Datasheet RLP1N08LE Datasheet (Intersil)

Page 1
RLP1N08LE
Data Sheet April 1999
1A, 80V, 0.750 Ohm, Current Limited, N-Channel Power MOSFET
The RLP1N08LE is a semi-smart monolithic power circuit which incorporates a lateral bipolar transistor, two resistors, a zener diode, and a PowerMOS transistor. Good control of the current limiting levels allows use of these devices where a shorted load condition may be encountered. “Logic level” gates allow this device to be fully biased on with only 5V from gate to source. The zener diode provides ESD protection up to 2kV. These devices can be produced on the standard PowerMOS production line.
Formerly developmental type TA09842.
Ordering Information
PART NUMBER PACKAGE BRAND
RLP1N08LE TO-220AB L1N08LE
NOTE: When ordering, use the entire part number.
File Number
Features
• 1A, 80V
•r
•I
• Built-in Current Limiting
• ESD Protected
• Controlled Switching Limits EMI and RFI
• Specified for 150
• Temperature Compensated Spice Model Provided
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
= 0.750
DS(ON)
at 150oC = 1.5A Maximum
LIMIT
o
C Operation
Components to PC Boards”
Symbol
D
2252.3
Packaging
G
S
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
6-435
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
RLP1N08LE
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
RLP1N08LE UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
DSS
DGR
80 V
80 V
Electrostatic Voltage at 100pF, 1500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ESD 2 kV
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Gate to Source Voltage (Reverse Voltage Gate Bias Not Allowed). . . . . . . . . . . . . . . . . . . . V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P
D
GS
D
Self Limited
5.5 V 30 W
Power Dissipation Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.24 W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
STG
-55 to 150
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
300 260
o
C
o
C
o
C
NOTE:
1. TJ= 25oC to 150oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate to Threshold Voltage V Zero Gate Voltage Drain Current I
DSSID
GS(TH)VGS
DSS
= 250µA, VGS = 0V, Figure 7 80 - - V
= VDS, ID = 250µA, Figure 8 1 - 2 V
VDS = 65V, VGS = 0V TC = 25oC--1µA
TC = 150oC--50µA Gate to Source Leakage Current I Drain to Source On Resistance (Note 2) r
Limiting Current I
DS(ON)ID
DS(Lim)VDS
Turn-On Time t Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Turn-Off Time t
(OFF)
Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R
GSS
(ON)
θJC θJA
VGS = 5V, TC = 150oC--50µA
= 1A, VGS = 5V
Figure 6
= 15V, VGS = 5V
Figure 3
VDD = 30V, ID = 1A, VGS = 5V, RGS = 25 RL = 30
r
TC = 25oC - - 0.750
TC = 150oC - - 1.5
TC = 25oC 1.8 - 3 A
TC = 150oC 1.1 - 1.5 A
- - 6.5 µs
- - 1.5 µs
1-5µs
- - 7.5 µs
f
1-5µs
- - 12.5 µs
- - 4.17oC/W
TO-220AB - - 62
o
C/W
Electrostatic Voltage ESD Human Model (100pF, 1.5k) 2000 - - V
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage (Note 2) V
SD
Reverse Recovery Time t
NOTES:
2. Pulsed: pulse duration = 300µs maximum, duty cycle = 2%.
3. Repititive rating: pulse width limited by maximum junction temperature.
6-436
ISD = 1A - - 1.5 V ISD = 1A - - 1 ms
rr
Page 3
RLP1N08LE
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 150
TC, CASE TEMPERATURE (oC)
Unless Otherwise Specified
125
FIGURE 1. NORMALIZED POWERDISSIPATION vs CASE
TEMPERATURE
2.0
1.5
1.0
0.5
0
NORMALIZED DRAIN TO SOURCE CURRENT
-50 0 50 100 150 T
, CASE TEMPERATURE (oC)
C
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX.
= 10V, VGS = 5V
V
DS
10
TJ = MAX RATED
ID MAX AT 25oC
ID MIN AT 150oC
1.0 OPERATION IN THIS
AREA MAY BE LIMITED BY r
, DRAIN CURRENT (A)
D
I
0.1
1 10 100
DS(ON)
, DRAIN TO SOURCE VOLTAGE (V)
V
DS
V
DSS
MAX = 80V
100µs
1ms
10ms
DC
FIGURE 2. FORWARD BIAS SAFE OPERATING AREA
3.0
TC = 25oC
2.5
2.0
1.5
1.0
0.5
, DRAIN TO SOURCE CURRENT (A)
DS
I
0
012345
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX.
