VS, SA, HCL and HSY.
4. Data output signals are YUV (15 to 0). Control output signals are HREF, VS, HS, HSY, HCL, RTCO, PLIN (HL), ODD (VL) and GPSW0 (VBLK). The effects of rise and fall times are included in the calculation of t
HD;DAT
, tPD and
t
PDZ
. Timings and levels refer to drawings and conditions illustrated in Fig.10.
5. The minimum propagation delay from 3-state to data active related to falling edge of LLC is 0 ns.
6. LLC2 is not active while CGCE = 0.
7. Philips catalogue number 9922 520 30004.
Table 1 Processing delay
Crystal oscillator
f
n
nominal frequency 3rd harmonic 26.8 MHz
f/f
n
permissible frequency deviation 50 × 10−6− +50 × 10
6
T/f
n
permissible frequency deviation with temperature
20 × 106 +20 × 10
6
CRYSTAL SPECIFICATION (X1); note 7 T
amb
operating ambient temperature 0 70 °C
C
L
load capacitance 8 −− pF
R
s
series resonance resistance 50 80 C1 motional capacitance 1.1 ±20% fF C0 parallel capacitance 3.5 ±20% pF
FUNCTION
TYPICAL ANALOG DELAY
AI21 TO ADCIN (AOUT) (ns)
DIGITAL DELAY
ADCIN (AOUT) TO YUVOUT
(1/LLC)
(YDEL = 0; CAD2/3 = 1)
Without amplifier or anti-alias filter 10
248
With amplifier, without anti-alias filter 30 With amplifier plus anti-alias filter (50 Hz) 30 + 40 With amplifier plus anti-alias filter (60 Hz) 30 + 50
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Page 21
1995 Oct 18 21
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
13 TIMING
Fig.10 Clock/data timing.
handbook, full pagewidth
T
cy
T
cy
t
f
t
SU;DAT
t
r
t
LLCH
t
SU;DAT
t
HD;DAT
t
HD;DAT
t
HD;DAT
t
OHD
t
OHD
t
PD
t
PDZ
t
PD
t
OHD
t
OHD
t
LLCL
t
LLCH
t
f
t
dLLC2
t
r
CLOCK INPUT LLC
INPUTS CONTROL
INPUT CREF
OUTPUTS YUV, HREF, VS AND HS
OUTPUTS YUV (to 3-state)
CLOCK OUTPUT LLC
OUTPUT CREF
CLOCK OUTPUT LLC2
2.4 V
1.5 V
0.6 V
2.6 V
1.5 V
0.6 V
2.6 V
1.5 V
0.6 V
2.0 V
0.8 V
2.0 V
0.8 V
2.4 V
0.6 V
2.4 V
0.6 V
MGC829
Page 22
1995 Oct 18 22
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.11 Horizontal timing.
(1) See Table 1. HRMV = 1 and HRFS = 0.
handbook, full pagewidth
0
+117
118
+97
97
MGC830
CVBS
HSY
HCL
62 × 2/LLC
30 × 2/LLC
Y output
HREF (50 Hz)
18 × 2/LLC
768 × 2/LLC
176 × 2/LLC
18 × 2/LLC
140 × 2/LLC
640 × 2/LLC
64 × 2/LLC
burst
PLIN (50 Hz)
processing delay CVBS−>YUV
0
+191
64
0
4/LLC
HREF (60 Hz)
HS (60 Hz)
HS (50 Hz)
programming range
(step size: 8/LLC)
+127
128
HCL
programming range
(step size: 2/LLC)
HSY
programming range
(step size: 2/LLC)
HS (60 Hz)
programming range
(step size: 8/LLC)
HS (50 Hz)
94 × 2/LLC
64 × 2/LLC
(1)
Page 23
1995 Oct 18 23
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.12 HREF timing.
handbook, full pagewidth
01234
U0 V0 U1 V1 U2
END OF ACTIVE LINE
START OF ACTIVE LINE
767766765764763
U766 V766V764U764V762
639638637636635
U638 V638
MGC831
V636U636V634
ONE BUS CYCLE
LL27
CREF
HREF
Yn
Yn (50 Hz) UVn
Yn (60 Hz) UVn
UVn
HREF
INTERNAL BUS CLOCK
Page 24
1995 Oct 18 24
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.13 Vertical timing.
(1) Nominal input signal 50 Hz. (2) Nominal input signal 60 Hz. HRMV = 1 and HRFS = 0.
handbook, full pagewidth
123456789625
input CVBS
HREF
a: 1st field
(1)
2 × 2/LLC
533 × 2/LLC
ODD
VS
314 315 316 317 318 319 320 321313
input CVBS
HREF
b: 2nd field
(1)
2 × 2/LLC
61 × 2/LLC
ODD
VS
123456789525
input CVBS
HREF
a: 1st field
(2)
2 × 2/LLC
441 × 2/LLC
ODD
VS
264 265 266 267 268 269 270 271263
input CVBS
HREF
b: 2nd field
(2)
2 × 2/LLC
51 × 2/LLC
ODD
VS
MGC832
Page 25
1995 Oct 18 25
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.14 FEIN timing.
handbook, full pagewidth
LLC
CREF
HREF
FEIN
YUV
t
SU;DAT
t
HD;DAT
MGC833
t
OHD
t
PD
from 3-stateto 3-state
Table 2 Digital output control
OEYC FEIN YUV (15 : 0)
00 Z 1 0 active X1 Z
Fig.15 Real time control output timing.
RTCO sequence is generated in LLC/4. For transmission LLC/2 timing is required.
handbook, full pagewidth
TIME SLOT:
BIT NO.:
transmitted once per line
22
1
21
1920
15
1617
18
7
8
9
11 1012
13
14
SEQUENCE
19
0 67
4
3
6
452
3
0
14
45
RESERVED
14
FSCPLL-INCR.
MGC834
276
63
0
1
RESERVED
128
HIGH
LOW
13
HPLL-INCR.
RESERVED
1
(50 Hz SYSTEMS)
188
(60 Hz SYSTEMS)
Page 26
1995 Oct 18 26
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
14 OUTPUT FORMATS Table 3 Output formats
BUS
SIGNAL
PIXEL BYTE SEQUENCE 4:1:1 FORMAT PIXEL BYTE SEQUENCE 4:2:2 FORMAT
Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y6 Y6 Y7 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0 UV7 U7 U5 U3 U1 U7 U5 U3 U1 U7 V7 U7 V7 U7 V7 UV6 U6 U4 U2 U0 U6 U4 U2 U0 U6 V6 U6 V6 U6 V6 UV5 V7 V5 V3 V1 V7 V5 V3 V1 U5 V5 U5 V5 U5 V5 UV4 V6 V4 V2 V0 V6 V4 V2 V0 U4 V4 U4 V4 U4 V4 UV3 00000000U3V3U3V3U3V3 UV2 00000000U2V2U2V2U2V2 UV1 00000000U1V1U1V1U1V1 UV0 00000000U0V0U0V0U0V0 Y frame 01234567 0 1 2345 UV frame 0 4 0 2 4
data rate sample frequency data rate sample frequency
Y
LLC2
LLC2
LLC2
LLC2 U LLC4 LLC8 V LLC4 LLC8
Page 27
1995 Oct 18 27
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.16 YUV output signal range.
CCIR 601 digital levels.
handbook, full pagewidth
LUMINANCE 100%
+255 +235
+128
+16
0
U-COMPONENT
+255 +240
+212 +212
+128
+16
+44
0
blue 100% blue 75%
yellow 75% yellow 100%
V-COMPONENT
+255 +240
+128
+16
+44
0
red 100% red 75%
cyan 75%
cyan 100%
MGC835
a. Y output range. b. U output range (BY). c. Y output range (RY).
Fig.17 Oscillator application.
handbook, full pagewidth
XTALO
XTALI
65
66
MGC836
XTALO
L = 10 µH +/-20%
C = 10 pF
C = 10 pF
C = 1 nF
quartz (3rd harmonic)
26.8 MHz
XTALI
65
66
SAA7110
SAA7110A
SAA7110
SAA7110A
a. with quartz crystal. b. with external clock.
Page 28
1995 Oct 18 28
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
15 CLOCK SYSTEM
15.1 Clock generation circuit
The internal CGC generates the system clocks LLC, LLC2 and the clock reference signal CREF. The internally generated LFCO (triangular waveform) is multiplied by four via the analog PLL (including phase detector, loop filter, VCO and frequency divider). The rectangular output signals have a 50% duty factor.
Table 4 System clock frequencies
CLOCK
FREQUENCY (MHz)
50 Hz 60 Hz
XTAL 26.8 26.8
LLC 29.5 24.545454 LLC2 14.75 12.272727 LLC4 7.375 6.136136 LLC8 3.6875 3.068181
Fig.18 Clock generation circuit.
handbook, full pagewidth
BAND PASS
FC = LLC/4
ZERO
CROSS
DETECTION
PHASE
DETECTION
LOOP
FILTER
DIVIDER
1/2
DIVIDER
1/2
OSCILLATOR
DELAY CREF
MGC837
LLC2
LLC
LFCO
Page 29
1995 Oct 18 29
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
15.2 Power-on control
Power-on reset is activated at power-on (using only internal CGC) and if the supply voltage falls below 3.5 V. TheRESET signal can be applied to reset other circuits of the digital TV system.
Table 5 Power-on control sequence
INTERNAL POWER-ON CONTROL SEQUENCE
PIN OUTPUT STATUS FUNCTION
Directly after power-on asynchronous reset
Y7 to Y0, UV7 to UV0, RTCO, PLIN, ODD, GPSW, SDA, HREF, HS, VS, HCL and HSY in high impedance state
LLC, LLC2 and CREF in HIGH state
direct switching to high impedance (outputs) or input mode (I/Os) for 20 to 200 ms
Start synchronous I
2
C-bus reset sequence
LLC, LLC2 and CREF active starting I2C-bus reset sequence
Status after I
2
C-bus reset Y7 to Y0, UV7 to UV0, HREF and HS held
in high impedance state VS, HCL and HSY held in input function
mode
SA0DH = 7DH (VTRC = 0, RTSE = 1, HRMV = 1, SSTB = 0, SECS = 1)
SA0EH = 00H (HPLL = 0, OEHV = 0, OEYC = 0, CHRS = 0, GPSW = 0)
SA31H = 00H (AOSL1:0=00, WIRS = 0, WRSE = 0, SQPB = 0, VBLKA = 0, PULIO = 0)
Status after power-on control sequence
RTCO, PLIN, ODD, GPSW and SDA active after power-on (reset sequence) a complete
I
2
C-bus transmission is required
Fig.19 Power-on control circuit.
