Datasheet RF2483 Datasheet (RF Micro Devices)

Page 1
Preliminary
1
RF2483
5
• TDMA/GSM/EDGE Handsets
• GSM/EDGE Handsets
• W-CDMA Handsets
Product Description
The RF2483 is a dual-band direct I/Q to RF modulator designed for handset applications where multiple modes of operation are required. The device provides common differential I/Q inputs and a common AGC amplifier. Inde­pendent single-ended LO inputs and single-ended high and low band RF outputs are provided. The device achieves a very low out-of-band noise density of
-156dBm/Hz minimizing RF filtering. Operating from a single 2.7V supply, the device is packaged in a 4mmx4mm, 20-pin, plastic leadless chip carrier.
LOW NOISE DUAL-BAND QUADRATURE
MODULATOR WITH AGC
• TDMA-Based Wireless Applications
• Wireless Local Loop
• Basestations
max
.00
0.85
.80 .65
12°
.05 .01
NOTES:
1 2
3
4 5
.60 .24 typ
.30
3
.18
.75 .50
Shaded Pin is Lead 1.
Pin 1 identifier must exist on top surface of package byidentification mark or feature on the package body. Exact shape and sizeis optional.
Dimension applies to plated terminal: to be measured between 0.02 mm and 0.25 mm from terminal end.
Package Warpage: 0.05 mm max. Die Thickness Allowable: 0.305 mm max.
4.00 sq.
.50
4 PLCS
1.85
1.55 sq.
.23 .13
.65 .30
4 PLCS
5
UPCONVERTERS
MODULATORS AND
Optimum Technology Matching® Applied
Si BJT GaAs MESFETGaAs HBT Si Bi-CMOS
SiGe HBT
ü
GND2
RF OUT HB
GND3
* *
* *
1VCC3
2VCC2
3ISIG P
4ISIG N
5EN
20
Mode
Control Biasing
6 7
VCC1
19
&
+45°
-45°
LO LB
17
18
Σ
+45°
-45°
8
9
GND LO
RF OUT LB
Power Control
LO HB
Si CMOS
GC
16
15 GC DEC
14 VREF
13 QSIG P
12 QSIG N
11 BAND SEL
10
Represents "GND".
*
GND1
Functional Block Diagram
Package Style: LCC, 20-Pin, 4x4
Features
• Dual-Band Operation 700-2200MHz
• -156dBm/Hznoise@20MHz offset
•+19dBmOIP3
•+6dBmOP1dB
• 35dB Gain Control Range
• Single 2.7V to 3.3V Supply
Ordering Information
RF2483 Low N oise Dual-Band Quadrature Modulator with
RF2483 PCBA Fully Assembled Evaluation Board
RF Micro Devices, Inc. 7628 Thorndike Road Greensboro,NC 27409, USA
AGC
Tel (336) 664 1233
Fax (336) 664 0454
http://www.rfmd.com
Rev A2 010904
5-29
Page 2
RF2483
Absolute Maximum Rat ings
Parameter Rating Unit
Supply Voltage -0.5 to 3.6 V Storage Temperature -40 to +150 °C Operating Ambient Temperature -40 to +85 °C Input Voltage, any pin -0.5 to 3.6 V Input Power, any pin +10 dBm
Preliminary
Caution! ESD sensitive device.
RF Micro Devices believesthe furnishedinformation is correctand accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice.RF Micro Devices does not assume responsibility for the use of the described product(s).
5
Parameter
Min. Typ. Max.
Specification
Unit Condition
Operating Range
Supply Voltage* 2.7 3.3 V Temperature Range* -40 +85 °C High Band Frequency Range* 1700 2200 MHz Bandsel=2.7V Low Band Frequency Range* 700 1000 MHz Bandsel=0V
DC Parameters
High Band Supply Current 65 85 110 mA GC=2.0V, VCC=2.7V, EN=2.7V,
Bandsel=2.7V, IQ=1.2V
Low Band Supply Current 65 85 110 mA GC= 2.0V,V
Bandsel=0V, IQ=1.2V
Sleep Current <1.0 10 µAEN=0V
UPCONVERTERS
MODULATORS AND
Logic Levels
Input Logic Low 0 0.5 V Input Logic High 1.4 V
Logic Pins Input Current* <1.0 µA
CC
V
=2.7V, EN=2.7V,
CC
DC,TA
DC,TA
=25oC
=25oC
LO Input Port
High Band Frequency Range* 1700 2200 MHz Bandsel=2.7V Low Band Frequency Range* 700 1000 MHz Bandsel=0V High Band LO Input Power* -3 0 6 dBm Bandsel=2.7V LO Band LO Input Power* -3 0 6 dBm Bandsel=0V Input Impedance* 50
5-30
Rev A2 010904
Page 3
Preliminary
RF2483
Parameter
Min. Typ. Max.
