Datasheet RF1S50N06LESM, RFG50N06LE, RFP50N06LE Datasheet (Intersil)

Page 1
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
Data Sheet October 1999 File Number 4072.3
50A, 60V, 0.022 Ohm, Logic Level N-Channel Power MOSFETs
Formerly developmental type TA49164.
Ordering Information
P AR T NUMBER P ACKAGE BRAND
RFG50N06LE TO-247 FG50N06L RFP50N06LE TO-220AB FP50N06L RF1S50N06LESM TO-263AB F50N06LE
NOTE: Whenordering, usethe entirepartnumber. Addthe suffix9A to obtain the TO-263AB variant in tape and reel, i.e. RF1S50N06LESM9A.
Features
• 50A, 60V
•r
DS(ON)
• Temperature Compensating PSPICE
= 0.022
®
Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
o
C Operating Temperature
• 175
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
D
G
S
Packaging
DRAIN
(BOTTOM
SIDE METAL)
JEDEC STYLE TO-247 JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
JEDEC TO-263AB
DRAIN
GATE
SOURCE
(FLANGE)
SOURCE
DRAIN
GATE
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
RFG50N06LE, RFP50N06LE,
RF1S50N06LESM UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain to Gate Voltage (RGS= 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
DSS
DGR
GS
DM
AS
D
Refer to Peak Current Curve
D
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
60 V 60 V
±10 V
50
Refer to UIS Curve
142
0.95
-55 to 175
300 260
A
W
W/oC
o
C
o
C
o
C
NOTE:
1. TJ= 25oC to 150oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate Threshold Voltage V Zero Gate Voltage Drain Current I
DSS
GS(TH)
DSS
ID = 250µA, VGS = 0V, Figure 13 60 - - V VGS= VDS, ID = 250µA, Figure 12 1 - 3 V VDS = 55V, VGS = 0V - - 1 µA
VDS = 50V, VGS = 0V, TC = 150oC - - 250 µA Gate to Source Leakage Current I Drain to Source On Resistance (Note 2) r
DS(ON)ID
Turn-On Time t Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Turn-Off Time t Total Gate Charge Q
g(TOT)
Gate Charge at 5V Q Threshold Gate Charge Q
Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R
GSS
ON
r
f
OFF
g(5)
g(TH)
ISS OSS RSS
θJC
θJA
VGS = ±10V - - 10 µA
= 50A, VGS = 5V, Figure 11 - - 0.022
VDD = 30V, ID = 50A, RL = 0.6, VGS = 5V, RGS = 2.5 Figures 10, 18, 19
- - 230 ns
-20- ns
- 170 - ns
-48- ns
-90- ns
- - 165 ns VGS = 0V to 10V VDD = 48V, VGS = 0V to 5V - 57 70 nC VGS = 0V to 1V - 2.2 2.7 nC
ID = 50A, RL = 0.96 Figures 21, 21
VDS = 25V, VGS = 0V, f = 1MHz Figure 14
- 96 120 nC
- 2100 - pF
- 600 - pF
- 230 - pF
- - 1.05 TO-247 - - 30 TO-220AB and TO-263AB - - 80
o o o
C/W C/W C/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V Diode Reverse Recovery Time t
SD
rr
NOTES:
2. Pulse test: pulse width 80µs, duty cycle 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
2
ISD = 45A - - 1.5 V ISD = 45A, dISD/dt = 100A/µs - - 125 ns
Page 3
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
Typical Performance Curves Unless Otherwise Specified
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
125
150
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vsCASE
TEMPERATURE
2
1
0.5
0.2
0.1
0.1
, NORMALIZED
JC
Z
θ
THERMAL IMPEDANCE
0.01 10
-5
0.05
0.02
0.01 SINGLE PULSE
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
60
50
40
30
20
, DRAIN CURRENT (A)
D
I
10
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAINCURRENT vs
CASE TEMPERATURE
P
DM
t
1
t
2
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-2
10
-1
10
1/t2
x R
JC
θ
0
10
175
+ T
JC
C
θ
1
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