handbook, full pagewidth
POC V
DD
POC
LOGIC
ANALOG
POC V
DD
DIGITAL
MGC838
DELAY
CONTROL
CLOCK I/O
CONTROL
CLOCK
OUTPUT
ACTIVE
CONTROL
CGCE
LLC
RESET
Page 30
1995 Oct 18 30
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16 I2C-BUS DESCRIPTION
16.1 I
2
C-bus format
Table 6 Description of I
2
C-bus format
Note
1. If more than one byte DATA is transmitted then the auto-increment of the subaddress is performed.
S SLAVE ADDRESS ACK SUBADDRESS ACK DATA (n bytes) ACK P
CODE DESCRIPTION
S START condition Slave address 1001 110Xb (SA = LOW) or 1001 111Xb (SA = HIGH) ACK acknowledge generated by the slave Subaddress subaddress byte, see Table 7 Data data byte, see Table 7; note 1 P STOP condition X read/write control bit:
X = 0, order to write (the circuit is slave receiver) X = 1, order to read (the circuit is slave transmitter)
Slave address 9CH for write, 9DH for read (SA = 0)
9EH for write, 9FH for read (SA = 1
Subaddress 00H to 19H decoder part
1AH to 1FH reserved 20H to 34H front-end part
Page 31
1995 Oct 18 31
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.2 I2C-bus receiver/transmitter tables Table 7 OCF1
RECEIVER
Slave address 10011100b, 9CH (SA = 0) and 10011110b, 9EH (SA = 1)
REGISTER FUNCTION
SUB
ADD
(1)
DATA BYTE
(2)
D7 D6 D5 D4 D3 D2 D1 D0
DMSD-SQP + BSC slave receiver (SU 00H to 19H)
Increment delay 00 007
IDEL7
006
IDEL6
005
IDEL5
004
IDEL4
003
IDEL3
002
IDEL2
001
IDEL1
000
IDEL0
HSY begin 50 Hz 01 015
HSYB7
014
HSYB6
013
HSYB5
012
HSYB4
011
HSYB3
010
HSYB2
009
HSYB1
008
HSYB0
HSY stop 50 Hz 02 023
HSYS7
022
HSYS6
021
HSYS5
020
HSYS4
019
HSYS3
018
HSYS2
017
HSYS1
016
HSYS0
HCL begin 50 Hz 03 031
HCLB7
030
HCLB6
029
HCLB5
028
HCLB4
027
HCLB3
026
HCLB2
025
HCLB1
024
HCLB0
HCL stop 50 Hz 04 039
HCLS7
038
HCLS6
037
HCLS5
036
HCLS4
035
HCLS3
034
HCLS2
033
HCLS1
032
HCLS0
HSY after PHI1 50 Hz 05 047
HPHI7
046
HPHI6
045
HPHI5
044
HPHI4
043
HPHI3
042
HPHI2
041
HPHI1
040
HPHI0
Luminance control 06 055
BYPS
054
PREF
053
BPSS1
052
BPSS0
051
CORI1
050
CORI0
049
APER1
048
APER0
Hue control 07 063
HUEC7
062
HUEC6
061
HUEC5
060
HUEC4
059
HUEC3
058
HUEC2
057
HUEC1
056
HUEC0
Colour killer threshold QUAM (PAL/NTSC)
08 071
CKTQ4
070
CKTQ3
069
CKTQ2
068
CKTQ1
067
CKTQ0
066
XXX
065
XXX
064
XXX
Colour killer threshold SECAM
09 079
CKTS4
078
CKTS3
077
CKTS2
076
CKTS1
075
CKTS0
074
XXX
073
XXX
072
XXX
PAL switch sensitivity 0A 087
PLSE7
086
PLSE6
085
PLSE5
084
PLSE4
083
PLSE3
082
PLSE2
081
PLSE1
080
PLSE0
SECAM switch sensitivity 0B 095
SESE7
094
SESE6
093
SESE5
092
SESE4
091
SESE3
090
SESE2
089
SESE1
088
SESE0
Gain control chrominance 0C 103
COLO
102
LFIS1
101
LFIS0
100
XXX
099
XXX
098
XXX
097
XXX
096
XXX
Standard/mode control 0D 111
VTRC
110
XXX
109
XXX
108
XXX
107
RTSE
106
HRMV
105
SSTB
104
SECS
I/O and clock control 0E 119
HPLL
118
XXX
117
XXX
116
OEHV
115
OEYC
114
CHRS
113
XXX
112
GPSW
Control #1 0F 127
AUFD
126
FSEL
125
SXCR
124
SCEN
123
XXX
122
YDEL2
121
YDEL1
120
YDEL0
Control #2 10 135
XXX
134
XXX
133
XXX
132
XXX
131
XXX
130
HRFS
129
VNOI1
128
VNOI0
Chrominance gain reference 11 143
CHCV7
142
CHCV6
141
CHCV5
140
CHCV4
139
CHCV3
138
CHCV2
137
CHCV1
136
CHCV0
Chrominance saturation 12 151
SATN7
150
SATN6
149
SATN5
148
SATN4
147
SATN3
146
SATN2
145
SATN1
144
SATN0
Page 32
1995 Oct 18 32
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Luminance contrast 13 159
CONT7
158
CONT6
157
CONT5
156
CONT4
155
CONT3
154
CONT2
153
CONT1
152
CONT0
HSY begin 60 Hz 14 167
HS6B7
166
HS6B6
165
HS6B5
164
HS6B4
163
HS6B3
162
HS6B2
161
HS6B1
160
HS6B0
HSY stop 60 Hz 15 175
HS6S7
174
HS6S6
173
HS6S5
172
HS6S4
171
HS6B3
170
HS6S2
169
HS6S1
168
HS6S0
HCL begin 60 Hz 16 183
HC6B7
182
HC6B6
181
HC6B5
180
HCLB4
179
HC6B3
178
HC6B2
177
HC6B1
176
HC6B0
HCL stop 60 Hz 17 191
HC6S7
190
HC6S6
189
HC6S5
188
HC6S4
187
HC6S3
186
HC6S2
185
HC6S1
184
HC6S0
HSY after PHI1 60 Hz 18 199
HP6I7
198
HP6I6
197
HP6I5
196
HP6I4
195
HP6I3
194
HP6I2
193
HP6I1
192
HP6I0
Luminance brightness 19 207
BRIG7
206
BRIG6
205
BRIG5
204
BRIG4
203
BRIG3
202
BRIG2
201
BRIG1
200
BRIG0
DUAD slave receiver (SU 20H to 32H)
Analog control #1 20 007
AIND4
006
AIND3
005
AIND2
004
FUSE1
003
FUSE0
002
AINS4
001
AINS3
000
AINS2
Analog control #2 21 015
VBCO
014
MS34
013
MX241
012
MX240
011
MS24
010
REFS4
009
REFS3
008
REFS2
Mixer control #1 22 023
GACO1
022
GACO0
021
CSEL
020
YSEL
019
MUYC
018
CLTS
017
MX341
016
MX340
Clamping level control 21 23 031
CLL217
030
CLL216
029
CLL215
028
CLL214
027
CLL213
026
CLL212
025
CLL211
024
CLL210
Clamping level control 22 24 039
CLL227
038
CLL226
037
CLL225
036
CLL224
035
CLL223
034
CLL222
033
CLL221
032
CLL220
Clamping level control 31 25 047
CLL317
046
CLL316
045
CLL315
044
CLL314
043
CLL313
042
CLL312
041
CLL311
040
CLL310
Clamping level control 32 26 055
CLL327
054
CLL326
053
CLL325
052
CLL324
051
CLL323
050
CLL322
049
CLL321
048
CLL320
Gain control analog #1 27 063
HOLD
062
GASL
061
GAI25
060
GAI24
059
GAI23
058
GAI22
057
GAI21
056
GAI20
White peak control 28 071
WIPE7
070
WIPE6
069
WIPE5
068
WIPE4
067
WIPE3
066
WIPE2
065
WIPE1
064
WIPE0
Sync bottom control 29 079
SBOT7
078
SBOT6
077
SBOT5
076
SBOT4
075
SBOT3
074
SBOT2
073
SBOT1
072
SBOT0
Gain control analog #2 2A 087
IWIP1
086
IWIP0
085
GAI35
084
GAI34
083
GAI33
082
GAI32
081
GAI31
080
GAI30
Gain control analog #3 2B 095
IGAI1
094
IGAI0
093
GAI45
092
GAI44
091
GAI43
090
GAI42
089
GAI41
088
GAI40
Mixer control #2 2C 103
CLS4
102
XXX
101
CLS3
100
CLS2
099
XXX
098
XXX
097
TWO3
096
TWO2
Integration value gain 2D 111
IVAL7
110
IVAL6
109
IVAL5
108
IVAL4
107
IVAL3
106
IVAL2
105
IVAL1
104
IVAL0
REGISTER FUNCTION
SUB
ADD
(1)
DATA BYTE
(2)
D7 D6 D5 D4 D3 D2 D1 D0
Page 33
1995 Oct 18 33
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Notes
1. Subaddresses to be reset: 0D to 7DH, 0E and 31 to 00H after RESET = 0 (CGCE = 0) or power-on (CGCE = 1).
2. All reserved XXX-bits must be set to LOW, XX-bit is don’t care.
3. AFCCS bit does not exist in SAA7110A due to advanced anti-alias filter characteristic, don’t care (XX).
Table 8 OCF1
TRANSMITTER: Byte number 0 (transmitted if SSTB = 0 or after RESET has been 0)
Slave address 10011101b, 9DH (SA = 0) and 10011111b, 9FH (SA = 1
Note
1. ID7 to ID0 indicates the version number of the IC, for example SAA7110A V1 = 01H.
Table 9 OCF1 TRANSMITTER: Byte number 1 (transmitted if SSTB = 1) Slave address 10011101b, 9DH (SA = 0) and 10011111b, 9FH (SA = 1)
Vertical blanking pulse set 2E 119
VBPS7
118
VBPS6
117
VBPS5
116
VBPS4
115
VBPS3
114
VBPS2
113
VBPS1
112
VBPS0
Vertical blanking pulse reset 2F 127
VBPR7
126
VBPR6
125
VBPR5
124
VBPR4
123
VBPR3
122
VBPR2
121
VBPR1
120
VBPR0
ADCs gain control 30 135
XXX
134
WISL
133
GAS3
132
GAD31
131
GAD30
130
GAS2
129
GAD21
128
GAD20
Mixer control #3 31 143
AOSL1
142
AOSL0
141
WIRS
140
WRSE
139
SQPB
138
(3)
AFCCS
137
VBLKA
136
PULIO
Integration value white peak 32 151
WVAL7
150
WVAL6
149
WVAL5
148
WVAL4
147
WVAL3
146
WVAL2
145
WVAL1
144
WVAL0
Mixer control #4 33 159
OFTS
158
XXX
157
CHSB
156
XXX
155
CAD3
154
CAD2
153
XXX
152
XXX
Gain update level 34 167
MUD2
166
MUD1
165
GUDL5
164
GUDL4
163
GUDL3
162
GUDL2
161
GUDL1
160
GUDL0
VERSION STATUS BYTE D7 D6 D5 D4 D3 D2 D1 D0
ID7 to ID0; note 1 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
STATUS BYTE FUNCTION D7 D6 D5 D4 D3 D2 D1 D0
See Table 10 for explanation of bits STTC HLCK FIDT GLIM XXX WIPA ALTD CODE
REGISTER FUNCTION
SUB
ADD
(1)
DATA BYTE
(2)
D7 D6 D5 D4 D3 D2 D1 D0
Page 34
1995 Oct 18 34
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Table 10 Explanation of bits shown in Table 9
16.3 I
2
C-bus detail
The I2C-bus receiver slave address is 9CH/9EH. DMSD-SQP slave receiver (SU 00H to 19H).