I/Q Modulator High Band
Baseband Input Voltage* 1.15 1.2 1.25 V Common mode voltage Baseband Input Level 0.8 V
Baseband Input Impedance* 5.5 k Measured at 100kHz Input Bandwidth* 50 150 MHz I/Q source impedance 50 Sideband Suppression 30 43 dBc GC=2.0V, no I/Q adjustment
Carrier Suppression 30 48 dBc GC=2.0V, no I/Q ad justment
3rd Harmonic of Modulation Suppression at FLO-3x100kHz 40 47 dBc GC =2.0V
Baseband Inputs DC Current
Drain*
Baseband Inputs AC Current
Drain*
I/Q Modulator Low Band
Baseband Input Voltage* 1.15 1.2 1.25 V Common mode voltage Baseband Input Level 0.8 V
Baseband Input Impedance* 5.5 k Measured at 100kHz Input Bandwidth* 50 150 MHz I/Q source impedance 50 Sideband Suppression 30 37 dBc GC= 2.0V,no I/Q adjustment
Carrier Suppression 30 52 dBc GC=2.0V,no I/Q adjustment
3rd Harmonic of Modulation Suppression at FLO-3x100kHz 40 59 dBc GC=2.0V
Baseband Inputs DC Current
Drain*
Baseband Inputs AC Current
Drain*
Specification
30 43 dBc GC=1.5V, no I/Q ad justment 30 46 dBc GC=1.0V, no I/Q ad justment 30 47 dBc GC=0.5V, no I/Q ad justment
30 44 dBc GC=1.5V, no I/Q ad justment 25 40 dBc GC=1.0V, no I/Q ad justment 25 35 dBc GC=0.5V, no I/Q ad justment
40 47 dBc GC=1.5V 35 42 dBc GC=1.0V 35 42 dBc GC=0.5V
100 µA
100 µA
30 37 dBc GC=1.5V,no I/Q adjustment 30 44 dBc GC=1.0V,no I/Q adjustment 30 40 dBc GC=0.5V,no I/Q adjustment
30 50 dBc GC=1.5V,no I/Q adjustment 25 33 dBc GC=1.0V,no I/Q adjustment 15 22 dBc GC=0.5V,no I/Q adjustment
40 59 dBc GC=1.5V 35 48 dBc GC=1.0V 35 41 dBc GC=0.5V
100 µA 100 µA
Unit Condition
VCC=2.7V, EN=2.7V, Bandsel=2.7V, FLO=0dBm, PLO=1900MH z, LO HB and
PP
PP
RF OUT HB ports are matched to 50Ω. IQ=800mV
signals driven differentially and in quadrature from a 50source impedance. T
Measured differentially
PP
VCC=2.7V, EN=2.7V, Bandsel=0V, FLO=0dBm, PLO=900MHz, LO LB and RF
OUT LB ports are matched to 50Ω. IQ=800mV
signals driven differentially and in quadrature from a 50source impedance. T
Measured differentially
PP
at 100kHz 1.2VDC. Input IQ
P-P
at 100kHz 1.2VDC. Input IQ
P-P
=25oC
A
=25oC
A
5
UPCONVERTERS
MODULATORS AND
Rev A2 010904
5-31
Page 4
RF2483
Preliminary
5
Parameter
Min. Typ. Max.
Variable Gain Amplifiers High Band
Gain Control Voltage Range 0 2.0 V Gain Con trol Range 32 35 dB Difference between output power at
Gain Control Slope 23 29 dB/V Calculated GC=1.0V and 1.5V Gain Con trol Input Impedance* 10 k Output Power -3 0.4 3 dB GC=2.0V, IQ=800mV
Output No ise at FLO+20MHz* -155 dBm/Hz GC=2.0V, IQ=800mV
Output P1dB* +6 dBm IQ at 100kHz Output IP3* +20 dBm GC= 2 .0V. Extrapolated from IM3 with two
UPCONVERTERS
MODULATORS AND
Intermodulation IM3 tone at
FLO+70kHz and FLO+130kHz relative to tone at FLO+90kHz
Specification
-11 -7 -5 dB GC=1.5V, IQ=800mV
-23 -20 -17 dB GC=1.0V, IQ=800mV
-36 -35 -30 dB GC=0.5V, IQ=800mV
-156.7 dBm/Hz GC=2.0V, IQ=0mV
40 50 dBc GC=2.0V 40 50 dBc GC=1.5V 30 35 dBc GC=1.0V 30 35 dBc GC=0.5V
Unit Condition
VCC=2.7V,E N=2.7V, Bandsel=2.7V, FLO=0dBm, PLO=1900MHz, LO HB and
RF OUTHB ports are matchedto 50. Input IQ signals driven differentially and in quadra­ture from a 50source impedance.
=25oC
T
A
GC=2.0V and GC=0.5V
P-P
baseband tones at 90kHz applied differen­tially,in quadrature, a t both I and Q inputs, each tone 400mV
Two baseband tones at 90kHz and 110kHz applied differentially, in quadrature, at both I and Q inputs, each tone 400mV
P-P
P-P P-P P-P P-P P-P
.
at 100kHz at 100kHz at 100kHz at 100kHz at 100kHz
P-P
.
5-32
Rev A2 010904
Page 5
Preliminary
RF2483
Parameter
Min. Typ. Max.
Variable Gain Amplifiers Low Band
Gain Control Voltage Range 0 2.0 V Gain Control Range 32 36 dB Difference between output power at
Gain Control Slope 27 33 dB/V Calculated using output power at GC=1.0V Gain Control Input Impedance* 10 k
Output Power -3 0.8 3 dB GC=2.0V, IQ=800mV
Output Noise at FLO+20MHz* -156.4 dBm/Hz GC=2.0V, IQ=800mV
Output P1dB* +6 dBm IQ at 100kHz Output IP3* +19 dBm GC=2. 0V. Extrapolated from IM3 with two
Intermodulation IM3 tone at
FLO+70kHz and FLO+130kHz relative to tone at FLO+90kHz
Specification
-10 -6 -4 dB GC=1.5V, IQ=800mV
-25 -21 -19 dB GC=1.0V, IQ=800mV
-38 -35 -32 dB GC=0.5V, IQ=800mV
-157.2 dBm/Hz GC=2.0 V, IQ=0mV
40 47 dBc GC=2.0V 40 49 dBc GC=1.5V 30 41 dBc GC=1.0V 25 31 dBc GC=0.5V
Unit Condition
VCC=2.7V, EN=2.7V, Bandsel=0V, FLO=0dBm, PLO=900MHz, LO LB and RF
OUT LB ports are matched to 50Ω. Input IQ
1.2Vdc, signals driven differentially and in quadrature from a 50source impedance.
=25oC
T
A
GC=2.0V and 0.5V and 1.5V
P-P
baseband tones at 90kHz and 110kHz applied differentially, in quadrature, at both I and Q inputs, each tone 400mV
Two baseband tones at 90kHz and 110kHz applied at both I and Q inputs, each tone 400mV
P-P
.
at 100kHz
P-P
at 100kHz
P-P
at 100kHz
P-P
at 100kHz
P-P
at 100kHz
P-P
P-P
.
