Page 1
RFD8P06LE, RFD8P06LESM, RFP8P06LE
Data Sheet July 1999 File Number
8A, 60V, 0.300 Ohm, ESD Rated, Logic
Level, P-Channel Power MOSFET
These products are P-Channel power MOSFETs
manufactured using the MegaFET process. This process,
which uses feature sizes approaching those of LSI circuits,
gives optimum utilization of silicon, resulting in outstanding
performance. They were designed for use in applications
such as switching regulators, switching converters, motor
drivers, and relay drivers. These transistors can be operated
directly from integrated circuits.
Formerly developmental type TA49203.
Ordering Information
PART NUMBER PACKAGE BRAND
RFD8P06LE TO-251AA F8P6LE
RFD8P06LESM TO-252AA F8P6LE
RFP8P06LE TO-220AB FP8P06LE
NOTE: When ordering, usethe entire part number .Add thesuffix9A to
obtain the TO-252AA variant in the tape and reel, i.e.,
RFD8P06LESM9A.
Features
• 8A, 60V
DS(ON)
= 0.300Ω
•r
• 2kV ESD Protected
• Temperature Compensating PSPICE
• PSPICE Thermal Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
o
C Operating Temperature
• 175
Symbol
D
G
S
®
Model
4273.1
Packaging
DRAIN (FLANGE)
JEDEC TO-251AA JEDEC TO-252AA
SOURCE
DRAIN
GATE
GATE
SOURCE
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
DRAIN (FLANGE)
7-11
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
RFD8P06LE, RFD8P06LESM, RFP8P06LE
Absolute Maximum Ratings T
= 25oC Unless Otherwise Specified
C
RFD8P06LE, RFD8P06LESM,
RFP8P06LE UNITS
Drain to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain to Gate Voltage (RGS = 20kΩ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DS
DGR
-60 V
-60 V
Continuous Drain Current
TC = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
TC= 100oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P
D
D
DM
GS
D
-8
-6.3
See Figure 5
± 10 V
48 W
A
A
Dissipation Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.32 W/oC
Single Pulse Avalanche Energy Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ, T
STG
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
AS
L
See Figure 6
-55 to 175
300
o
C
o
C
(0.063in (1.6mm) from case for 10s)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ= 25oC to 150oC.
Electrical Specifications T
= 25oC Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV
Gate Threshold Voltage V
Zero Gate Voltage Drain Current I
DSSID
GS(TH)VGS
DSS
= 250µ A, VGS = 0V (Figure 11) -60 - - V
= VDS, ID = 250µ A (Figure 12) -1 - -2 V
VDS =- 60V, VGS = 0V TJ = 25oC- - - 1µA
TJ = 150oC - - -50 µ A
Gate to Source Leakage Current I
On Resistance (Note 1) r
GSS
DS(ON)ID
VGS = ± 10V - - ± 10 µ A
= 8A, VGS = -5V (Figure 9, 10) - - 0.300 Ω
ID = 8A, VGS = -4.5V (Figure 9, 10) - - 0.330 Ω
Turn-On Time t
Turn-On Delay Time t
d(ON)
Rise Time t
Turn-Off Delay Time t
d(OFF)
Fall Time t
Turn-Off Time t
Total Gate Charge Q
g(TOT)VGS
Gate Charge at -5V Q
Threshold Gate Charge Q
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Thermal Resistance Junction to Case R
Thermal Resistance Junction to Ambient R
OFF
g(TH)VGS
ON
r
VDD = -30V, I
(Figure 13)
≅8A, R
D
= 9.1Ω , RL = 3.75Ω
GS
- - 90 ns
-1 0- n s
-5 0- n s
-3 0- n s
f
-2 0- n s
- - 75 ns
= 0 to -10V VDD = -48V, I
g(-5)VGS
= 0 to -5V - 15 18 nC
= 0 to -1V - 1.2 1.5 nC
VDS =- 25V, VGS = 0V, f = 1MHz
ISS
(Figure 15)
OSS
RSS
θ JC
TO-251AA, TO-252AA - - 100oC/W
θ JA
RL = 6Ω
I
= -0.2mA
g(REF)
(Figure 14)
D
≅8A,
-2 53 0n C
- 675 - pF
- 175 - pF
-5 0-p F
- - 3.125oC/W
TO-220AB 80oC/W
Source to Drain Diode Specifications T
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage (Note 1) V
Reverse Recovery Time t
NOTE:
2. Pulse Test: Pulse width ≤ 300µ s, Duty Cycle ≤ 2%.
7-12
= 25oC Unless Otherwise Specified
C
TJ = 25oC, ISD =- 8A, VGS = 0V - - -1.5 V
SD
TJ = 25oC, ISD =- 8A, dISD/dt = 100A/µ s - - 125 ns
rr
Page 3
RFD8P06LE, RFD8P06LESM, RFP8P06LE
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
TC, CASE TEMPERATURE (oC)
Unless Otherwise Specified
125
FIGURE 1. NORMALIZEDPOWER DISSIPATION vs CASE
TEMPERATURE
2.0
1.0
0.5
150
-10
-8
-6
-4
, DRAIN CURRENT (A)
D
I
-2
0
25 50 75 100
TC, CASE TEMPERATURE (oC)
125
150
FIGURE 2. MAXIMUMCONTINUOUSDRAIN CURRENT vs
CASE TEMPERATURE
175
0.2
0.1
0.1
, NORMALIZED
θ JC
Z
THERMAL IMPEDANCE
0.05
0.02
0.01
SINGLE PULSE
0.01
-5
10
-100
TC = 25oC, TJ = MAX RATED
-10
-1
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS
AREA MAY BE
LIMITED BY r
-0.1
-1 -10
DS(ON)
, DRAIN TO SOURCE VOLTAGE (V)
V
DS
NOTES:DUTY FACTOR: D = t
PEAK TJ = PDM x Z
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
-2
10
-1
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
2
-10
TC = 25oC
FOR TEMPERATURES ABOVE 25oC
DERATE PEAK CURRENT
CAPABILITY AS FOLLOWS:
-3
10
t, PULSE WIDTH (ms)
V
DS(MAX)
= -60V
100µ s
1ms
10ms
100ms
DC
-100
VGS = -10V
VGS = -5V
, PEAK CURRENT (A)
DM
-10
I
-5
10
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
-5
-4
10
II
-2
10
P
DM
t
1
t
2
xR
θJC
θJC
0
10
175 TC–
=
----------------------- -
25
150
-1
10
1/t2
10
+ T
C
1
10
0
1
10
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY
7-13
Page 4
RFD8P06LE, RFD8P06LESM, RFP8P06LE
Typical Performance Curves
-30
-10
STARTING TJ = 150oC
If R = 0
, AVALANCHE CURRENT (A)
tAV = (L) (IAS) / (1.3RATED BV
AS
I
If R ≠ 0
tAV = (L/R) ln [(IAS*R) / (1.3 RATED BV
-1
0.01 0.1 1 10
, TIME IN AVALANCHE (ms)
t
AV
DSS
Unless Otherwise Specified
STARTING TJ = 25oC
- VDD)
- VDD) + 1]
DSS
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
-30
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
V
DD
= -15V
-25
-20
-15
-55oC
25oC
175oC
-30
PULSE DURATION = 250µ s
DUTY CYCLE = 0.5% MAX
= 25oC
T
-25
C
-20
-15
-10
, DRAIN CURRENT (A)
D
I
-5
0
0 -1.5 -3.0 -4.5 -7.5
VDS, DRAIN TO SOURCE VOLTAGE (V)
V
GS
VGS = -5V
VGS = -4.5V
VGS = -4V
VGS = -3V
-6.0
FIGURE 7. SATURATION CHARACTERISTICS
600
ID = -8A
= -4A
I
500
400
D
I
D
I
D
= -2A
= -1A
= -10V
-10
, ON-STATE DRAIN CURRENT (A)
-5
D(ON)
I
0
0 -3.0 -4.5 -6.0 -7.5 -1.5
VGS, GATE TO SOURCE VOLTAGE (V)
300
, ON-STATE RESISTANCE (mΩ )
DS(ON)
r
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
200
-2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0
V
, GATE TO SOURCE VOLTAGE (V)
GS
FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
2.25
PULSE DURATION = 80µ s
DUTY CYCLE = 0.5% MAX
2.00
VGS = -5V, ID = -8A
1.75
1.50
1.25
1.00
0.75
NORMALIZED ON RESISTANCE
0.50
-80
-40 0
T
, JUNCTION TEMPERATURE (oC)
J
40
160 200
120
80
2.0