16.3.1 S
UBADDRESS 00 (DATA BYTE 007 to 000)
Table 11 Increment delay IDEL
Notes
1. A sign bit, designated A08 and internally set to HIGH, indicates values are always negative.
2. The horizontal PLL does not operate in this condition. The system clock frequency is set to a value fixed by the last update and is within ±7.1% of the nominal frequency.
BIT DESCRIPTION
STTC Status bit for horizontal time constant: LOW = TV time constant; HIGH = VCR time constant. HLCK Status bit for locked horizontal frequency: LOW = locked; HIGH = unlocked. FIDT Identification bit for detected field frequency: LOW = 50 Hz; HIGH = 60 Hz. GLIM Gain value for active luminance is limited (maximum or minimum), active HIGH. XXX reserved WIPA White peak loop is activated, active HIGH. ALTD Status HIGH: line alternating colour burst has been detected (PAL or SECAM). CODE Status HIGH: any colour signal has been detected.
DECIMAL
MULTIPLIER
DELAY TIME
(STEP SIZE = 4/LLC)
CONTROL BITS
(1)
IDEL7 IDEL6 IDEL5 IDEL4 IDEL3 IDEL2 IDEL1 IDEL0
1 4 11111111 ↓↓↓↓↓↓↓↓
195 −780
max. value for 60 Hz
00111101
↓↓↓↓↓↓↓↓
236 −944
max. value for 50 Hz
00010100
↓↓↓↓↓↓↓↓
256 −1024
outside central counter
(2)
00000000
Page 35
1995 Oct 18 35
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.3.2 SUBADDRESS 01 (DATA BYTE 015 to 008) Table 12 Horizontal synchronization begin 50 Hz (HSYB)
16.3.3 S
UBADDRESS 02 (DATA BYTE 023 to 016)
Table 13 Horizontal synchronization stop 50 Hz (HSYS)
16.3.4 S
UBADDRESS 03 (DATA BYTE 031 to 024)
Table 14 Horizontal clamping begin 50 Hz (HCLB)
16.3.5 S
UBADDRESS 04 (DATA BYTE 039 to 032)
Table 15 Horizontal clamping stop 50 Hz (HCLS)
DECIMAL
MULTIPLIER
DELAY TIME
(STEP SIZE = 2/LLC)
CONTROL BITS
HSYB7 HSYB6 HSYB5 HSYB4 HSYB3 HSYB2 HSYB1 HSYB0
+191 382 10111111
↓↓↓↓↓↓↓↓
64 +128 11000000
DECIMAL
MULTIPLIER
DELAY TIME
(STEP SIZE = 2/LLC)
CONTROL BITS
HSYS7 HSYS6 HSYS5 HSYS4 HSYS3 HSYS2 HSYS1 HSYS0
+191 382 10111111
↓↓↓↓↓↓↓↓
64 +128 11000000
DECIMAL
MULTIPLIER
DELAY TIME
(STEP SIZE = 2/LLC)
CONTROL BITS
HCLB7 HCLB6 HCLB5 HCLB4 HCLB3 HCLB2 HCLB1 HCLB0
+127 254 01111111
↓↓↓↓↓↓↓↓
128 +256 10000000
DECIMAL
MULTIPLIER
DELAY TIME
(STEP SIZE = 2/LLC)
CONTROL BITS
HCLS7 HCLS6 HCLS5 HCLS4 HCLS3 HCLS2 HCLS1 HCLS0
+127 254 01111111
↓↓↓↓↓↓↓↓
128 +256 10000000
Page 36
1995 Oct 18 36
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.3.6 SUBADDRESS 05 (DATA BYTE 047 to 040)
Table 16 Horizontal synchronization start after PHI1 50 Hz (HPHI)
DECIMAL
MULTIPLIER
DELAY TIME
(STEP SIZE = 8/LLC)
CONTROL BITS
HPHI7 HPHI6 HPHI5 HPHI4 HPHI3 HPHI2 HPHI1 HPHI0
+127 forbidden;
outside available central counter range
01111111
↓↓↓↓↓↓↓↓
+118 01110110 +117 32 µs
(max. negative value)
01110101
118 +31.7 µs (max. positive value)
10001010
119 forbidden; outside available central counter range
10001001
↓↓↓↓↓↓↓↓
128 10000000
Page 37
1995 Oct 18 37
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.3.7 SUBADDRESS 06 (DATA BYTE 055 to 048) Table 17 Luminance control
16.3.8 S
UBADDRESS 07 (DATA BYTE 063 to 056)
Table 18 Hue phase control HUEC
FUNCTION CONTROL BITS
Aperture factor (APER); data bits D1 and D0
0 0 APER1 = 0; APER0 = 0 1 0.25 APER1 = 0; APER0 = 1 2 0.5 APER1 = 1; APER0 = 0 3 1.0 APER1 = 1; APER0 = 1
Corner correction (CORI) ±LSBs in 8-bit; data bits D3 and D2
0 0 (OFF) CORI1 = 0; CORI0 = 0 1 1 CORI1 = 0; CORI0 = 1 2 2 CORI1 = 1; CORI0 = 0 3 3 CORI1 = 1; CORI0 = 1
Aperture bandpass; centre frequency (BPSS); data bits D4 and D5
4.6 MHz (50 Hz) 3.8 MHz (60 Hz) BPSS1 = 0; BPSS0 = 0
4.3 MHz (50 Hz) 3.4 MHz (60 Hz) BPSS1 = 0; BPSS0 = 1
3.0 MHz (50 Hz) 2.5 MHz (60 Hz) BPSS1 = 1; BPSS0 = 0
3.2 MHz (50 Hz) 2.7 MHz (60 Hz) BPSS1 = 1; BPSS0 = 1
Prefilter active (PREF); data bit D6
Bypassed PREF = 0
Active PREF = 1
Chrominance trap bypass (BYPS); data bit D7
Active CVBS mode BYPS = 0
Bypassed S-Video mode BYPS = 1
HUE PHASE (DEGREES)
CONTROL BITS
HUEC7 HUEC6 HUEC5 HUEC4 HUEC3 HUEC2 HUEC1 HUEC0
+178.6 0 1 1 1 1 1 1 1
↓↓↓↓↓↓↓↓
0 00000000
↓↓↓↓↓↓↓↓
180 10000000
Page 38
1995 Oct 18 38
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.3.9 SUBADDRESS 08 CONTROL NUMBER 1(DATA BYTE 071 to 064) Table 19 Colour killer threshold QUAM (PAL/NTSC)
16.3.10 S
UBADDRESS 09 CONTROL NUMBER 2(DATA BYTE 079 to 072)
Table 20 Colour killer threshold SECAM
16.3.11 S
UBADDRESS 0A (DATA BYTE 087 to 080)
Table 21 PAL switch sensitivity
Note
1. Sensitivity HIGH means immediate sequence correction.
16.3.12 S
UBADDRESS 0B (DATA BYTE 095 to 088)
Table 22 SECAM switch sensitivity
Note
1. Sensitivity HIGH means immediate sequence correction.
THRESHOLD
(reference is nominal burst amplitude = 0 dB)
CONTROL BITS
CKTQ4 CKTQ3 CKTQ2 CKTQ1 CKTQ0
30 dB 1 1 1 1 1 ↓↓
24 dB 1 0 0 0 0 ↓↓
18 dB 0 0 0 0 0
THRESHOLD
(reference is nominal burst amplitude = 0 dB)
CONTROL BITS
CKTS4 CKTS3 CKTS2 CKTS1 CKTS0
30 dB 1 1 1 1 1 ↓↓
24 dB 1 0 0 0 0 ↓↓
18 dB 0 0 0 0 0
SENSITIVITY
CONTROL BITS
PLSE7 PLSE6 PLSE5 PLSE4 PLSE3 PLSE2 PLSE1 PLSE0
Low 11111111
Medium 1 0 000000
High
(1)
00000000
SENSITIVITY
CONTROL BITS
SESE7 SESE6 SESE5 SESE4 SESE3 SESE2 SESE1 SESE0
Low 11111111
Medium 1 0 000000
High
(1)
00000000
Page 39
1995 Oct 18 39
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.3.13 SUBADDRESS 0C (DATA BYTE 103 to 096) Table 23 Gain control chrominance
16.3.14 S
UBADDRESS 0D (DATA BYTE 111 to 104)
Table 24 Standard/mode control
FUNCTION CONTROL BITS
AGC loop filter (LFIS); data bits D6 and D5
Slow time constant LFIS1 = 0; LFIS0 = 0
Medium time constant LFIS1 = 0; LFIS0 = 1
Fast time constant LFIS1 = 1; LFIS0 = 0
Actual chrominance gain frozen LFIS1 = 1; LFIS0 = 1
Colour on (COLO); data bit D7
Automatic colour killer COLO = 0
Colour forced on COLO = 1
FUNCTION CONTROL BITS
SECAM mode bit (SECS); data bit D0
Other standards SECS =0
SECAM mode SECS = 1
Status byte select (SSTB); data bit D1
Status byte = 0 (see transmitter) SSTB 0 Status byte = 1 (see transmitter) SSTB = 1
HREF position select (HRMV); data bit D2
HREF position as SAA7191 (8 LLC2 later) HRMV = 0
HREF normal position HRMV = 1
Real time outputs mode select (RTSE); data bit D3
PLIN switched to output pin 39 ODD switched to output pin 40
RTSE=0
HL switched to output pin 39 VL switched to output pin 40 RTSE = 1
TV/VCR mode select (VTRC); data bit D7
TV mode VTRC = 0
VTR mode VTRC = 1
Page 40
1995 Oct 18 40
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.3.15 SUBADDRESS 0E (DATA BYTE 119 to 112) Table 25 I/O and clock control
16.3.16 S
UBADDRESS 0F (DATA BYTE 127 to 120)
Table 26 Control number 1
FUNCTION CONTROL BITS
General purpose switch (GPSW); data bit D0
Switches directly pin 64 GPSW (application dependent);
VBLKA = 0
GPSW = 0 GPSW = 1
Select chrominance input (CHRS); data bit D2
Controlled by BYPS (subaddress 06) normal position CHRS = 0
Digital chrominance input switched to
second input channel (see Fig.20)
CHRS = 1
Output enable YUV-data (OEYC); data bit D3
YUV bus high impedance/input OEYC = 0
Output YUV-bus active OEYC = 1
Output enable horizontal/vertical synchronization (OEHV); data bit D4
HS, HREF and VS high impedance/inputs OEHV = 0
Output HS, HREF and VS active OEHV = 1
Horizontal PLL clock (HPLL); data bit D7
PLL closed HPLL = 0
PLL open, horizontal frequency fixed HPLL = 1
FUNCTION CONTROL BITS
Luminance delay compensation; steps in 2/LLC (YDEL); data bits D2, D1 and D0
0 steps YDEL2 = 0; YDEL1 = 0; YDEL0 = 0 3 steps YDEL2 = 0; YDEL1 = 1; YDEL0 = 1
4 steps YDEL2= 1; YDEL1 = 0 YDEL1 = 0
Enable or disable of sync and clamp pulses; HSY and HCL (SCEN); data bit D4
Disable sync and clamp (set to HIGH) SCEN = 0
Enable sync and clamp SCEN = 1
SECAM cross colour reduction (SXCR); data bit D5
Reduction off SXCR = 0 Reduction on SXCR = 1
Field selection (FSEL); data bit D6
50 Hz, 625 lines FSEL = 0 60 Hz, 525 lines FSEL = 1
Automatic field detection(AUFD); data bit D7
Field state directly controlled via FSEL AUFD = 0
Automatic field detection AUFD = 1
Page 41
1995 Oct 18 41