5
UPCONVERTERS
MODULATORS AND
*=Nottestedinproduction
MODE EN BANDSEL COMMENTS
Sleep 0 X I/Q and GC inputs go open circuit through the
use of a FET switch in sleep mode.
High Band Mode 1 1 LO input LO HB
RF output=RF OUT HB
Low Band Mode 1 0 LO input LO LB
RF output=RF OUT LB
Rev A2 010904
5-33
Page 6
RF2483
Preliminary
Pin Function Description Interface Schematic
1 VCC3
Supply for RF output circuits.
VCC3
RF Output
Amplifier
5
2 VCC2
3ISIGP
Supply for modulator and biasing circuits.
In phase I chann el positive baseband input port. Best performance is achieved when the ISIGP and ISIGN are driven differentiall y. The rec­ommended CW differential drive level (V
ISIGP-VISIGN
) is 800mV
P-P
.
VCC2
Modulator and
VGA
VCC2
This input should be DC-biased at 1.2V±0.05V. The common-mode DC coltage on the ISIGP and ISIGN input signals is used to bias the modulator. In sleep mode an internal FET switch is opened, the input goes high impedance and the modulator is de-biased. The input imped­ance is typically 5.5kat low frequencies and at higher frequencies
V
CC2
canbemodeledas50Ω in series with 12pF to ground.
UPCONVERTERS
MODULATORS AND
Phase or amplitude errors between the ISIGP and ISIGN signa ls may result in the even order distortion of the modulation in the output spec­trum.
50
12 pF
DC offsets between the ISIGP and IS IGN signals will result in increased carrier leakage. Small DC o ffsets may be deliberately applied between the ISIGP/ISIGN and QSIGP/QSIGN inputs to cancel out LO leakage. The optimum corrective DC offsets will change with mode, frequency and gain control. Common-mode noise on the ISIGP and ISGN should be kept low as it may degrade the noise performance of the modulator. Phase offsets may be applied between the I and Q channels to improve the sideband suppression performance.
4ISIGN
In phase I chann el negative b aseband input port. See ISIGP.
V
CC2
5 ENABLE
6 VCC1
5-34
Enables power to the device. CMOS input. Logic 1 (1.4V to VCC)=Enabled. Logic 0 (0V to 0.5V)=Powered Down.
Supply for the LO buffers and quadrature network. The sideband suppression is a function of the VCC1 voltage. The inclu­sion of R3 (39) lowers the voltage on VCC1 by around 400mV and results an improvement in sideband suppression but around a 0.2dB increase in noise at 20MHz offset.
VCC1
LO Quadrature
Generator and
Buffers
GND1
50
12 pF
V
CC2
Rev A2 010904
Page 7
Preliminary
RF2483
Pin Function Description Interface Schematic
7LOLB
8GNDLO
9LOHB
10 GND1 11 BAND SEL
Local oscillator input low band. This input is biased internally at around 1.6V when the chip is in low band mode and 0V when the chip is in high band mode or powered down. The LO signal typically needs to be AC coupled. The noise performance, carrier suppression at low output powers and sideband suppression are all a function of LO power. The optimum LO power is between 0dBm and 3dBm. The device will work with LO powers as low as -20dBm however this is at the expense of h igher noise performance at high output powers and poorer sideband suppression.
Ground return for the local osc illator input signa ls. The GND LO pin is effectively the complementary LO input for both the high band and low band LO signals. It has significant amounts of LO signal flowing through it. This pin is brought out as an independent ground to e nable the PCB board designer to isolate the LO return from the RF outputs ground and the general chip ground. It is recommended that this ground is kept isolated from the die flag ground. Any connections between the GND LO and any other ground shouldbe made througha ground plane.
Local oscillator input high band. This input is biased internally at around 1.6V when the chip is in high band mode and 0V when the chip is in low band mode or powered down. The LO HB signal typically needs to be AC coupled. The noise performance, carrier suppression at low output powers and sideband suppression are all a function of LO power. The optimum LO power is between 0dBm and 3dBm. The device will work with LO powers as low as -20dBm however this is at the expense of h igher noise performance at high output powers and poorer sideband suppression.
Ground for LO buffers. See pin 6. Band select input to define active mode.
CMOS input. Logic 1 (1.4V to VCC)=High band mode. Logic 2 (0V to 0.5V)=Low band mode.
Seepins7and9.
LOLB
GNDLO
LOHB
GND LO
V
CC2
5
UPCONVERTERS
MODULATORS AND
12 QSIG N
Rev A2 010904
Quadrature channel negative baseband input port. See QSIGP.
V
CC2
50
12 pF
5-35
Page 8
5
RF2483
Preliminary
Pin Function Description Interface Schematic
13 QSIG P
14 VREF
UPCONVERTERS
MODULATORS AND
15 GC DEC
16 GC
Quadrature Q channel positive baseband input po rt. Best performance is achieved when the ISIGP and ISIGN are driven differentially.The recommended CW differential dr ive level (V
V
QSIGN
) is 800mV
P-P
.
QSIGP
-
This input should be DC-biased at 1.2V±0.05 V. The common-m ode DC voltage on the QSIGP and QSIGN input signals is used to bias the modulator. In sleep mode an internal FET switch is opened, the input goes high impedance and the modulator is de-biased. The input imped­ance is typically 5.5kat low frequencies and at higher frequencies canbemodeledas50Ω in series with 12pF to ground. Phase or amplitude errors between the QSIG P and QSIGN signals which may result in an increase in the even order distortion of the mod­ulation in the ou tput spectrum. DC offsets between the QSIGP and QSIGN signals will result in an increased carrier leakage. Small DC o ffsets may be deliberately applied between the ISIGP/ISIGN and QSIGP/QSIGN inputs to cancel out the LO leakage. The optimum corrective DC offsets will change with mode, frequency and gain control. Common-mode noise on the QSIGP and QSIGN should be kept low as it may degrade the noise performance of the modulator. Phase offsets may be applied between the I and Q channels to improve the sideband suppression performance.