500
100
10
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS AREA MAY BE LIMITED BY r
1
1 10 100
DS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
TC = 25oC
T
= MAX RATED
J
100µs
1ms
10ms
200
1000
100
THERMAL IMPEDANCE MAY LIMIT CURRENT
DM
10
IN THIS REGION
-5
10
, PEAK CURRENT CAPABILITY (A) I
VGS = 10V
VGS = 5V
FOR TEMPERATURES ABOVE 25 CURRENT AS FOLLOWS:
-4
10
-3
10
10
I = I
-2
o
C DERATE PEAK
175 - T
25
-1
10
t, PULSE WIDTH (s)
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY
3
150
TC = 25oC
C
0
10
1
10
Page 4
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
Typical Performance Curves Unless Otherwise Specified (Continued)
300
100
10
STARTING TJ = 150oC
, AVALANCHE CURRENT (A)
AS
I
1
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
If R 0
tAV = (L)(IAS)/(1.3*RATED BV
If R = 0
tAV, TIME IN AVALANCHE (ms)
DSS
STARTING TJ = 25oC
1 10 1000.01 0.1
DSS
- VDD)
- VDD) +1]
100
TC = 25oC
75
50
, DRAIN CURRENT (A)
25
D
I
0
0 1.5 3.0 4.5 6.0
VDS, DRAIN TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
VGS = 10V VGS = 5V
NOTE: Refer to Intersil Application Notes AN9321 and AN9322
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING FIGURE 7. SATURATION CHARACTERISTICS
100
V
= 15V
DD
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
75
50
25
, DRAIN TO SOURCE CURRENT (A)
DS(ON)
I
0
0 3.0 4.5 6.01.5
VGS, GATE TO SOURCE VOLTAGE (V)
-55oC 25oC
175oC
80
60
40
, DRAIN TO SOURCE
20
ON RESISTANCE (m)
DS(ON)
r
0
ID = 12.5A
ID = 25A
VDD= 15V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
2.0
3.0
, GATE TO SOURCE VOLTAGE (V)
V
GS
ID = 50A
3.5 4.5 5.0
VGS = 4V
VGS = 3V
VGS = 2.5V
ID = 100A
4.02.5
FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. DRAIN TO SOURCEON RESISTANCEvs GATE
VOLTAGE AND DRAIN CURRENT
600
VDD = 30V, ID = 50A, RL= 0.6
500
400
300
200
SWITCHING TIME (ns)
100
0
10
RGS, GATE TO SOURCE RESISTANCE ()
t
r
t
d(OFF)
t
f
t
d(ON)
20 30 40 500
2.5 V
= 5V, ID = 50A
GS
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
2.0
1.5
ON RESISTANCE
1.0
NORMALIZED DRAIN TO SOURCE
0.5
-80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE FIGURE 11. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
4
200
Page 5
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
Typical Performance Curves Unless Otherwise Specified (Continued)
2.0 VGS = VDS,
1.5
1.0
NORMALIZED GATE
0.5
THRESHOLD VOLTAGE
0
-80 -40 0 40 80 120 160
I
= 250µA
D
TJ, JUNCTION TEMPERATURE (oC)
200
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
2500
C
ISS
2000
VGS = 0V, f = 1MHz C
= CGS + C
1500
1000
C, CAPACITANCE (pF)
500
0
0 5 10 15 20 25
VDS, DRAIN TO SOURCE VOLTAGE (V)
ISS
C
= C
RSS
C
OSS
GD
CDS + C
GD
GD
C
OSS
C
RSS
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
1.2 ID = 250µA
1.1
1.0
0.9
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.8
-80
-40 0 40 80 120 T
, JUNCTION TEMPERATURE (oC)
J
160
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
60
45
30
15
, DRAIN TO SOURCE VOLTAGE (V)
DS
V
0
VDD = BV
I
GREF()
--------------------- -
20
I
GACT()
DSS
RL =1.2
= 1.2mA
I
G(REF)
= 5V
V
GS
PLATEAU VOLTAGES IN DESCENDING ORDER:
= BV
V
DD
VDD = 0.75 BV VDD = 0.50 BV VDD = 0.25 BV
DSS
DSS DSS DSS
t, TIME (µs)
VDD = BV
I
GREF()
--------------------- -
80
I
G ACT()
5.0
DSS
3.75
2.5
1.25
0
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 15. NORMALIZED SWITCHINGWAVEFORMSFOR
CONSTANT GATE CURRENT
200