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.3.17 SUBADDRESS 10 (DATA BYTE 135 to 128) Table 27 Control number 2
16.3.18 S
UBADDRESS 11 (DATA BYTE 143 to 136)
Table 28 Chrominance gain reference value
16.3.19 S
UBADDRESS 12 (DATA BYTE 150 to 144)
Table 29 Chrominance saturation control
FUNCTION CONTROL BITS
Vertical noise reduction (VNOI); data bits D1 and D0
Normal mode VNOI1 = 0; VNOI0 = 0
Search mode VNOI1 = 0; VNOI0 = 1
Free running mode VNOI1= 1; VNOI0 = 0
Vertical noise reduction bypassed VNOI1 = 1; VNOI0 = 1
HREF select HRFS (HRFS); data bit D2
HREF matched to YUV output HRFS = 0 HREF matched to CVBS input HRFS= 1
REFERENCE VALUE
CONTROL BITS
CHCV7 CHCV6 CHCV5 CHCV4 CHCV3 CHCV2 CHCV1 CHCV0
Maximum 1 1 111111
CCIR-level for PAL 0 1 011001
CCIR-level for NTSC 0 0 101100
Minimum 0 0 000000
GAIN
CONTROL BITS
SATN7 SATN6 SATN5 SATN4 SATN3 SATN2 SATN1 SATN0
1.999 Maximum 0 1 111111 1 CCIR-level 0 1 000000
0 colour off 0 0 000000
1 inverse chrominance 1 1 000000
2 inverse chrominance 1 0 000000
Page 42
1995 Oct 18 42
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.3.20 SUBADDRESS 13 (DATA BYTE 158 to 152) Table 30 Luminance contrast control
16.3.21 S
UBADDRESS 14 (DATA BYTE 167 to 160)
Table 31 Horizontal synchronization begin 60 Hz (HS6B)
16.3.22 S
UBADDRESS 15 (DATA BYTE 175 to 168)
Table 32 Horizontal synchronization stop 60 Hz (HS6S)
16.3.23 S
UBADDRESS 16 (DATA BYTE 183 to 176)
Table 33 Horizontal clamping begin 60 Hz (HC6B)
GAIN
CONTROL BITS
CONT7 CONT6 CONT5 CONT4 CONT3 CONT2 CONT1 CONT0
1.999 Maximum 0 1 111111 70 CCIR-level 0 1 000110
1 01000000
0 luminance off 0 0 000000
1 inverse luminance 1 1 000000
2 inverse luminance 1 0 000000
DECIMAL
MULTIPLIER
DELAY TIME
(step size = 2/LLC)
CONTROL BITS
HS6B7 HS6B6 HS6B5 HS6B4 HS6B3 HS6B2 HS6B1 HS6B0
+191 382 10111111
↓↓↓↓↓↓↓↓
64 +128 11000000
DECIMAL
MULTIPLIER
DELAY TIME
(step size = 2/LLC)
CONTROL BITS
HS6S7 HS6S6 HS6S5 HS6S4 HS6S3 HS6S2 HS6S1 HS6S0
+191 382 10111111
↓↓↓↓↓↓↓↓
64 +128 11000000
DECIMAL
MULTIPLIER
DELAY TIME
(step size = 2/LLC)
CONTROL BITS
HC6B7 HC6B6 HC6B5 HC6B4 HC6B3 HC6B2 HC6B1 HC6B0
+127 254 01111111
↓↓↓↓↓↓↓↓
128 +256 10000000
Page 43
1995 Oct 18 43
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.3.24 SUBADDRESS 17 (DATA BYTE 191 to 184) Table 34 Horizontal clamping stop 60 Hz (HC6S)
16.3.25 S
UBADDRESS 18 (DATA BYTE 199 to 192)
Table 35 Horizontal synchronization start after PHI1 60 Hz (HP6I)
16.3.26 S
UBADDRESS 19 (DATA BYTE 207 to 200)
Table 36 Luminance brightness control
DECIMAL
MULTIPLIER
DELAY TIME
(step size = 2/LLC)
CONTROL BITS
HC6S7 HC6S6 HC6S5 HC6S4 HC6S3 HC6S2 HC6S1 HC6S0
+127 254 01111111
↓↓↓↓↓↓↓↓
128 +256 10000000
DECIMAL
MULTIPLIER
DELAY TIME
(step size = 8/LLC)
CONTROL BITS
HP6I7 HP6I6 HP6I5 HP6I4 HP6I3 HP6I2 HP6I1 HP6I0
+127 forbidden;
outside available central counter range
01111111
↓↓↓↓↓↓↓↓
+98 01100010 +97 32 µs
(max. negative value)
01100001
97 +31.7 µs (max. positive value)
10011111
98 forbidden; outside available central counter range
10011110
↓↓↓↓↓↓↓↓
128 10000000
OFFSET
CONTROL BITS
BRIG7 BRIG6 BRIG5 BRIG4 BRIG3 BRIG2 BRIG1 BRIG0
255 (bright) 1 1 1 1 1 1 1 1
139 (CCIR-level) 1 0 0 0 1 0 1 1
128 1 0 0 0 0 0 0 0
0 (dark) 0 0 0 0 0 0 0 0
Page 44
1995 Oct 18 44
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.4 I2C-bus detail (continued)
DUAD slave receiver (SU 20H to 32H).
16.4.1 S
UBADDRESS 20 (DATA BYTE 007 to 000)
Table 37 Analog control #1
FUNCTION CONTROL BITS
Analog input select 2 (AINS2); data bit D0
Analog input AI22 selected AINS2 = 0 Analog input AI21 selected AINS2 = 1
Analog input select 3 (AINS3); data bit D1
Analog input AI32 selected AINS3 = 0 Analog input AI31 selected AINS3 = 1
Analog input select 4 (AINS4); data bit D2
Analog input AI42 selected AINS4 = 0 Analog input AI41 selected AIND4 = 1
Analog function select (FUSE); data bits D4 and D3
Amplifier plus anti-alias filter bypassed
FUSE1 = 0; FUSE0 = 0 FUSE1 = 0; FUSE0 = 1
Amplifier active FUSE1 = 1; FUSE0 = 0
Amplifier plus anti-alias filter active FUSE1 = 1; FUSE0 = 1
Analog input disable 2 (AIND2); data bit D5
Analog inputs 2 enabled AIND2 = 0
Analog inputs 2 disabled AIND2 = 1
Analog input disable 3 (AIND3); data bit D6
Analog inputs 3 enabled AIND3 = 0 Analog inputs 3 disabled AIND3 = 1
Analog input disable 4 (AIND4); data bit D7
Analog inputs 4 enabled AIND4 = 0 Analog inputs 4 disabled AIND4 = 1
Page 45
1995 Oct 18 45
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.4.2 SUBADDRESS 21 (DATA BYTE 015 to 008)
Table 38 Analog control #2
FUNCTION CONTROL BITS
Reference select channel 2 (REFS2); data bit D0
Automatic clamping active REFS2 = 0
Reference level selected REFS2 = 1
Reference select channel 3 (REFS3); data bit D1
Automatic clamping active REFS3 = 0
Reference level selected REFS3 = 1
Reference select channel 4 (REFS4); data bit D2
Automatic clamping active REFS4 = 0
Reference level selected REFS4 = 1
MUXC select channel 24 (MS24); data bit D3
Analog MUX2 controlled by MX24 MS24 = 0
Analog MUX2 controlled by MUXC MS24 = 1
Analog MUX2 control (MX24); data bits D5 and D4
Adder mode MX241 = 0; MX240 = 0 Channel 2 on; channel 4 off MX241 = 0; MX240 = 1 Channel 2 off; channel 4 on MX241 = 1; MX240 = 0
Both channels off MX241 = 1; MX240 = 1
MUXC select channel 34 (MS34); data bit D6
Analog MUX3 controlled by MX34 MS34 = 0
Analog MUX3 controlled by MUXC MS34 = 1
Vertical blanking control off (VBCO); data bit D7
Vertical blanking on VBCO = 0 Vertical blanking off VBCO = 1
Page 46
1995 Oct 18 46
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.4.3 SUBADDRESS 22 (DATA BYTE 023 to 016) Table 39 Mixer control #1
16.4.4 S
UBADDRESS 23 (DATA BYTE 031 to 024)
Table 40 Clamping level control 21 CLL21
FUNCTION CONTROL BITS
Analog MUX3 control (MX34); data bits D1 and D0
Adder mode MX341 = 0; MX340 = 0 Channel 3 on; channel 4 off MX341 = 0; MX340 = 1 Channel 3 off; channel 4 on MX341 = 1; MX340 = 0
Both channels off MX341 = 1; MX340 = 1
Clamping function test (CLTS); data bit D2
Normal clamping mode CLTS = 0
CLAAn and CLAUn adjusted via CLL32 value for testing
(do not use)
CLTS = 1
Fast digital multiplexing channel 2/3 active (MUYC); data bit D3
Normal mode on CHR channel MUYC = 0
Multiplex mode on CHR channel for test purposes only
(do not use)
MUYC = 1
Luminance select (YSEL); data bit D4
ADC 2 to CVBS YSEL = 0 ADC 3 to CVBS YSEL = 1
Chrominance select (CSEL); data bit D5
ADC 3 to CHR (MUXC not inverse; MUYC = 1) CSEL = 0
ADC 2 to CHR (MUXC inverse; MUYC = 1) CSEL = 1
Automatic gain control (GACO); data bits D7 and D6
Automatic gain control off GACO1 = 0; GACO0 = 0 Automatic gain control channel 2 GACO1 = 0; GACO0 = 1 Automatic gain control channel 3 GACO1 = 1; GACO0 = 0 Automatic gain control channel 4 GACO1 = 1; GACO0 = 1
DECIMAL CLAMP LEVEL
CONTROL BITS
CLL217 CLL216 CLL215 CLL214 CLL213 CLL212 CLL211 CLL210
1 00000001
↓↓↓↓↓↓↓↓
64 01000000
↓↓↓↓↓↓↓↓
128 10000000
↓↓↓↓↓↓↓↓
254 11111110
Page 47
1995 Oct 18 47
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.4.5 SUBADDRESS 24 (DATA BYTE 039 to 032) Table 41 Clamping level control 22 CLL22
16.4.6 S
UBADDRESS 25 (DATA BYTE 047 to 040)
Table 42 Clamping level control 31 CLL31
16.4.7 S
UBADDRESS 26 (DATA BYTE 055 to 048)
Table 43 Clamping level control 32 CLL32
DECIMAL CLAMP LEVEL
CONTROL BITS
CLL227 CLL226 CLL225 CLL224 CLL223 CLL222 CLL221 CLL220
1 00000001
↓↓↓↓↓↓↓↓
64 01000000
↓↓↓↓↓↓↓↓
128 10000000
↓↓↓↓↓↓↓↓
254 11111110
DECIMAL CLAMP LEVEL
CONTROL BITS
CLL317 CLL316 CLL315 CLL314 CLL313 CLL312 CLL311 CLL310
1 00000001
↓↓↓↓↓↓↓↓
64 01000000
↓↓↓↓↓↓↓↓
128 10000000
↓↓↓↓↓↓↓↓
254 11111110
DECIMAL CLAMP LEVEL
CONTROL BITS
CLL327 CLL326 CLL325 CLL324 CLL323 CLL322 CLL321 CLL320
1 00000001
↓↓↓↓↓↓↓↓
64 01000000
↓↓↓↓↓↓↓↓
128 10000000
↓↓↓↓↓↓↓↓
254 11111110
Page 48
1995 Oct 18 48
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.4.8 SUBADDRESS 27 (DATA BYTE 063 to 056); GAIN CONTROL ANALOG #1
Table 44 Static gain control channel 2 (GAI2); data bits D5 to D0