Voltage reference decouple with an external 10nF capacitor to ground. The voltage on this pin is typically 1.67V when the chip isenabled.The voltage is 0V when the chip is powered down. The purpose of this decoupling capacitor is to f ilter out low frequency noise (20MHz) on the gain control lines. Poor positioning of the VREF d ecoupling capacitor can cause a degra­dation in LO leakage. A voltage of around 2.5V on this pin indicates that the die flag under the chip is not grounded and the chip is not biased correctly.
Voltage reference decouple with an external 1nF decoupling capacitor to ground. The voltage on this pin is a function of gain control (GC) voltage when the chip is enabled. The voltage is 0V when the c hip is powered down. The purpose of this decoupling capacitor is to f ilter out low frequency noise (20MHz) on the gain control lines. The size of the capacitor on the GC DEC line will effect the settling time response to a change in gain control voltage. A 1nF capacitor equates to around 200ns settling time and a 0.5nF capacitor equates to a 100ns settling time. There is a trade-off between settling time and noise contributions by the gain con­trol circuitry as gain control is applied. Poor positioning of the VREF d ecoupling capacitor can cause a degra­dation in LO leakage.
Gain control voltage. Maximum output power at 2.0V. Minimum output power at 0V.When the chip is enabled the input impedance is 10k referenced to 1.7V
. When the chip is powered down a FET switch is
DC
opened and the in put goes high impedance.
4k
­+
4k
+
-
V
V
CC2
50
12 pF
V
CC2
V
CC2
CC2
10 k
1.7 V
4k
-
+
17 RF OUT LB
18 GND2
5-36
RF low band output. Open collector output. The output should be biased at VCC through an inductor that c an be used to form part of an output matching circuit. In our proposed applications circuit some power is dissipated in R6 (130) which appears as a de-Qing resistor in parallel with the output inductor L4. If R6 is eliminated and the RFOUT LB pin is re-matched to 50it is possible to get approximately 5dB extra power out of the device in low band mode.
Ground for RF output sections.
Rev A2 010904
Page 9
Preliminary
RF2483
Pin Function Description Interface Schematic
19 RF OUT H B
20 GND3
Die
GND4
RF high band output. Open collector output. The output should be biased at VCC through an inductor that can be used to form part of an output matching circuit. In our proposed applications circuit some power is dissipated in R4 (180) which appears as a de-Qing resistor in parallel with the output inductor L3. If R4 is eliminated and the RFOUT HB pin isre-matchedto 50it is possible to get approximately 3dB extra power out of the device in high band mode.
Ground for RF output sections. Ground for modulator, variable gain amplifier and substrate.
Flag
5
UPCONVERTERS
MODULATORS AND
Rev A2 010904
5-37
Page 10
RF2483
Preliminary
Applicat ion Notes
5
The baseband inputs must be driven with balanced dif­ferential signals. We suggest amplitude and phase matching <0.5dB and <0.5°. Phase or gain imbalances between the complementary input signals will cause additional distortion including some second order baseband distortion.
The common-mode voltage on the baseband inputs should be well controlled at 1.2V. We suggest that the common-mode DC voltage be 1.2V+
0.05 V. The com­mon-mode DC voltage is used to b ias the modulator; hence, deviations from 1.2 V will result in changes in the current consumption, noise and intermodulation performance.
Thechipisdesignedtobedrivenwithasingle-ended LO signal.
The GC DEC and VREF output pins should be decou­pled to ground. We recommend a 10nF capacitor on VREF, and a 1 nF capacitor on GC DEC. The purpose
UPCONVERTERS
MODULATORS AND
of this capacitor is to filter out low frequency noise (20MHz) in the gain control lines, which may cause noise on the RF signal. The capacitor on the GC DEC line will effect the settling time response to a change in power control voltage. A 1nF capacitor equates to around a 200ns settling time, and a 0.5nF capacitor equates to a 100ns settling time. There is a trade-off between settling time and phase noise as you start to apply gain control.
The ground lines for the LO sections, GNDLO and GND1, are brought out of the chip independently from the ground to the RF and modulator sections. This iso­lates the LO signals from the RF output sections.
The G ND LO pin is effectively the complementary LO input for both the high band and low band LO signals.It has significant amounts of LO signal flowing through it. This is brought out as an independent ground to try to enablethe PCB board designer to isolate the LO return from the RF output sections and general chip ground.
The RF output ports of the RF2483 consist of open col­lector architecture and require pull up inductors to the supply voltage. This, in conjunction with a DC blocking capacitor provides a simple, broadband L-match net­work as shown in the schematic diagram. A shunt resistor is included to control the Q of the matching network and set the modulator output power. In this case, both outputs were designed to provide 0dBm.
An alternate output match containing a third harmonic trap was evaluated. This circuit uses a tapped-C matching network, whereby the shunt C provides a low impedance path near the third harmonic frequency. Although an additional component is required, the ben­efit of suppressing the third harmonic distortion may improve overall system intermodulation. This network has been shown to provide better than 20dB of improved suppression in high-band mode.
VCC
C4
100 pF
L3
2.2 nHR4180
L4
10 nHR6130
VCC
C11 2pF
C15 6pF
C6
100 pF
C12 1pF
C13 2pF
J4
RFOUT HB
J8
RFOUT LB
Figure 1. Alternate RF output match with
third-harmonic suppression.