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
8V 6V 5V
VGS = 10V
4V
3V
2V
FIGURE 3. NORMALIZED CURRENT LIMIT vs CASE
FIGURE 4. SATURATION CHARACTERISTICS
TEMPERATURE
4.2 PULSE TEST PULSE DURATION = 80µs
3.5
DUTY CYCLE = 0.5% MAX V
= 15V
DS
2.8
2.1
1.4
, DRAIN TO SOURCE CURRENT (A)
0.7
DS(ON)
I
0
0 2.5 5.0 7.5
, GATE TO SOURCE VOLTAGE (V)
V
GS
-55oC
25oC
150oC
2.5 VGS = 5V, ID = 1A
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX.
2.0
1.5
1.0
ON RESISTANCE
0.5
NORMALIZED DRAIN TO SOURCE
0
-50 0 50 100 150 TJ, JUNCTION TEMPERATURE (oC)
FIGURE 5. TRANSFER CHARACTERISTICS FIGURE 6. NORMALIZED DRAIN TO SOURCEON
RESISTANCE vs JUNCTION TEMPERATURE
6-437
Page 4
RLP1N08LE
Typical Performance Curves
1.4 ID = 250µA
1.2
1.0
0.8
BREAKDOWN VOLTAGE
0.6
NORMALIZED DRAIN TO SOURCE
0.4
-50 0 50 100 150 T
, JUNCTION TEMPERATURE (oC)
J
Unless Otherwise Specified (Continued)
FIGURE 7. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
500
VGS = 0V, f = 1MHz
= CGS + C
C
400
300
200
C, CAPACITANCE (pF)
100
C
OSS
C
RSS
C
ISS
C C
ISS RSS OSS
= C
GD
CDS + C
GD
GD
1.2
1.1
1.0
0.9
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.7
0.6
-50 0 50 100 150 , JUNCTION TEMPERATURE (oC)
T
J
VGS = V
DS
ID = 250µA
FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
V
DD
R
L
V
V
GS
+
0
G
R
GS
D
DS
0
0 5 10 15 20 25
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
S
FIGURE 9. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 10. SWITCHING TEST CIRCUIT
20
HSTR = 0oC/W
15
1oC/W
2oC/W
10
5oC/W
10oC/W
5
, DRAIN TO SOURCE VOLTAGE (V)
25oC/W
DS
V
0
25 50 75 100 125 150
, AMBIENT TEMPERATURE (oC)
T
A
FREE AIR R
TJ = 150oC I
= 1.5A
LIM
R
= 4.17oC/W
θJC
= 80oC/W
θJC
FIGURE 11. DC OPERATION IN CURRENT LIMITING
80
60
DUTY CYCLE = 20%
40
20
, DRAIN TO SOURCE VOLTAGE (V)
MAX PULSE WIDTH = 100ms
DS
TJ = 150oC, I
V
0
25 50 75 100 125 150
50%
= 1.5A, R
LIM
, AMBIENT TEMPERATURE (oC)
T
A
NOTE: Heatsink thermal resistance = 2
10% 5% 2% 1%
= 4.17oC/W
θJC
o
C/W
FIGURE 12. MAXIMUM VDS vs TA IN CURRENT LIMITING
6-438
Page 5
RLP1N08LE
Typical Performance Curves
80
MAX PULSE WIDTH = 100ms
TJ = 150oC I
= 1.5A
LIM
R
= 4.17oC/W
θJC
60
40
DUTY CYCLE = 20%
20
, DRAIN TO SOURCE VOLTAGE (V)
DS
V
0
25 50 75 100 125 150
50%
, AMBIENT TEMPERATURE (oC)
T
A
10%
Unless Otherwise Specified (Continued)
5% 2% 1%
NOTE: Heatsink thermal resistance = 5oC/W
FIGURE 13. MAXIMUM VDS vs TA IN CURRENT LIMITING
80
MAX PULSE WIDTH = 100ms
T
= 150oC
J
I
= 1.5A
LIM
R
= 4.17oC/W
θJC
60
1%
80
MAX PULSE WIDTH = 100ms TJ = 150oC I
= 1.5A
LIM
R
= 4.17oC/W
θJC
60
40
DUTY CYCLE = 20%
20
, DRAIN TO SOURCE VOLTAGE (V)
DS
V
0
25 50 75 100 125 150
10%
50%
, AMBIENT TEMPERATURE (oC)
T
A
5%
2% 1%
NOTE: Heatsink thermal resistance = 10oC/W
FIGURE 14. MAXIMUM VDS vs TA IN CURRENT LIMITING
80
DUTY CYCLE = 1%
60
MAX PULSE WIDTH = 100ms
T
= 150oC
J
I
= 1.5A
LIM
R
= 4.17oC/W
θJC
40
20
, DRAIN TO SOURCE VOLTAGE (V)
DS
V
0
25 50 75 100 125 150
5%
10%
20% 50%
, AMBIENT TEMPERATURE (oC)
T
A
DUTY CYCLE = 2%
NOTE: Heatsink thermal resistance = 25oC/W
FIGURE 15. MAXIMUM VDS vs TA IN CURRENT LIMITING
10
8
STARTING TEMP = 25oC
C (s)
o
TIME TO 150
125oC 100oC 75oC 50oC
6
4
2
R
θJC
4.17
o
=
C/W
40
10%
20
, DRAIN TO SOURCE VOLTAGE (V)
DS
V
0
25 50 75 100 125 150
2%
20%
50%
5%
, AMBIENT TEMPERATURE (oC)
T
A
NOTE: No external heatsink.