Table 45 Gain mode select (GASL); data bit D6
Table 46 Automatic control integration (HOLD); data bit D7
16.4.9 S
UBADDRESS 28 (DATA BYTE 071 to 064)
Table 47 White peak control WIPE
16.4.10 S
UBADDRESS 29 (DATA BYTE 079 to 072)
Table 48 Sync bottom control SBOT
DECIMAL
MULTIPLIER
GAIN
(step size = 0.19 dB)
CONTROL BITS
GAI25 GAI24 GAI23 GAI22 GAI21 GAI20
0 2.82 dB 000000 ↓↓↓↓↓↓
15 0dB 001111
↓↓↓↓↓↓
31 3dB 011111
↓↓↓↓↓↓
47 6dB 101111
↓↓↓↓↓↓
63 9dB 111111
FUNCTION CONTROL BIT GASL
Difference value integration 0
Fix value integration 1
FUNCTION CONTROL BIT HOLD
AGC active 0
AGC integration hold (freeze) 1
DECIMAL WHITE PEAK LEVEL
CONTROL BITS
WIPE7 WIPE6 WIPE5 WIPE4 WIPE3 WIPE2 WIPE1 WIPE0
128 10000000
↓↓↓↓↓↓↓↓
254 11111110
255 (white peak control off) 1 1 1 1 1 1 1 1
DECIMAL SYNC BOTTOM LEVEL
CONTROL BITS
SBOT7 SBOT6 SBOT5 SBOT4 SBOT3 SBOT2 SBOT1 SBOT0
1 00000001
↓↓↓↓↓↓↓↓
254 11111110
Page 49
1995 Oct 18 49
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.4.11 SUBADDRESS 2A (DATA BYTE 087 to 080); GAIN CONTROL ANALOG #2
Table 49 Static gain control channel 3 (GAI3); data bits D5 to D0
Table 50 Integration factor white peak (IWIP); data bits D7 and D6
16.4.12 S
UBADDRESS 2B (DATA BYTE 095 to 088); GAIN CONTROL ANALOG #3
Table 51 Static gain control channel 4 (GAI4); data bits D5 to D0
Table 52 Integration factor normal gain (IGAI); data bits D7 and D6
DECIMAL MUL TIPLIER
GAIN
(step size = 0.19 dB)
CONTROL BITS
GAI35 GAI34 GAI33 GAI32 GAI31 GAI30
0 2.82 dB 0 0 0 0 0 0 ↓↓↓↓↓↓
15 0dB 001111
↓↓↓↓↓↓
31 3dB 011111
↓↓↓↓↓↓
47 6dB 101111
↓↓↓↓↓↓
63 9dB 111111
FUNCTION CONTROL BITS
Fast selection IWIP1 = 0; IWIP0 = 0
| IWIP1 = 0; IWIP0 = 1 | IWIP1 = 1; IWIP0 = 0
Slow selection IWIP1 = 1; IWIP0 = 1
DECIMAL MUL TIPLIER
GAIN
(step size = 0.19 dB)
CONTROL BITS
GAI45 GAI44 GAI43 GAI42 GAI41 GAI40
0 2.82 dB 0 0 0 0 0 0 ↓↓↓↓↓↓
15 0dB 001111
↓↓↓↓↓↓
31 3dB 011111
↓↓↓↓↓↓
47 6dB 101111
↓↓↓↓↓↓
63 9dB 111111
FUNCTION CONTROL BITS
Slow selection IGAI1 = 0; IGAI0 = 0
| IGAI1 = 0; IGAI0 = 1 | IGAI1 = 1; IGAI0 = 0
Fast selection IGAI1 = 1; IGAI0 = 1
Page 50
1995 Oct 18 50
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.4.13 SUBADDRESS 2C (DATA BYTE 103 to 096) Table 53 Mixer control #2
16.4.14 S
UBADDRESS 2D (DATA BYTE 111 to 104)
Table 54 Integration value gain (IVAL)
16.4.15 S
UBADDRESS 2E (DATA BYTE 119 to 112)
Table 55 Blanking pulse VBLK-set (VBPS)
Notes
1. Maximum for 60 Hz.
2. Maximum for 50 Hz.
FUNCTION CONTROL BITS
Two’s complement channel 2 (TWO2); data bit D0
Unipolar TWO2 = 0
Two’s complement (normal mode) TWO2 = 1
Two’s complement channel 3 (TWO3); data bit D1
Unipolar TWO3 = 0
Two’s complement (normal mode) TWO3 = 1
Clamping level select channel 2 (CLS2); data bit D4
CLL21 active CLS2 = 0 CLL22 active CLS2 = 1
Clamping level select channel 3 (CLS3); data bit D5
CLL31 active CLS3 = 0 CLL32 active CLS3 = 1
Clamping level select channel 4 (CLS4); data bit D7
CLL2n active CLS4 = 0 CLL3n active CLS4 = 1
DECIMAL INTEGRATION VALUE GAIN
CONTROL BITS
IVAL7 IVAL6 IVAL5 IVAL4 IVAL3 IVAL2 IVAL1 IVAL0
1 00000001
↓↓↓↓↓↓↓↓
255 11111111
DECIMAL
MULTIPLIER
SET LINE NUMBER
(step size = 2)
CONTROL BITS
VBPS7 VBPS6 VBPS5 VBPS4 VBPS3 VBPS2 VBPS1 VBPS0
0 0 after rising edge of VS 0 0000000
↓↓↓↓↓↓↓↓
131
(1)
262 after rising edge of VS 1 0000011
↓↓↓↓↓↓↓↓
156
(2)
312 after rising edge of VS 1 0011100
Page 51
1995 Oct 18 51
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.4.16 SUBADDRESS 2F (DATA BYTE 127 to 120)
Table 56 Blanking pulse VBLK-reset (VBPR)
Notes
1. Maximum for 60 Hz.
2. Maximum for 50 Hz.
16.4.17 S
UBADDRESS 30 (DATA BYTE 135 to 128)
Table 57 ADCs gain control
DECIMAL
MULTIPLIER
RESET LINE NUMBER
(step size = 2)
CONTROL BITS
VBPR7 VBPR6 VBPR5 VBPR4 VBPR3 VBPR2 VBPR1 VBPR0
0 0 after rising edge of VS 0 0 0 0 0 0 0 0
↓↓↓↓↓↓↓↓
131
(1)
262 after rising edge of VS 1 0 0 0 0 0 1 1
↓↓↓↓↓↓↓↓
156
(2)
312 after rising edge of VS 1 0 0 1 1 1 0 0
FUNCTION CONTROL BITS
Fix gain ADC channel 2 (GAD2); data bits D1 and D0
0 dB GAD21 = 0; GAD20 = 0
0.05 dB GAD21 = 0; GAD20 = 1
0.10 dB GAD21 = 1; GAD20 = 0
0.15 dB GAD21 = 1; GAD20 = 1
Gain ADC select channel 2 (GAS2); data bit D2
Fix gain via I
2
C-bus GAD2 GAS2 = 0
Automatic gain via loop GAS2 = 1
Fix gain ADC channel 3 (GAD3); data bits D4 and D3
0 dB GAD31 = 0; GAD30 = 0
0.05 dB GAD31 = 0; GAD30 = 1
0.10 dB GAD31 = 1; GAD30 = 0
0.15 dB GAD31 = 1; GAD30 = 1
Gain ADC select channel 3 (GAS3); data bit D5
Fix gain via I
2
C-bus GAD3 GAS3 = 0
Automatic gain via loop GAS3 = 1
White peak mode select (WISL); data bit D6
Difference value integration WISL = 0
Fix value integration WISL = 1
Page 52
1995 Oct 18 52
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.4.18 SUBADDRESS 31 (DATA BYTE 143 to 136) Table 58 Mixer control #3
16.4.19 S
UBADDRESS 32 (DATA BYTE 151 to 144)
Table 59 Integration value white peak (WVAL)
FUNCTION CONTROL BITS
Pulses I/O control (PULIO); data bit D0
HCL and HSY to input pins PULIO = 0
HCL and HSY to output pins PULIO = 1
Pin function switch (VBLKA); data bit D1
GPSW active (normal) VBLKA = 0
VBLK test output active VBLKA = 1
DMSD-SQP bypassed (SQPB); data bit D3
DMSD data to YUV output SQPB = 0
A/D data to YUV output
for test purposes only (do not use)
SQPB = 1
White peak slow up integration enable (WRSE); data bit D4
Hold in white peak mode WRSE = 0
Slow up integration with 1 value in H or
V (dependent on WIRS)
WRSE = 1
White peak slow up integration select (WIRS); data bit D5
Slow up integration with 1 value per line WRIS = 0
Slow up integration with 1 value per field WRIS = 1
Analog test select (AOSL); data bits D7 and D6
AOUT connected to ground AOSL1 = 0; AOSL0 = 0 AOUT connected to input AD2 AOSL1 = 0; AOSL0 = 0 AOUT connected to input AD3 AOSL1 = 1; AOSL0 = 1 AOUT connected to channel 4 AOSL1 = 1; AOSL0 = 1
DECIMAL INTEGRATION VALUE
WHITE PEAK
CONTROL BITS
WVAL7 WVAL6 WVAL5 WVAL4 WVAL3 WVAL2 WVAL1 WVAL0
1 00000001
↓↓↓↓↓↓↓↓
127 (max.) 01111111
Page 53
1995 Oct 18 53
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
16.4.20 SUBADDRESS 33 (DATA BYTE 159 to 152) Table 60 Mixer control #4
16.4.21 S
UBADDRESS 34 (DATA BYTE 167 to 160)
Table 61 Gain update level (GUDL; data bits D5 to D0
Table 62 MUXC phase delay (MUD2); data bits D7 and D6
FUNCTION CONTROL BITS
Clock select AD2 (CAD2); data bit D2
LLC for test purposes only (do not use) CAD2 = 0
LLC/2 CAD2 = 1
Clock select AD3 (CAD3); data bit D3
LLC for test purposes only (do not use) CAD3 = 0
LLC/2 CAD3 = 1
Change sign bit UV data (CHSB); data bit D5
UV output unipolar CHSB = 0
UV output two’s complement CHSB = 1
Output format select (OFTS); data bit D7
4 : 1 : 1 format OFTS = 0 4 : 2 : 2 format OFTS = 1
DECIMAL
HYSTERESIS
FOR 8-BIT GAIN
UPDATE
NEW GAIN - OLD GAIN
CONTROL BITS
GUDL5 GUDL4 GUDL3 GUDL2 GUDL1 GUDL0
0 0LSB >0 000000
↓↓↓↓↓↓
7 ±7LSB >7 000111
↓↓↓↓↓↓
>31 off always 1 XXXXX
FUNCTION CONTROL BIT MUD
No phase delay MUD2 = 0; MUD1 = 0 1 LLC cycle phase delay for CLAA path MUD2 = 0; MUD1 = 1 2 LLC cycle phase delay for CLAA path MUD2 = 1; MUD1 = 0 3 LLC cycle phase delay for CLAA path MUD2 = 1; MUD1 = 1
Page 54
1995 Oct 18 54
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
17 SOURCE SELECTION MANAGEMENT
Table 63 Source selection management examples
INPUT
EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4
SIGNAL MODE SIGNAL MODE SIGNAL MODE SIGNAL MODE
AIN21 CVBS1 0 CVBS1 0 Y1 6 Y1 6 AIN22 CVBS2 1 C2 7 C2 7 CVBS2 1 AIN31 CVBS3 2 Y2 7 Y2 7 CVBS3 2 AIN32 CVBS4 3 C3 8 C3 8 CVBS4 3 AIN41 CVBS5 4 Y3 8 Y3 8 CVBS5 4 AIN42 CVBS6 5 CVBS6 5 C1 6 C1 6
l pagewidth
GAIN4 AAF4
GAIN3 AAF3
GAIN2 AAF2
ADC3
ADC2
AINS4
CSEL
CHRS v BYPS
CLL32 CLL31
CLL22 CLL21
CHROMA
LUMA
YSEL
AINS3
CLS4
AIND4
AIND3
AIND2
AINS2
CLAMP
CON3
CLAMP
CON2
GAIN
CON
GAI4
clamp up/down
clamp up/down
GAI3
GAI2
REF128
REFS2
REFS3
REFS4
AI22
AI21
AI32
AI31
AI42
AI41
CLAMP
CLAMP
CLAMP
GACO
MX340
MX341
MX240
MX241
CLS3
CLS2
MGC839
Fig.20 Source selection overview.