High Band L OHB (S11) and RFHB (S22) Parameters
(VCC=2.7V, VGC=2.0V,Band Sel=2.7V, EN=2.7V,T=+25°C)
Freq. (MHz) S11 MAG S11 ANG S22 MAG S22 ANG
1700 0.478 -110.8 0.903 -55.0 1750 0.469 -112.4 0.901 -56.2 1800 0.465 -115.1 0.902 -57.2 1850 0.472 -117.2 0.902 -58.0 1900 0.476 -117.6 0.904 -59.0 1950 0.465 -118.4 0.905 -59.6 2000 0.457 -120.8 0.906 -60.3 2050 0.452 -122.6 0.909 -60.9 2100 0.464 -123.0 0.916 -61.9 2150 0.453 -123.4 0.914 -64.0 2200 0.442 -125.4 0.879 -64.5
Low Band LOLB (S11) and RFLB (S22) Parameters
(VCC=2.7V, VGC=2.0V,Band Sel=0V, EN=2.7V, T=+25°C)
Freq. (MHz) S11 MAG S11 ANG S22 MAG S22 ANG
700 0.468 -63.2 0.92 -9.9 750 0.452 -67.6 0.915 -11.3 800 0.437 -72.1 0.913 -12.6 850 0.425 -76.6 0.908 -14.0 900 0.414 -81.2 0.905 -15.6 950 0.407 -85.6 0.901 -17.1
1000 0.402 -89.8 0.898 -18.8
5-38
Rev A2 010904
Page 11
Preliminary
VCC
VCC
J1 I+
J2
I-
EN
C8
1nF
Evaluation Board Schemati c
(Download Bill of M aterials from www.rfmd.com.)
C12*
DNI
C4
100 pF
R4
180
L3
3.3 nH
C7
1nF
C11
1pF
* *
1
2
3
4
5
6 7 8 9 10
* *
R3
39
L1
6.8 nH
C15 3pF
J4
RF OUT HB
J8
C13*
DNI
R6
130
L4
10 nH
1617181920
C5
10 pF
C6
100 pF
R5
100
C10 1nF
Represents "GND".
*
C9
1nF
15
14
13
12
11
Note: Parts with * following the reference designator
should not be populated on the evaluation board.
C14
10 nF
2483400-
RF OUT LB
VCC
GC
J7 Q-
J6
Q+ BAND SEL
RF2483
P1
P1-1
P1-3 EN
P1-1
P1-3 BAND SEL
1 2 3
CON3
P2
1 2 3
CON3
GND
R2
1M
GND
R1
1M
VCC
+
C2
1uF
GC
+
C1
1uF
5
UPCONVERTERS
MODULATORS AND
Rev A2 010904
VCC
C3
100 pF
J3
LO LB
L2
3.3 nH J5
LO HB
5-39
Page 12
5
RF2483
Preliminary
Evaluation Board Layout
Board Size 2.0” x 2.0”
Board Thickness 0.062”, Board Material FR-4, Multi-Layer
Assembly
UPCONVERTERS
MODULATORS AND
Top Inner 1
5-40
Rev A2 010904
Page 13
Preliminary
RF2483
Inner 2 Back
5
UPCONVERTERS
MODULATORS AND
Rev A2 010904
5-41
Page 14
RF2483
H
Preliminary
5
High Band ModulatorPerformanceversus Frequency
LO=0dBm, VCC=2.7V,GC=2V,IQ=100kHz 800mV
0.0
CarrierSuppression Sideband Suppression 3rd Harmonic ofModulation Output Power
1700.0 1800.0 1900.0 2000.0 2100.0 2200.0
Output Power (dBm)
-10.0
-20.0
-30.0
-40.0
Carrier Suppression (dBc)
-50.0
-60.0
Frequency(MHz)
P-P
0.0
-10.0
-20.0
-30.0
3rd Harmonic (dBc)
-40.0
Sideband Suppression (dBc)
-50.0
-60.0
High Band Output Noise 20MHz Offset versus LO Power
-152.0
UPCONVERTERS
MODULATORS AND
-153.0
-154.0
-155.0
-156.0
Output Noise (dBm/Hz)
-157.0
-158.0
-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0
VCC=2.7V,LO=1900MHz, GC=2V
Output Noise 20MHz Offset, I&Q = 800mVpp 1.2Vdc
Output Noise 20MHz Offset, I&Q = 0 mVpp
1.2Vdc Output Power
I&Q= 800mVpp
LO Power (dBm)
1.0
0.0
-1.0
-2.0
-3.0
Output Power (dBm)
-4.0
-5.0
High Band ModulatorPerformanceversus LO Power
LO=1900MHz,VCC=2.7V,GC=2V,IQ=100kHz 800mV
0.0
-10.0
-20.0
-30.0
Output Power (dBm)
-40.0
Carrier Suppression (dBc)
-50.0
-60.0
-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0
CarrierSuppression Sideband Suppression 3rd Harmonic of
Modulation Output Power
LO Power (dBm)
igh BandOutput Power versus Baseband Signal Level -
VCC=2.7V,LO=1900MHz 0dBm, IQ=100kHz 1.2Vdc
20.0
10.0
0.0
-10.0
-20.0
-30.0
-40.0
Output Power (dBm)
-50.0
-60.0
-70.0
-80.0
10.0 100.0 1000.0 10000.0
Baseband Signal Level (mVpp)
GC = 2.0V GC = 1.5V GC = 1.0V GC = 0.5V
P-P
0.0
-10.0
-20.0
-30.0
3rd Harmonic (dBc)
-40.0
Sideband Suppression (dBc)
-50.0
-60.0
5-42
High Band Output Noise 20MHz Offset versus Gain
-130.0
-135.0
-140.0
-145.0
-150.0
-155.0
Control -