ID = -250µ A
1.15
1.1
1.05
1.0
BREAKDOWN VOLTAGE
0.95
NORMALIZED DRAIN TO SOURCE
0.9
-80 160 200
-40 0 40
, JUNCTION TEMPERATURE (oC)
T
J
80
120
FIGURE 10. NORMALIZEDDRAINTO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
7-14
FIGURE 11. NORMALIZEDDRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
Page 5
RFD8P06LE, RFD8P06LESM, RFP8P06LE
Typical Performance Curves
1.4
VGS = VDS,ID = -250µ A
Unless Otherwise Specified
1.2
1.0
0.8
NORMALIZED GATE
THRESHOLD VOLTAGE
0.6
-80 -40 0 40 80 120 160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 12. NORMALIZEDGATE THRESHOLD VOLTAGEvs
JUNCTION TEMPERATURE
-60
-45
-30
-15
, DRAIN TO SOURCE VOLTAGE (V)
DS
V
0
VDD =BV
I
G(REF)
20
I
G(ACT)
DSS
0.75 BV
0.50 BV
0.25 BV
V
RL = 7.5Ω
I
= -0.20mA
G(REF)
DSS
DSS
DSS
= -5V
GS
t, TIME ( µ s)
0.75 BV
0.50 BV
0.25 BV
VDD = BV
DSS
DSS
DSS
80
DSS
I
G(REF)
I
G(ACT)
-5.00
-3.75
-2.50
-1.25
0.00
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 14. NORMALIZEDSWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT
200
, GATE TO SOURCE VOLTAGE (V)
GS
V
125
VDD = -30V, ID = -8A, RL= 3.75Ω
t
r
100
75
50
SWITCHING TIME (ns)
t
d(OFF)
t
f
25
t
d(ON)
0
10
20 30 40 50 0
RGS, GATE TO SOURCE RESISTANCE (Ω )
FIGURE 13. SWITCHING TIMEASA FUNCTION OF GATE
RESISTANCE
1000
800
600
400
C, CAPACITANCE (pF)
200
0
0
C
ISS
C
OSS
C
RSS
-10 -20 -30 -40 -50
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 0V, f = 0.1MHz
= CGS + C
C
C
C
ISS
RSS
OSS
= C
≈ CDS + C
GD
GD
GD
-60
FIGURE 15. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
Test Circuits and Waveforms
V
DS
VARY tP TO OBTAIN
REQUIRED PEAK I
0V
t
P
-V
GS
AS
L
R
G
V
DD
+
DUT
I
AS
0.01Ω
0
V
DD
I
AS
t
P
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
7-15
BV
t
AV
DSS
V
DS
Page 6
RFD8P06LE, RFD8P06LESM, RFP8P06LE
Test Circuits and Waveforms
0V
R
GS
-V
GS
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
V
DS
(Continued)
R
L
DUT
R
L
t
ON
t
d(ON)
t
0
-
+
V
DS
0
r
10%
90%
10%
50%
V
GS
Q
0
g(TH)
PULSE WIDTH
t
d(OFF)
V
DS
t
OFF
50%
90%
90%
t
f
10%
VGS= -1V
VGS= -5V
g(TOT)
-I
G(REF)
-V
V
GS
V
DD
+
DUT
GS
Q
g(-5)
V
DD
Q
0
I
g(REF)
FIGURE 20. GATE CHARGE TEST CIRCUIT FIGURE 21. GATE CHARGE WAVEFORMS
VGS= -10V
7-16
Page 7
PSpice Electrical Model
RFD8P06LE, RFD8P06LESM, RFP8P06LE
.SUBCKT RFD8P06LE 2 1 3 REV 7/29/96
CA 12 8 1.50e-9
CB 15 14 1.50e-9
CIN 6 8 6.30e-10
DBODY 5 7 DBDMOD
DBREAK 7 11 DBKMOD
DESD1 91 9 DESD1MOD
DESD2 91 7 DESD2MOD
DPLCAP 10 6 DPLCAPMOD
EBREAK 5 11 17 18 -67.9
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 5 10 8 6 1
EVTHRES 21 6 19 8 1
EVTEMP 6 20 18 22 1
IT 8 17 1
LDRAIN 2 5 1e-10
LGATE 1 9 2.92e-9
LSOURCE 3 7 2.92e-9
MSTRONG 16 6 8 8 MstrongMOD
MMED 16 6 8 8 MmedMOD
MWEAK 16 21 8 8 MweakMOD
RBREAK 17 18 RBKMOD 1
RDRAIN 50 16 RDSMOD 95e-3
RGATE 9 20 2.89
RIN 6 8 1e9