All switch control bits set to LOW.
Fig.21 Mode 0; CVBS1.
handbook, full pagewidth
AI41 AI42 AI31 AI32 AI21
AI22
MGC840
CHROMA LUMA
AD3
AD2
Page 55
1995 Oct 18 55
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.22 Mode 1; CVBS2.
handbook, full pagewidth
AI41 AI42 AI31 AI32 AI21
AI22
MGC841
CHROMA LUMA
AD3
AD2
Fig.23 Mode 2; CVBS3.
handbook, full pagewidth
AI41 AI42 AI31 AI32 AI21
AI22
MGC842
CHROMA LUMA
AD3
AD2
Fig.24 Mode 3; CVBS4.
handbook, full pagewidth
AI41 AI42 AI31 AI32 AI21
AI22
MGC843
CHROMA LUMA
AD3
AD2
Fig.25 Mode 4; CVBS5.
handbook, full pagewidth
AI41 AI42 AI31 AI32 AI21 AI22
MGC844
CHROMA LUMA
AD3
AD2
Page 56
1995 Oct 18 56
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.26 Mode 5; CVBS6.
handbook, full pagewidth
AI41 AI42 AI31 AI32 AI21 AI22
MGC845
CHROMA LUMA
AD3
AD2
Fig.27 Mode 6; Y1 + C1.
handbook, full pagewidth
AI41 AI42 AI31 AI32 AI21 AI22
MGC846
CHROMA LUMA
AD3
AD2
Fig.28 Mode 7; Y2 + C2.
handbook, full pagewidth
AI41 AI42 AI31 AI32 AI21 AI22
MGC847
CHROMA LUMA
AD3
AD2
Fig.29 Mode 8; Y3 + C3.
handbook, full pagewidth
AI41 AI42 AI31 AI32 AI21 AI22
MGC848
CHROMA LUMA
AD3
AD2
Page 57
1995 Oct 18 57
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Table 64 I2C-bus control
CONTROL
INPUT
(1)
MODE
01234567 89
Subaddress 20
AIND4 1 1 1 1 0 0 0 1 0 AIND3 1 1 0 0 1 1 1 0 0
AIND2 0 0 1 1 1 1 0 0 1 FUSE1 1 −−−− − −−−− FUSE0 1 −−−− − −−−−
AINS4 X X X X 1 0 0 X 1 AINS3 X X 1 0 X X 0 1 0 AINS2 1 0 X X X X 1 0 X
Subaddress 21
VBCO 0 −−−− − − −−−
MS34 0 −−−− − − −−− MX241 0 0 X X X X 0 0 1 MX240 0 0 X X X X 0 0 1
MS24 0 −−−− − − −−− REFS4 1 1 1 1 0 0 0 1 0 REFS3 1 1 0 0 1 1 1 0 0 REFS2 0 0 1 1 1 1 0 0 1
Subaddress 22
GACO1 0 0 1 1 1 1 0 1 1 GACO0 1 1 0 0 1 1 1 0 1
CSEL X X X X X X 0 1 0
YSEL 0 0 1 1 1 1 0 1 0
MUYC 0 −−−−−−− −0
CLTS 0 −−−− − − −−0 MX341 X X 0 0 1 1 1 0 0 MX340 X X 1 1 0 0 0 1 1
Subaddress 2C
CLS4 X X X X 1 1 1 X 0
GABL 0 −−−− − − −−−
CLS3 X X 0 0 0 0 1 0 1 CLS2 0 0 X X X X 0 1 X 4LSB 0011 −−−− − −−−0011
BYPS 0 0 0 0 0 0 1 1 1
Subaddresses SU
20H D9H D8H BAH B8H 7CH 78H 59H 9AH 3CH 21H 16H 16H 05H 05H 03H 03H 12H 14H 21H
Page 58
1995 Oct 18 58
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Notes
1. CLL21 = 65d, CLL22 = 128d, CLL31 = 65d, CLL32 = 128d, GAI4 = 15d, GAI3 = 15dGAI2 = 15d; X set 0.
2. Optional: values for AD gain (+2 LSB’s gain resolution) active [not active: for all modes 40H].
18 ANTI-ALIAS FILTER GRAPHS
22H 40H 40H 91H 91H D2H D2H 42H B1H C1H
2CH 03H 03H 03H 03H 83H 83H A3H 13H 23H
06H 0XXXXXXX 1XXXXXXX
30H
(2)
44H 44H 60H 60H 60H 60H 44H 60H 44H
CONTROL
INPUT
(1)
MODE
01234567 89
Fig.30 Anti-alias filter graph for SAA7110A.
(1) 50 Hz. (2) 60 Hz.
handbook, full pagewidth
+3
39
0 2 4 6 8 10 12 14 16
f (MHz)
MGC849
3
9
15
21
27
33
(1)
(2)
A
(dB)
Page 59
1995 Oct 18 59
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.31 Anti-alias filter graph for SAA7110.
(1) 50 HZ, AFCCS = 0, LLC = 29.50 MHz. (2) 50 HZ, AFCCS = 1, LLC = 29.50 MHz. (3) 60 HZ, AFCCS = 0, LLC = 24.54 MHz. (3) 60 HZ, AFCCS = 1, LLC = 24.54 MHz.
handbook, full pagewidth
+3
39
0 5 10 15 20 25 30
f (MHz)
MGC850
3
9
15
21
27
33
(4)
(1)
(3)
(2)
A
(dB)
19 CORING FUNCTION
19.1 Coring function adjustment by subaddress 06H to affect band filter output adjustment
The thresholds are related to the 13-bit word width in the luminance processing part and influence the 1 to 3 LSB (Yo to Y2) with respect to the 8-bit luminance output.
Table 65 CORI control settings a, b and c of Fig.32
CONTROL BITS
CORI1 CORI0
a0 1 b1 0 c1 1
Fig.32 Coring function.
handbook, halfpage
64 32 0 +64
+64
+32
32
64
0
MGC851
+32
a
b
c
c
b
a
Page 60
1995 Oct 18 60
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
20 LUMINANCE FILTER GRAPHS
Fig.33 Luminance control: SU06H, 50 Hz/CVBS mode, prefilter on and coring off (40 to 63H).
handbook, full pagewidth
8
f
Y (MHz)
18
30 0246
MGC852
6
VY
(dB)
18
6
63H 73H 53H 43H 40H
43H 53H 73H 63H
40H
Fig.34 Luminance control: SU06H, 50 Hz/CVBS mode, prefilter on and coring off (40 to 43H).
handbook, full pagewidth
8
f
Y (MHz)
18
30 0246
MGC853
6
VY
(dB)
18
6
43H 42H 41H 40H
43H 42H 41H 40H
Page 61
1995 Oct 18 61
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.35 Luminance control: SU06H, 50 Hz/CVBS mode, prefilter off and coring off.
handbook, full pagewidth
8
f
Y (MHz)
18
30 0246
MGC854
6
VY
(dB)
18
6
23H 33H 13H 03H 00H
03H 13H 33H 23H
00H
Fig.36 Luminance control: SU06H, 50 Hz/Y + C mode, prefilter off and coring off.
handbook, full pagewidth
8
18
30 0246
MGC855
6
VY
(dB)
18
6
83H 82H 81H 80H
f
Y (MHz)
Page 62
1995 Oct 18 62
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.37 Luminance control: SU06H, 50 Hz/Y + C mode, prefilter on and coring off.
handbook, full pagewidth
8
18
30 0246
MGC856
6
VY
(dB)
18
6
C3H C2H C1H C0H
f
Y (MHz)
Fig.38 Luminance control: SU06H, 60 Hz/CVBS mode, prefilter on and coring off.
handbook, full pagewidth
f
Y (MHz)
18
30 0246
MGC857
6
VY
(dB)
18
6
63H 73H 53H 43H 40H
43H 53H 73H 63H 40H
Page 63
1995 Oct 18 63
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.39 Luminance control: SU06H, 60 Hz/CVBS mode, prefilter on and coring off.
handbook, full pagewidth
f
Y (MHz)
18
30 0246
MGC858
6
VY
(dB)
18
6
43H 42H 41H 40H
43H 42H 41H 40H
Fig.40 Luminance control: SU06H, 60 Hz/CVBS mode, prefilter off and coring off.
handbook, full pagewidth
f
Y (MHz)
18
30 0246
MGC859
6
VY
(dB)
18
6
23H 33H 13H 03H 00H
03H 13H 33H 23H 00H
Page 64
1995 Oct 18 64
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
Fig.41 Luminance control: SU06H, 60 Hz/Y + C mode, prefilter off and coring off.
handbook, full pagewidth
8
18
30 0246
MGC860
6
VY
(dB)
18
6
83H 82H 81H 80H
f
Y (MHz)
Fig.42 Luminance control: SU06H, 60 Hz/Y + C mode, prefilter on and coring off.
handbook, full pagewidth
8
fY (MHz)
18
30 0246
MGC861
6
VY
(dB)
18
6
C3H C2H C1H C0H
Page 65
1995 Oct 18 65
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
21 I2C-BUS START SET-UP
The values shown in Table 66 are optimized for the EBU colour bar (100% white and 75% chrominance amplitude) signal. The decoder output signal level fulfils the CCIR 601 specification. The input of 100% colour bar level is possible, but the signal (white) peak function reduces the digital luminance output. With a different set-up it is possible to proceed 100% colour bar signal without luminance colour bar reduction. The method is to modify the AD input range for this input level by reducing the gain reference value (SBOT > 06h) and adjusting the digital Y output level with contrast and brightness control.