Output Noise (dBm/Hz)
-160.0
-165.0
-170.0
0.0 0.5 1.0 1.5 2.0 2.5
VCC=2.7V,LO=1900MHz, GC=2V
Output Noise20MHz Offset, I&Q= 800mVpp 1.2Vdc Output Noise20MHz Offset, I&Q= 0mVpp
1.2Vdc Output Power I&Q=800mVpp1.2Vdc
GainControl(V)
5.0
0.0
-5.0
-10.0
-15.0
-20.0
-25.0
-30.0
-35.0
Output Power (dBm)
30.00
20.00
10.00
OIP3 (dBm)
-10.00
-20.00
-30.00
High Band Output IP3 versus Gain Control
VCC=2.7V,LO=0dBm, IQ=900kHz and 1100kHz at 1.2V
0.00
1700MHz 1800MHz 1900MHz 2000MHz
0.0 0.5 1.0 1.5 2.0 2.5
Gain Control(V)
Rev A2 010904
DC
Page 15
Preliminary
H
RF2483
High Band Output Power versus Gain Control
LO=1900MHz0dBm, IQ=100kHz 800mV
5.00
0.00
-5.00
-10.00
-15.00
-20.00
-25.00
Output Power (dBm)
-30.00
-35.00
-40.00
0.0 0.5 1.0 1.5 2.0 2.5
GainControl(V)
P-P
High Band Output Powerversus Gain Control
-5.0
-10.0
VCC=2.7V,LO=0dBm, IQ=100kHz 800mV
5.0
0.0
P-P
1.2V
DC
Vcc=2.7V Vcc=3.0V Vcc=3.3V
1.2V
High Band Output Power versus Gain Control
LO=1900MHz0dBm, IQ=100kHz 800mV
5.0
0.0
-5.0
-10.0
-15.0
-20.0
-25.0
Output Power (dBm)
-30.0
-35.0
-40.0
0.0 0.5 1.0 1.5 2.0 2.5
Gain Control (V)
1.2V
P-P
DC
Temp = -40°C, Vcc=2.7V Temp = +25°C, Vcc=2.7V Temp = +85°C, Vcc=2.7V
5
High Band Carrier Suppression versus Gain Control
DC
-10.0
-20.0
VCC=2.7V,LO=0dBm, IQ=100kHz 800mV
0.0
P-P
1.2V
1700MHz 1800MHz 1900MHz 2000MHz
DC
UPCONVERTERS
MODULATORS AND
-15.0
-20.0
-25.0
Output Power (dBm)
-30.0
-35.0
-40.0
0.0 0.5 1.0 1.5 2.0 2.5
Gain Control (V)
High Band Sideband Suppression versus Gain Control -
-10.0
-20.0
-30.0
-40.0
Sideband Suppression (dBc)
-50.0
0.0
VCC=2.7V, LO=0dBm, IQ=100kHz 800mV
1.2V
P-P
1700MHz 1800MHz 1900MHz 2000MHz
DC
1700MHz 1800MHz 1900MHz 2000MHz
-30.0
-40.0
Carrier Suppression (dBc)
-50.0
-60.0
0.0 0.5 1.0 1.5 2.0 2.5
GainControl(V)
igh Band Modulation's 3rd Harmonic versus Gain
0.0
-10.0
-20.0
-30.0
-40.0
-50.0
3rd Harmonic of Modulation Suppression
Control -
VCC=2.7V, LO=0dBm, IQ=100kHz 800mV
P-P
1.2V
1700MHz 1800MHz 1900MHz 2000MHz
DC
-60.0
0.0 0.5 1.0 1.5 2.0 2.5
Gain Control (V)
Rev A2 010904
-60.0
0.0 0.5 1.0 1.5 2.0 2.5
Gain Control (V)
5-43
Page 16
RF2483
H
Preliminary
5
High Band Carrier Suppression versus Gain Control
LO=1900MHz0dBm, IQ=100kHz 800mV
0.0
-10.0
-20.0
-30.0
-40.0
Temp= -40°C, Vcc=2.7V Temp= +25°C, Vcc=2.7V
Temp= +85°C, Vcc=2.7V
Carrier Suppression (dBc)
-50.0
-60.0
0.0 0.5 1.0 1.5 2.0 2.5
Gain Control (V)
1.2V
P-P
DC
High Band Sideband Suppression versus Gain Control -
0.00
UPCONVERTERS
MODULATORS AND
-10.00
-20.00
VCC=2.7V, LO=0dBm, IQ=100kHz 800mV
Vcc=2.7V Vcc=3.0V Vcc=3.3V
1.2V
P-P
DC
igh Band Sideband Suppression versus Gain Control -
0.0
-10.0
-20.0
-30.0
-40.0
LO=1900MHz 0dBm, IQ=100kHz 800mV
Temp = -40°C, Vcc=2.7V Temp = +25°C, Vcc=2.7V Temp = +85°C, Vcc=2.7V
Sideband Suppression (dBc)
-50.0
-60.0
0.0 0.5 1.0 1.5 2.0 2.5
Gain Control (V)
1.2V
P-P
High Band Carrier Suppression versus Gain Control
0.00
-10.00
-20.00
VCC=2.7V,LO=0dBm, IQ=100kHz 800mV
Vcc=2.7V Vcc=3.0V Vcc=3.3V
P-P
DC
1.2V
DC
-30.00
-40.00
Sideband Suppression (dBc)
-50.00
-60.00
0.0 0.5 1.0 1.5 2.0 2.5
Gain Control(V)
High Band Modulation's 3rd Harmonic versus Gain
Control -
0.00
-10.00
-20.00
-30.00
(dBc)
-40.00
-50.00
3rd Harmonic of Modulation Suppression
-60.00
0.0 0.5 1.0 1.5 2.0 2.5
LO=1900MHz 0dBm, IQ=100kHz 800mV
Vcc=2.7V Vcc=3.0V Vcc=3.3V
GainControl(V)
-30.00
-40.00
Carrier Suppression (dBc)
-50.00
-60.00
0.0 0.5 1.0 1.5 2.0 2.5
Gain Control(V)
High Band Output IP3 versus Gain Control
1.2V
p-p
DC
LO=1900MHz0dBm, IQ=900kHzand 1100kHz at 1.2V