FIGURE 16. MAXIMUM VDS vs TA IN CURRENT LIMITING
C (s)
o
TIME TO 150
10
8
6
125oC 100oC 75oC 50oC
4
2
R
θJC
STARTING TEMP = 25oC
= 4.17oC/W
0
0 5 10 15 20
, DRAIN TO SOURCE VOLTAGE (V)
V
DS
NOTE: Heatsink thermal resistance = 2oC/W
Heatsink thermal capacitance = 4j/oC
FIGURE 17. TIME TO 150oC IN CURRENT LIMITING
6-439
0
0 5 10 15 20
, DRAIN TO SOURCE VOLTAGE (V)
V
DS
NOTE: Heatsink thermal resistance = 5oC/W
Heatsink thermal capacitance = 2j/oC
FIGURE 18. TIME TO 150oC IN CURRENT LIMITING
Page 6
RLP1N08LE
Typical Performance Curves
10
8
STARTING
C (s)
6
o
125oC 100oC 75oC 50oC
4
TIME TO 150
2
0
0 5 10 15 20
, DRAIN TO SOURCE VOLTAGE (V)
V
DS
TEMP = 25oC
Unless Otherwise Specified (Continued)
R
θJC
NOTE: Heatsink thermal resistance = 10oC/W
Heatsink thermal capacitance = 1j/oC
FIGURE 19. TIME TO 150oC IN CURRENT LIMITING
10
8
= 4.17oC/W
10
8
STARTING
C (s)
6
o
125oC
4
TIME TO 150
2
0
0 5 10 15 20
100oC
TEMP = 25
75oC
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
50oC
o
C
R
NOTE: Heatsink thermal resistance = 25oC/W
Heatsink thermal capacitance = 0.5j/oC
FIGURE 20. TIME TO 150oC IN CURRENT LIMITING
= 4.17oC/W
θJC
C (s)
6
o
4
TIME TO 150
125oC
2
0
0 5 10 15 20
STARTING TEMP = 25oC
100oC
75oC
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
50oC
NOTE: No external heatsink.
FIGURE 21. TIME TO 150oC IN CURRENT LIMITING
6-440
Page 7
RLP1N08LE
Temperature Dependence of Current Limiting and Switching Speed
The RLP1N08LE is a monolithic power device which incorporates a logic level PowerMOS transistor with a resistor in series with the source. The base and emitter ofa lateral bipolar transistor is connected across this resistor, and the collector of the bipolar transistor is connected to the gate of the PowerMOS transistor. When the voltage across the resistor reaches the value required to forward bias the emitter base junction of the bipolar transistor, the bipolar transistor “turns on”. A series resistor is incorporated in series with the gate of the PowerMOS transistor allowing the bipolar transistor to drive the gate of the PowerMOS transistorsto a voltagewhich just maintains a constant current in the PowerMOS transistor. Since both the resistance of the resistor in series with the PowerMOS transistor source and voltage required to forward bias the base emitter junction of the bipolar transistor vary with the temperature, the current at which the device limits is a function of temperature. This dependence is shown in figure 3.
The resistor in series with the gate of the PowerMOS transistor results in much slower switching than in most PowerMOS transistors. This is an advantage where fast switchingcan cause EMI or RFI.The switching speedis very predictable, and a minimum as well as maximum fall time is given in the device characteristics for this type.