Table 66 I
2
C-bus start set-up
SU NAME FUNCTION
BINARY HEX
76543210start
00 IDEL7 to IDEL0 increment delay 01001100 4C 01 HSYB7 to HSYB0 horizontal sync (HSY) begin 50 Hz 00111100 3C 02 HSYS7 to HSYS0 horizontal sync (HSY) stop 50 Hz 00001101 0D 03 HCLB7 to HCLB0 horizontal clamp (HCL) begin 50 Hz 11101111 EF 04 HCLS7 to HCLS0 horizontal clamp (HCL) stop 50 Hz 10111101 BD 05 HPHI7 to HPHI0 horizontal sync after PHI1 50 Hz 11110000 F0
06
BYPS, PREF, BPSS1 to BPSS0, CORI1 to CORI0, APER1 to APER0
luminance control 00000000 00
07 HUEC7 to HUEC0 hue control 00000000 00 08 CKTQ4 to CKTQ0, XXX colour killer threshold PAL 11111XXX F8 09 CKTS4 to CKTS0, XXX colour killer threshold SECAM 11111XXX F8 0A PLSE7 to PLSE0 PAL switch sensitivity 01100000 60 0B SESE7 to SESE0 SECAM switch sensitivity 01100000 5B
0C
COLO, LFIS1 to LFIS0, XXXXX
gain control chrominance
000XXXXX 00
0D
VTRC, XXX, RTSE, HRMV, SSTB, SECS
standard/mode control 0 X X X 0110 06
0E
HPLL, XX, OEHV, OEYC, CHRS, X, GPSW
I/O and clock control 0 X X 1 1 0 X 0 18
0F
AUFD, FSEL, SXCR, SCEN, X, YDEL2 to YDEL0
control #1 1001X000 90
10
XXXXX, HRFS, VNOI1 to VNOI0
control #2
XXXXX000 00
11
CHCV7 to CHCV0 PAL
chrominance gain reference
01011001 59
CHCV7 to CHCV0 NTSC 00101100 2C 12 SATN7 to SATN0 chrominance saturation 01000000 40 13 CONT7 to CONT0 luminance contrast 01000110 46 14 HS6B7 to HS6B70 horizontal sync (HSY) begin 60 Hz 01000010 42 15 HS6S7 to HS6S0 horizontal sync (HSY) stop 60 Hz 00011010 1A 16 HC6B7 to HC6B0 horizontal clamp (HCL) begin 60 Hz 11111111 FF 17 HC6S7 to HC6S0 horizontal clamp (HCL) stop 60 Hz 11011010 DA 18 HP6I7 to HP6I0 horizontal sync after PHI1 60 Hz 11110000 F0 19 BRIGI7 to BRIG0 luminance brightness 10001011 8B
Page 66
1995 Oct 18 66
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
21.1 Remarks to Table 66 Values recommended for a CVBS (PAL or NTSC) signal, input AI21 via A/D channel 2 (MODE 0), and 4 : 2 : 2 CCIR
output signal level; all X values must be set LOW, X* value is don’t care; HPHI and HP6I are application dependent.
1A-1F reserved
20
AIND4, AIND3, AIND2,
FUSE1 to FUSE0, AINS4,
AINS3, AINS2
analog control #1 11011001 D9
21
VBCO, MS34,
MX241 to MX240, MS24,
REFS4, REFS3, REFS2
analog control #2 00010110 16
22
GACO1 to GACO0, CSEL,
YSEL, MUYC, CLTS,
MX341 to MX340
mixer control #1 01000000 40
23 CLL217 to CLL210 clamping level control channel 21 01000001 41 24 CLL227 to CLL220 clamping level control channel 22 10000000 80 25 CLL317 to CLL310 clamping level control channel 31 01000001 41 26 CLL327 to CLL320 clamping level control channel 32 10000000 80
27
HOLD, GASL,
GAI25 to GAI20
gain control analog #1
01001111 4F
28 WIPE7 to WIPE0 white peak control 11111110 FE 29 SBOT7 to SBOT0 sync bottom control 00000001 01
2A
IWIP1 to IWIP0,
GAI35 to GAI30
gain control analog #2
11001111 CF
2B
IGAI1 to IGAI0,
GAI45 to GAI40
gain control analog #3
00001111 0F
2C
CLS4, X, CLS3, CLS2,
TWO3, TWO2
mixer control #2 0 X 0 0 X X 1 1 03
2D IVAL7 to IVAL0 integration value gain 00000001 01 2E
VBPS7 to VBPS0; 50 Hz
vertical blanking pulse SET
10011010 9A
VBPS7 to VBPS0; 60 Hz 10000001 81 2F
VBPR7 to VBPR0; 50 Hz
vertical blanking pulse RESET
00000011
03
VBPR7 to VBPR0; 60 Hz 00000011
30
X, WISL, GAS3,
GAD31 to GAD30, GAS2,
GAD21 to GAD20
ADCs gain control X 1000000 44
31
AOSL1 to AOSL0, WIRS,
WRSE, SQPB, X, VBLKA,
PULIO
mixer control #3 01110X*01 71
32 WVAL7 to WVAL0 integration value white peak 00000010 02 33
OFTS, X, CHSB, X, CAD3,
CAD2, XX
mixer control #4 1 X 0 X 1 1 X X 8C
34
MUD2, MUD1,
GUDL5 to GUDL0
gain update level
00000011 03
SU NAME FUNCTION
BINARY HEX
76543210start
Page 67
1995 Oct 18 67
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
22 APPLICATION INFORMATION
handbook, full pagewidth
Q1(26.8 MHz)
Y7 to Y0
SCL
V
DD
AI32
FEIN (MUXC)
SDA
CGCE
AOUT
RTCO
VS
LLC
ODD (VL)
PLIN (HL)
GPSW (VBLK)
LFCO
RESET
CREF
LLC2
HREF
V
SS
V
SSA
V
DDA
V
SSA
V
DD
V
SS
V
DD1
V
DD2
V
DD3
V
DD4
V
DD5
V
SS
HS
Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
V
SS
SAA7110 SAA7110A
R4
75
C24
10 nF
C7
100 nF
100 nF
100 nF
100 nF
100 nF
100 nF
C8
C9
C11
C12
C13
C14
C15
R7
1 k
C17
L1
10 µH
C16
1 nF
10 pF
10 pF
C18
R8
1 k
27
3444
52
68
16 12
20
24
45 46 47 48 49 50 53 54
42
41
3
23
29
40
64 39
30 31 32 26
HSY
HCL
36 37
38
9
8
7
421
28
35
43
51
67
14 10
18
25
22
15
6 5
63
33
66
65
i.c.
i.c.
MGC862
V
SSA
i.c.
100 nF
100 nF
100 nF
C10
AI31
R3
75
C3
10 nF
17
V
SSA
AI42
R6
75
C6
10 nF
11
V
SSA
AI41
R5
75
C5
10 nF
13
V
SSA
AI22
R2
75
C2
10 nF
19
V
SSA
V
SS
AI21
R1
75
C1
10 nF
21
V
SSA
UV7 to UV0
UV7 UV6 UV5 UV4 UV3 UV2 UV1 UV0
55 56 57 58 59 60 61 62
XTALO
XTALI
SA AP SP
Fig.43 Application diagram.
Unused analog inputs should not be connected.
Page 68
1995 Oct 18 68
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
handbook, full pagewidth
1825
63
33
65
66
14 2210 67
51 43 35 28 4 2 1789
40 30 29 31 32 26
36 37
RESET LFCO
CREF
LLC2 LLC
n.c.
i.c. i.c. i.c.
HCL HSY
RESET CREF
LFCO2 LFCO RESN CREF LLCA
ODD (VL)
V
SSA0
V
SSA
V
SS
V
SSA2VSSA3VSSA4
V
DDA
V
DDD
V
SS(S)
V
SS
V
SS
VSSVSSVSSV
SS
V
SSA
P
ORD
V
SSD
VSSSA AP SP
FEIN (MUXC)
1 k
1 k
R7
CGCE
XTALO
L1
C16 C17 C18
XTALI
(26.8 MHZ)
Q1
1 nF
10 µH
10 pF 10 pF
198,17 5 11 12 15 7
34
6, 9
13, 18
10 2014
LLC2B
C20
0.1 µF
LLC2A LLCB
MS
1 2 16
CE
R10
C21 C22 100 nF 100 nF
SAA7197
LFCOSEL
MGC863
SAA7110
SAA7110A
Fig.44 Application diagram with external Clock Generator Circuit (CGC).
The OCF1 supports for special applications the use of an external CGC (SAA7197). For normal operation the built-in CGC fulfils all requirements.
Page 69
1995 Oct 18 69
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
23 START-UP, SOURCE SELECT AND STANDARD DETECTION FLOW EXAMPLE
Fig.45 Software flow example.
handbook, full pagewidth
power on
mode 0 set-up
initializationstart source select
REFS active
mode select
REFS off
clamp active
PAL set-up
NTSC set-upB&W50 set-up
B&W60 set-up
stop
SECAM set-up
standard automatic
?status byte?
precharge clamping capacitor
mode 0 to 7
B&W50? yes = XX0XXX00 B&W60? yes = XX1XXX00
NTSC? yes = XX1XXXXX
SECAM? yes = XX0XXX01
B&W50?
B&W60?