, GATE TO SOURCE VOLTAGE (V)
GS
V
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
t
0V
P
AS
R
G
DUT
I
AS
0.01
+
V
DD
-
0
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
5
t
P
I
AS
t
AV
V
DS
V
DD
Page 6
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
Test Circuits and Waveforms (Continued)
t
ON
t
10%
d(ON)
90%
50%
10%
t
r
PULSE WIDTH
V
DS
V
DS
R
DUT
L
+
V
DD
-
0
V
GS
0
V
GS
R
GS
V
GS
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
V
I
g(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
VGS= 2V
0
Q
g(TOT)
V
DS
Q
OR Q
g(10)
V
GS
VGS= 1V FOR
g(5)
V
GS
VGS= 5V FOR
2
L
DEVICES
L2 DEVICES
Q
g(TH)
t
d(OFF)
90%
= 10V
t
OFF
t
f
10%
50%
V
GS
L2 DEVICES
90%
VGS= 20V = 10V FOR
I
g(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT FIGURE 21. GATE CHARGE WAVEFORMS
6
Page 7
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
PSPICE Electrical Model
SUBCKT 50N06LE 2 1 3 ; rev 8/11/95
CA 12 8 3.73e-9 CB 15 14 3.73e-9 CIN 6 8 2.08e-9
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 66.5 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
IT 8 17 1 LDRAIN 2 5 4.0e-9
LGATE 1 9 6.0e-9 LSOURCE 3 7 3.0e-9
GATE
1
MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 3.75e-3 RGATE 9 20 1.0 RLDRAIN 2 5 40 RLGATE 1 9 60 RLSOURCE 3 7 30 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 6.15e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD
LGATE
RLGATE
RGATE
9
CA
-
ESG
+
EVTEMP +
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
13
10
6 8
+
+
RSLC2
6
S2A
14 13
S2B
6 8
-
-
DPLCAP
EVTHRES
+
19
8
CIN
15
CB
-
+
-
5
RSLC1
51
5
51
50 RDRAIN
21
MSTRO
14
5 8
+
-
ESLC
16
8
MMED
DBREAK
11
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
+
17 18
-
7
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200),4))} .MODEL DBODYMOD D (IS = 1.70e-12 RS = 3.20e-3 TRS1 = 1.75e-3 TRS2 = 1.75e-6 CJO = 2.55e-9 IKF = 13 XTI = 5.2 TT = 7.00e-8 M = 0.47)
.MODEL DBREAKMOD D (RS = 1.70e-1 IKF = 0.1 TRS1 = 2.00e-3 TRS2 = 8.00e-7) .MODEL DPLCAPMOD D (CJO = 2.00e-9 IS = 1e-30 VJ = 1.1 M = 0.83 N = 10) .MODEL MMEDMOD NMOS (VTO = 2.00 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.0) .MODEL MSTROMOD NMOS (VTO = 2.42 KP = 128 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.60 KP = 0.01 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10.0 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.13e-3 TC2 = 0) .MODEL RDRAINMOD RES (TC1 = 1.20e-2 TC2 = 6.00e-5) .MODEL RSLCMOD RES (TC1 = 2.00e-3 TC2 = 1.00e-6) .MODEL RSOURCEMOD RES (TC1 = 2.00e-3 TC2 =-1.00e-5) .MODEL RVTHRESMOD RES (TC1 = -2.50e-3 TC2 = -8.50e-6) .MODEL RVTEMPMOD RES (TC1 = -2.00e-3 TC2 = 5.00e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.3 VOFF= -2.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.5 VOFF= -5.3) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.4 VOFF= 0.5) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.4)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
Page 8
RFG50N06LE, RFP50N06LE, RF1S50N06LESM
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor productsare sold by description only. Intersil Corporation reservesthe right to make changes in circuit design and/orspecifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor forany infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products,see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
8
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...