DC Operation of the RLP1N08LE
The limit of the drain to source voltage for operation in current limiting on a steady state (DC) basis is shown as Figure 11. The dissipation inthe device is simply the applied drain tosource voltage multipliedby the limiting current.This device,like most Power MOSFET devices today, is limited to
o
150
C. The maximum voltage allowable can, therefore be
expressed as:
150oCT
()
V
----------------------------------------------------------=
DS
I
LIMRθJCRθCA
AMBIENT
+()×
(EQ. 1)
Duty Cycle Operation of the RLP1N08LE
In many applications either the drain to source voltage or the gate driveis not available100% of the time. The copper header on which the RLP1N08LE is mounted has a very large thermal storage capability, so for pulse widths of less than 100 milliseconds, the temperature of the header can be considered a constant case temperature calculated simply as:
T
VDSIDDR
C
×××()T
θCA
+=
AMBIENT
(EQ. 2)
Generally the heat storage capability of the silicon chip in a power transistor is ignored for duty cycle calculations. Making this assumption, limiting junction temperature to
o
150
C and using the TC calculated above, the expression
for maximum V
V
------------------------------------------=
DS
I
LIM
under duty cycle operation is:
DS
150 TC–
DR
××
θJC
(EQ. 3)
These values are plotted as Figures 12 thru 16 for various heat sink thermal resistances.
Limited Time Operations of the RLP1N08LE
Protection for a limited period of time is sufficient for many applications. As stated above the heat storage in the silicon chip can usually be ignored for computations of over 10 milliseconds and the thermal equivalent circuit reduces to a simple enough circuit to allow easy computation on the limiting conditions. The variation in limiting current with temperature complicates the calculation of junction temperature, but a simple straight line approximation of the variation is accurate enough to allow meaningful computations. The curves shown as figures 17 thru 21 give an accurate indication of how long the specified voltage can be applied to the device in the current limiting mode without exceeding the maximum specified 150 termperature. In practice this tells you how long you have to alleviate the condition causing the current limiting to occur.
o
C junction
6-441
Page 8
RLP1N08LE
Spice Model
.SUBCKT RLP1N08LE213;rev 09/16/91 *Nominal Temperature = 25oC .MODEL MOSMOD NMOS (VTO=1.7 KP=2.1 IS=1e-30 N=10 TOS=1 L=1u W=1u) Vto 21 6 0.33 Rsource 8 7 RDSMOD 0.28 Rdrain 5 16 RDSMOD 0.2 .MODEL RDSMOD RES (TC1=7.54E-3 TC2=2.23E-5) .MODEL RVTOMOD RES (TC1=-2.23E3 TC2=-5.29E-7) .MODEL RVTOMOD2 RES (TC1=0 TC2=0) Ebreak 11 7 17 18 107.3 .MODEL RBKMOD RES (TC1=1.11E-3 TC2=-6.83E-7) .MODEL DBKMOD D (RS=2.78 TRS1=-8.88E-3 TRS2=2.55E-5) .MODEL DBDMOD D (IS=9.91E-15 RS=3.01E-1 TRS1=3.79E-3 TRS2=1.11E-6 +CJO=4.32E-10 TT=2E-7 Cin 6 8 3.75E-10 Ca 12 8 6.5E-10 .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-1) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=-3) .MODEL DPLCAPMOD D (CJO=2E-10 IS=1e-30 N=10) Cb 12 14 6.5E-10 .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.65 VOFF=3.35) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=3.35 VOFF=-1.65) Rgate 9 20 4.48E3 Lgate 1 9 9.5E-10 Ldrain 2 5 2.5E-9 Lsource 3 7 2.5E-9 Dbody 7 5 DBDMOD Dbreak 5 11 DBKMOD Dplcap 10 5 DPLCAPMOD Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg610681 Evto 20 6 18 8 1 It8171 MOS1 16 6 8 8 MOSMOD M=0.99 MOS2 16 21 8 8 MOSMOD M=0.01 Rbreak 17 18 RBKMOD 1 Rin 6 8 1e9 Rvto 18 19 RVTOMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 8 19 DC 1 *Current Limiting Control Section .MODEL RSMOD RES (TC1=3.2E-3) Q Control 20 8 7 QMOD 10 .MODEL QMOD NPN (BF=5 VJE=0.5) *ESD Protection DESD 7 9 DESMOD .MODEL DESMOD D(BV=7.185 TBV1=3.5E-4 TBV2=2.2E-6) .ENDS
(RLP1N08LE)
6-442
Page 9
RLP1N08LE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which mayresult from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
6-443
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...