NTSC?
no
no
no
SECAM?
no
yes
yes
yes
yes
without standard routine
MGC864
Page 70
1995 Oct 18 70
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
23.1 CODE 0 STARTUP and STANDARD Procedure
SLAVE 9C !OCF1 NTSC-setup SUB 00 WRITE 4C 3C 0D EF BD F0 00 00 F8 F8 60 60 00 06 18 90 00 2C 40 46 42 1A FF DA F0 8B 00 00 00 00 00 00 D9 17 40 41 80 41 80 4F FE 01 CF 0F 03 01 81 03 44 75 01 8C 03 SUB 21 WRITE 16 !REFS OFF CLAMP AKTIV READ 1 !Status? #STANDARD IF 1 @XX0XXX00 !NO COLOR THEN GOTO BW_50Hz ENDIF IF 1 @XX1XXX00 !NO COLOR THEN GOTO BW_60Hz ENDIF SUB 06 WRITE 00 ENDIF IF 1 @XX1XXXXX !60Hz THEN GOTO NTSC ENDIF IF 1 @XX0XXXXX !50Hz THEN GOTO PAL ENDIF #BW_50Hz PRINT "BLACK&WHITE" SUB 06 WRITE 80 SUB 2E WRITE 9A !VBPS GOTO STOP #BW_60Hz PRINT "BLACK&WHITE" SUB 06 WRITE 80 SUB 2E WRITE 81 !VBPS GOTO STOP #NTSC SUB 0D WRITE 06 !SECS -> 0 SUB 11 WRITE 2C !CHCV SUB 2E WRITE 81 !VBPS PRINT "NTSC" GOTO STOP #PAL SUB 0D WRITE 06 !SECS -> 0 SUB 11 WRITE 59 !CHCV SUB 2E WRITE 9A !VBPS PAUSE %150 !150ms IF 1 @XX0XXX01 THEN GOTO SECAM ELSE PRINT "PAL" GOTO STOP
#SECAM SUB 0D WRITE 07 !SECS -> 1 PRINT "SECAM" GOTO STOP #STOP
23.2 MODE 0 Source Select Procedure
SLAVE 9C !OCF1 SUB 06 WRITE 00 !CVBS MODE 0 SUB 20 WRITE D9 !AI21 ACTIVE SUB 21 WRITE 17 !REFS ON SUB 22 WRITE 40 !AD2->LUMA and CHROMA SUB 2C WRITE 03 !CLAMP SELECT SUB 30 WRITE 44 !Gain AD2 active SUB 31 WRITE 75 !AOSL -> 01b SUB 21 WRITE 16 !REFS OFF CLAMP AKTIV
23.3 MODE 1 Source Select Procedure
SLAVE 9C !OCF1 SUB 06 WRITE 00 !CVBS MODE 1 SUB 20 WRITE D8 !AI22 ACTIVE SUB 21 WRITE 17 !REFS ON SUB 22 WRITE 40 !AD2->LUMA and CHROMA SUB 2C WRITE 03 !CLAMP SELECT SUB 30 WRITE 44 !Gain AD2 active SUB 31 WRITE 75 !AOSL -> 01b SUB 21 WRITE 16 !REFS OFF CLAMP AKTIV
23.4 MODE 2 Source Select Procedure
SLAVE 9C !OCF1 SUB 06 WRITE 00 !CVBS MODE 2 SUB 20 WRITE BA !AI31 ACTIVE SUB 21 WRITE 07 !REFS ON SUB 22 WRITE 91 !AD3->LUMA and CHROMA SUB 2C WRITE 03 !CLAMP SELECT SUB 30 WRITE 60 !Gain AD3 active SUB 31 WRITE B5 !AOSL -> 10b SUB 21 WRITE 05 !REFS OFF CLAMP AKTIV
23.5 MODE 3 Source Select Procedure
SLAVE 9C !OCF1 SUB 06 WRITE 00 !CVBS MODE 3 SUB 20 WRITE B8 !AI32 ACTIVE SUB 21 WRITE 07 !REFS ON SUB 22 WRITE 91 !AD3->LUMA and CHROMA SUB 2C WRITE 03 !CLAMP SELECT SUB 30 WRITE 60 !Gain AD3 active SUB 31 WRITE B5 !AOSL -> 10b SUB 21 WRITE 05 !REFS OFF CLAMP AKTIV
Page 71
1995 Oct 18 71
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
23.6 MODE 4 Source Select Procedure
SLAVE 9C !OCF1 SUB 06 WRITE 00 !CVBS MODE 4 SUB 20 WRITE 7C !AI41 ACTIVE SUB 21 WRITE 07 !REFS ON SUB 22 WRITE D2 !AD3->LUMA and CHROMA SUB 2C WRITE 83 !CLAMP SELECT SUB 30 WRITE 60 !Gain AD3 active SUB 31 WRITE B5 !AOSL -> 10b SUB 21 WRITE 03 !REFS OFF CLAMP AKTIV
23.7 MODE 5 Source Select Procedure
SLAVE 9C !OCF1 SUB 06 WRITE 00 !CVBS MODE 5 SUB 20 WRITE 78 !AI41 ACTIVE SUB 21 WRITE 07 !REFS ON SUB 22 WRITE D2 !AD3->LUMA and CHROMA SUB 2C WRITE 83 !CLAMP SELECT SUB 30 WRITE 60 !Gain AD3 active SUB 31 WRITE B5 !AOSL -> 10b SUB 21 WRITE 03 !REFS OFF CLAMP AKTIV
23.8 MODE 6 Source Select Procedure
SLAVE 9C !OCF1 SUB 06 WRITE 80 !Y+C MODE 6 SUB 20 WRITE 59 !AI21=Y, AI42=C SUB 21 WRITE 17 !REFS ON SUB 22 WRITE 42 !AD2->LUMA, AD3->CHR SUB 2C WRITE A3 !CLAMP SELECT SUB 30 WRITE 44 !Gain AD2 active SUB 31 WRITE 75 !AOSL -> 01 SUB 21 WRITE 12 !REFS OFF CLAMP AKTIV
23.9 MODE 7 Source Select Procedure
SLAVE 9C !OCF1 SUB 06 WRITE 80 !Y+C MODE 7 SUB 20 WRITE 9A !AI31=Y, AI22=C SUB 21 WRITE 17 !REFS ON SUB 22 WRITE B1 !AD3->LUMA, AD2->CHR SUB 2C WRITE 13 !CLAMP SELECT SUB 30 WRITE 60 !Gain AD3 active SUB 31 WRITE B5 !AOSL -> 10b SUB 21 WRITE 14 !REFS OFF CLAMP AKTIV
23.10 MODE 8 Source Select Procedure
SLAVE 9C !OCF1 SUB 06 WRITE 80 !Y+C MODE 8 SUB 20 WRITE 3C !AI41=Y, AI32=C SUB 21 WRITE 27 !REFS ON SUB 22 WRITE C1 !AD2->LUMA, AD3->CHR
SUB 2C WRITE 23 !CLAMP SELECT SUB 30 WRITE 44 !Gain AD2 active SUB 31 WRITE 75 !AOSL -> 01 SUB 21 WRITE 21 !REFS OFF CLAMP AKTIV
Page 72
1995 Oct 18 72
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
24 PACKAGE OUTLINE
REFERENCES
OUTLINE VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC JEDEC EIAJ
Note
1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.
SOT188-2
4460
68
1
9
10 26
43
27
61
detail X
(A )
3
b
p
w M
A
1
A
A
4
L
p
b
1
β
k
1
k
X
y
e
E
B
D
H
E
H
v M
B
D
Z
D
A
Z
E
e
v M
A
pin 1 index
112E10 MO-047AC
0 5 10 mm
scale
92-11-17 95-03-11
PLCC68: plastic leaded chip carrier; 68 leads
SOT188-2
UNIT A
A
min. max. max. max. max.
1
A
4
b
p
E
(1)
(1) (1)
eH
E
Z
ywv β
mm
4.57
4.19
0.51
3.30
0.53
0.33
0.021
0.013
1.27
0.51
2.16 45
o
0.18 0.100.18
DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)
D
(1)
24.33
24.13
H
D
25.27
25.02
E
Z
2.16
D
b
1
0.81
0.66
k
1.22
1.07
k
1
0.180
0.165
0.020
0.13
A
3
0.25
0.01
0.05
0.020
0.085
0.007 0.0040.007
L
p
1.44
1.02
0.057
0.040
0.958
0.950
24.33
24.13
0.958
0.950
0.995
0.985
25.27
25.02
0.995
0.985
e
E
e
D
23.62
22.61
0.930
0.890
23.62
22.61
0.930
0.890
0.085
0.032
0.026
0.048
0.042
E
e
inches
D
e
Page 73
1995 Oct 18 73
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
25 SOLDERING
25.1 Introduction
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our
“IC Package Databook”
(order code 9398 652 90011).
25.2 Reflow soldering
Reflow soldering techniques are suitable for all PLCC packages.
The choice of heating method may be influenced by larger PLCC packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our
“Quality
Reference Handbook”
(order code 9398 510 63011).
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.
Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.
25.3 Wave soldering
Wave soldering techniques can be used for all PLCC packages if the following conditions are observed:
A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
The longitudinal axis of the package footprint must be parallel to the solder flow.
The package footprint must incorporate solder thieves at the downstream corners.
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.
25.4 Repairing soldered joints
Fix the component by first soldering two diagonally­opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
Page 74
1995 Oct 18 74
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
26 DEFINITIONS
27 LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
28 PURCHASE OF PHILIPS I
2
C COMPONENTS
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Purchase of Philips I
2
C components conveys a license under the Philips’ I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
Page 75
1995 Oct 18 75
Philips Semiconductors Product specification
One Chip Front-end 1 (OCF1) SAA7110; SAA7110A
NOTES
Page 76
Philips Semiconductors – a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40-2783749, Fax. (31)40-2788399
Brazil: Rua do Rocio 220 - 5
th
floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970), Tel. (011)821-2333, Fax. (011)829-1849
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:
Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. (852)2319 7888, Fax. (852)2319 7700
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300
COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (358)0-615 800, Fax. (358)0-61580 920
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: P.O. Box 10 63 23, 20043 HAMBURG,
Tel. (040)3296-0, Fax. (040)3296 213.
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
India: Philips INDIA Ltd, Shivsagar Estate, A Block,
Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01)7640 000, Fax. (01)7640 200
Italy: PHILIPS SEMICONDUCTORS S.r.l.,
Piazza IV Novembre 3, 20124 MILANO, Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557
Japan: Philips Bldg13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. (03)3740 5130, Fax. (03)3740 5077
Korea: Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02)709-1412, Fax. (02)709-1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,
Tel. 9-5(800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. (040)2783749, Fax. (040)2788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022)74 8000, Fax. (022)74 8341
Pakistan: Philips Electrical Industries of Pakistan Ltd.,
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (63) 2 816 6380, Fax. (63) 2 817 3474
Portugal: PHILIPS PORTUGUESA, S.A.,
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)4163160/4163333, Fax. (01)4163174/4163366
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd.,
195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430, Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01)488 2211, Fax. (01)481 77 30
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (66) 2 745-4090, Fax. (66) 2 398-0793
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. (0212)279 27 70, Fax. (0212)282 67 07
United Kingdom: Philips Semiconductors LTD.,
276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. (0181)730-5000, Fax. (0181)754-8421
United States:811 East Arques Avenue, SUNNYVALE,
CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (02)70-4044, Fax. (02)92 0601
Internet: http://www.semiconductors.philips.com/ps/ For all other countries apply to: Philips Semiconductors,
International Marketing and Sales, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-2724825
SCD44 © Philips Electronics N.V. 1995
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
483061/1500/01/pp76 Date of release: 1995 Oct 18 Document order number: 9397750 00368
Loading...