RSCL1 5 51 RSCLMOD 1e-6
RSCL2 5 50 1e3
RSOURCE 8 7 RSourceMOD 97e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
GATE
LGATE
1
RLGATE
RGATE
9
DESD1
91
DESD2
CA
10
DPLCAP
EVTEMP
-
+
18
22
20
S1A
12
13
8
S1B
EGS EDS
13
RSLC2
6
14
13
+
+
6
8
-
-
ESG
+-
8
6
EVTHRES
+
19
8
S2A
S2B
15
CIN
CB
-
+
5
8
-
5
RSLC1
51
+
5
51
-
50
RDRAIN
21
MSTRO
14
ESLC
16
8
EBREAK
MMED
IT
8
+
17
18
-
MWEAK
DBREAK
RSOURCE
17 18
11
7
RBREAK
-
+
RVTHRES
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
RVTEMP
19
VBAT
DRAIN
2
SOURCE
3
VBAT 22 19 DC 1
ESCL 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/26,7))}
.MODEL DBDMOD D (IS=2.5e-12 RS=4e-2 IKF=0.01 N=0.97 TIKF=0.012 TRS1=0.8e-4 TRS2=-5e-6 CJO=5.25e-10 VJ=0.75 M=0.41 TT=7.50e-8)
.MODEL DBKMOD D (IKF=5 N=0.75 RS=0.245 TRS1=1e-3 TRS2=1.6e-4)
.MODEL DESD1MOD D (BV=16.4 TBV1=-1.25e-3 TBV2=5.79e-7 RS=36 NBV=50 IBV=7e-6)
.MODEL DESD2MOD D (BV=16.2 TBV1=-8.3e-4 TBV2=8.9e-7 NBV=50 IBV=7e-6)
.MODEL DPLCAPMOD D (CJO=4.25e-10 IS=1e-30 N=10 VJ=0.499 M=0.561)
.MODEL MSTRONGMOD PMOS (VTO=-1.91 KP=11.55 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL MMEDMOD PMOS (VTO=-1.51 KP=0.95 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL MWEAKMOD PMOS (VTO=-1.18 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u)
.MODEL RBKMOD RES (TC1=1.045e-3 TC2=-3.5e-7)
.MODEL RDSMOD RES (TC1=0.92e-2 TC2=1.55e-5)
.MODEL RSOURCEMOD RES (TC1=2e-3 TC2=0.5e-6)
.MODEL RSCLMOD RES (TC1=2e-3 TC2=0)
.MODEL RVTHRESMOD RES (TC1=-2.5e-3 TC2=0)
.MODEL RVTEMPMOD RES (TC1=-1.55e-3 TC2=7.5e-6)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=5.25 VOFF=1.75)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=1.75 VOFF=5.25)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.5 VOFF=-0.5)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=0.5)
.ENDS
NOTE: For further discussion of the PSPICE model consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature
Options; authored by William J. Hepp and C. Frank Wheatley.
7-17
Page 8
RFD8P06LE, RFD8P06LESM, RFP8P06LE
PSpice Thermal Model
REV 7/29/96
RFP8P06LE
CTHERM1 7 6 1.3e-4
CTHERM2 6 5 4.5e-4
CTHERM3 5 4 1e-3
CTHERM4 4 3 2e-3
CTHERM5 3 2 1.5e-2
CTHERM6 2 1 0.55
RTHERM1 7 6 3.0e-2
RTHERM2 6 5 5.0e-2
RTHERM3 5 4 0.1
RTHERM4 4 3 1.15
RTHERM5 3 2 1.20
RTHERM6 2 1 0.55
RFD8P06LE, RFD8P06LESM
CTHERM1 7 6 1.3e-4
CTHERM2 6 5 4.5e-4
CTHERM3 5 4 1e-3
CTHERM4 4 3 2e-3
CTHERM5 3 2 1.5e-2
CTHERM6 2 1 0.12
RTHERM1 7 6 3.0e-2
RTHERM2 6 5 5.0e-2
RTHERM3 5 4 0.1
RTHERM4 4 3 1.15
RTHERM5 3 2 1.20
RTHERM6 2 1 0.55
RTHERM1
RTHERM2
RTHERM3
RTHERM4
RTHERM5
JUNCTION
7
CTHERM1
6
CTHERM2
5
CTHERM3
4
CTHERM4
3
CTHERM5
2
RTHERM6
CASE
1
CTHERM6
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications atan ytime without notice. Accordingly,the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029
7-18