25.0
20.0
15.0
10.0
5.0
0.0
-5.0
-10.0
Output IP3 (dBm)
-15.0
-20.0
-25.0
-30.0
0.0 0.5 1.0 1.5 2.0 2.5
Vcc=2.7V Vcc=3.0V Vcc=3.3V
Gain Control (V)
DC
5-44
Rev A2 010904
Page 17
Preliminary
RF2483
Low Band Modulator Performance versus Frequency
LO=0dBm, VCC=2.7V,GC=2V,IQ=100kHz 800mV
0.00
-10.00
-20.00
-30.00
-40.00
Carrier Suppression Sideband Suppression 3rdHarmonicof
Modulation OutputPower
Output Power (dBm)
Carrier Suppression (dBc)
-50.00
-60.00
-70.00
700.0 800.0 900.0 1000.0 1100.0 1200.0
Frequency(MHz)
Low Band Output Noise 20MHz Offset versus LO Power
-152.00
-153.00
-154.00
-155.00
-156.00
Output Noise (dBm/Hz)
-157.00
-158.00
-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0
VCC=2.7V,LO=900MHz,GC=2V
Output Noise20MHz Offset, I&Q= 800mVpp 1.2Vdc Output Noise20MHz Offset, I&Q= 0 mVpp 1.2Vdc Output Power I&Q=800mVpp1.2Vdc
LO Power (dBm)
Low Band ModulatorPerformance versus LO Power
P-P
0.00
-10.00
-20.00
-30.00
-40.00
3rd Harmonic (dBc)
-50.00
-60.00
-70.00
Output Power (dBm)
Sideband Suppression (dBc)
LO=900MHz,VCC=2.7V,GC=2V,IQ=100kHz 800mV
0.00
-10.00
-20.00
-30.00
-40.00
Carrier Suppression (dBc)
-50.00
-60.00
-70.00
-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0
CarrierSuppression Sideband Suppression 3rd Harmonic of
Modulation Output Power
LO Power (dBm)
P-P
0.00
-10.00
-20.00
-30.00
-40.00
3rd Harmonic (dBc)
-50.00
Sideband Suppression (dBc)
-60.00
-70.00
5
Low Band Output Power versus Baseband Signal Level
1.0
0.0
-1.0
-2.0
-3.0
Output Power (dBm)
-4.0
-5.0
-10.0
-20.0
-30.0
-40.0
Output Power (dBm)
-50.0
-60.0
-70.0
-80.0
20.0
10.0
0.0
VCC=2.7V,LO=900MHz, IQ=100kHz 1.2Vdc
GC = 2.0V GC = 1.5V GC = 1.0V GC = 0.5V
10.0 100.0 1000.0 10000.0
Baseband Signal Level (mVpp)
UPCONVERTERS
MODULATORS AND
Low Band Output Noise at 20MHz Offset versus GC
-130.0
-135.0
-140.0
-145.0
-150.0
-155.0
Output Noise (dBm/Hz)
-160.0
-165.0
-170.0
0.0 0.5 1.0 1.5 2.0 2.5
Rev A2 010904
VCC=2.7V,LO=900MHz0dBm
OutputNoise 20MHz Offset, I&Q= 800mVpp1 .2Vdc
OutputNoise 20MHz Offset, I&Q= 0 mVpp
1.2Vdc OutputPower
I&Q=800mVpp 1.2Vdc
GainControl(V)
5.0
0.0
-5.0
-10.0
-15.0
-20.0
-25.0
-30.0
-35.0
Output Power (dBm)
Low Band Output IP3 versus Gain Control
VCC=2.7V,LO=0dBm, IQ=900kHz and 1100kHzat1.2V
30.00 700MHz
20.00
10.00
0.00
-10.00
OIP3 (dBm)
-20.00
-30.00
-40.00
0.0 0.5 1.0 1.5 2.0 2.5
800MHz 900MHz 1000MHz
GainControl(V)
DC
5-45
Page 18
RF2483
L
Preliminary
5
Low Band Output Powerversus Gain Control
LO=900MHz0dBm, IQ=100kHz 800mV
5.00
0.00
-5.00
-10.00
-15.00
-20.00
-25.00
Output Power (dBm)
-30.00
-35.00
-40.00
-45.00
0.0 0.5 1.0 1.5 2.0 2.5
GainControl(V)
1.2V
P-P
DC
Output Power (dBm)
Vcc=2.7V Vcc=3.0V Vcc=3.3V
Low Band Output Powerversus Gain Control
VCC=2.7V,LO=0dBm, IQ=100kHz 800mV
5.0
0.0
UPCONVERTERS
MODULATORS AND
-5.0
-10.0
-15.0
-20.0
-25.0
Output Power (dBm)
-30.0
-35.0
-40.0
-45.0
0.0 0.5 1.0 1.5 2.0 2.5
Gain Control (V)
P-P
1.2V
DC
700MHz 800MHz 900MHz 1000MHz
Carrier Suppression (dBc)
Low Band Output Powerversus Gain Control
LO=900MHz0dBm, IQ=100kHz 800mV
5.00
0.00
-5.00
-10.00
-15.00
-20.00
-25.00
-30.00
-35.00
-40.00
-45.00
0.0 0.5 1.0 1.5 2.0 2.5
GainControl(V)
1.2V
P-P
Temp = -40°C, Vcc=2.7V Temp= +25°C, Vcc=2.7V Temp= +85°C, Vcc=2.7V
DC
Low Band CarrierSuppression versus Gain Control
VCC=2.7V,LO=0dBm, IQ=100kHz 800mV
0.0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0
0.0 0.5 1.0 1.5 2.0 2.5
Gain Control (V)
P-P
1.2V
700MHz 800MHz 900MHz 1000MHz
DC
5-46
Low Band Sideband Suppression versus Gain Control
VCC=2.7V,LO=0dBm, IQ=100kHz 800mV
0.0
-10.0
-20.0
-30.0
-40.0
Sideband Suppression (dBc)
-50.0
-60.0
0.0 0.5 1.0 1.5 2.0 2.5
Gain Control (V)
P-P
1.2V
DC
700MHz 800MHz 900MHz 1000MHz
3rd Harmonic of Modulation Suppression
ow Band Modulation's 3rd Harmonic versus Gain
Control -
0.0
-10.0
-20.0
-30.0
-40.0
(dBc)
-50.0
-60.0
-70.0
-80.0
0.0 0.5 1.0 1.5 2.0 2.5
VCC=2.7V, LO=0dBm, IQ=100kHz 800mV
GainControl(V)
P-P
700MHz 800MHz 900MHz 1000MHz
Rev A2 010904
1.2V
DC
Page 19
Preliminary
RF2483
Low Band CarrierSuppression versus Gain Control
LO=900MHz0dBm, IQ=100kHz 800mV
0.00
-10.00
-20.00
-30.00
-40.00
Carrier Suppression (dBc)
-50.00
-60.00
0.0 0.5 1.0 1.5 2.0 2.5
GainControl(V)
P-P
Temp= -40°C, Vcc=2.7V Temp= +25°C, Vcc=2.7V Temp= +85°C, Vcc=2.7V
Low Band CarrierSuppression versus Gain Control
-10.00
-20.00
-30.00
-40.00
Carrier Suppression (dBc)
-50.00
VCC=2.7V,LO=0dBm, IQ=100kHz 800mV
0.00
Vcc=2.7V Vcc=3.0V Vcc=3.3V
P-P
1.2V
1.2V
Low Band Sideband Supperssion versus Gain Control
DC
-10.00
-20.00
-30.00
-40.00
-50.00
Sideband Suppression (dBc)
-60.00
-70.00
LO=900MHz0dBm, IQ=100kHz800mV
0.00
Temp = -40°C, Vcc=2.7V Temp = +25°C, Vcc=2.7V Temp = +85°C, Vcc=2.7V
0.0 0.5 1.0 1.5 2.0 2.5
GainControl(V)
1.2V
P-P
DC
5
Low Band Sideband Suppression versus Gain Control
DC
-10.00
-20.00
-30.00
-40.00
-50.00
Sideband Suppression (dBc)
-60.00
VCC=2.7V,LO=0dBm, IQ=100kHz 800mV
0.00 Vcc=2.7V Vcc=3.0V Vcc=3.3V
1.2V
P-P
DC
UPCONVERTERS
MODULATORS AND
-60.00
0.0 0.5 1.0 1.5 2.0 2.5
Low Band Modulation's 3rd Harmonic versus Gain
Control -
0.00
-10.00
-20.00
-30.00
(dBc)
-40.00
-50.00
-60.00
3rd Harmonic of Modulation Suppression
-70.00
0.0 0.5 1.0 1.5 2.0 2.5
Rev A2 010904
GainControl(V)
LO=900MHz 0dBm, IQ=100kHz 800mV
Vcc=2.7V Vcc=3.0V Vcc=3.3V
GainControl(V)
-70.00
0.0 0.5 1.0 1.5 2.0 2.5
GainControl(V)
Low Band Output IP3 versus Gain Control
1.2V
P-P
DC
VCC=2.7V,LO=0dBm, IQ=900kHz and 1100kHzat1.2V
30.00 700MHz
20.00
10.00
0.00
-10.00
OIP3 (dBm)
-20.00
-30.00
-40.00
0.0 0.5 1.0 1.5 2.0 2.5
800MHz 900MHz 1000MHz
GainControl(V)
DC
5-47
Page 20
RF2483
Preliminary
5
High Band CurrentConsumption versus Gain Control
160.0
140.0
120.0
100.0
Current (mA)
LO=1900MHz0dBm, IQ=100kHz 800mV
80.0
60.0
40.0
20.0
0.0
0.0 0.5 1.0 1.5 2.0 2.5
GainControl(V)
1.2V
P-P
DC
Temp = -40°C, Vcc=2.7V
Temp = +25°C, Vcc=2.7V
Temp = +85°C, Vcc=2.7V
High Band CurrentConsumption versus Gain Control
160.0
140.0
UPCONVERTERS
MODULATORS AND
120.0
100.0
LO=1900MHz0dBm, IQ=100kHz 800mV
1.2V
P-P
DC
Low Band Current Consumption versus Gain Control
LO=900MHz0dBm, IQ=100kHz800mV
0.00
0.00.51.01.52.02.5
Current (mA)
160.00
140.00
120.00
100.00
80.00
60.00
40.00
20.00
GainControl(V)
1.2V
P-P
Temp = -40°C, Vcc=2.7V
Temp = +25°C, Vcc=2.7V
Temp = +85°C, Vcc=2.7V
DC
Low Band Current Consumption versus Gain Control
160.0
140.0
120.0
100.0
LO=900MHz0dBm, IQ=100kHz800mV
1.2V
P-P
DC
80.0
Current (mA)
60.0
40.0
20.0
0.0
0.0 0.5 1.0 1.5 2.0 2.5
GainControl(V)
High Band
ReturnLoss versus Frequency
LO HB Port RFOUT HB Port
Return Loss (dB)
0.0
-5.0
-10.0
-15.0
-20.0
Vcc=2.7V Vcc=3.0V Vcc=3.3V
80.0
Current (mA)
60.0
40.0
20.0
0.0
0.0 0.5 1.0 1.5 2.0 2.5
GainControl(V)
Low Band
ReturnLoss versus Frequency
Return Loss (dB)
0.0
-5.0
-10.0
-15.0
-20.0
Vcc=2.7V Vcc=3.0V Vcc=3.3V
LOLB Port RFOUT LB Port
-25.0
1700.0 1750.0 1800.0 1850.0 1900.0 1950.0 2000.0
Frequency (MHz)
5-48
-25.0
700.0 750.0 800.0 850.0 900.0 950.0 1000.0
Frequency (MHz)
Rev A2 010904
Loading...