Datasheet RF2460, RF2460PCBA Datasheet (RF Micro Devices)

Page 1
ü
8-33
8
FRONT-ENDS
Preliminary
Product Description
Ordering Information
Typical Applications
Functional Block Diagram
RF Micro Devices, Inc. 7628 Thorndike Road Greensboro,NC 27409, USA
Tel (336) 664 1233
Fax (336) 664 0454
http://www.rfmd.com
Optimum Technology Matching® Applied
Si BJT GaAs MESFETGaAs HBT Si Bi-CMOS
SiGe HBT
Si CMOS
19NC18NC17
LNA GAIN16MIX GAIN
14 ISET1
13 ISET2
12 MIX IN
10
NC
IF-
98
NC
7
IF+
5NC
4LO IN
3VCC2
2VCC1
1ENABLE
* *
* *
20
LNA INNC
6
11 LNA2 E
15 LNA OUT
*
Represents "GND".
RF2460
PCS CDMA LOW NOISE AMPLIFIER/M IXER
1500MHZ TO 2200MHZ DOWNCONVERTER
• CDMA PCS Handsets
• GPS Receiver
• W-CDMA Handsets
• General Purpose Downconverter
• Commercial and Consumer Systems
• Portable Battery-Powered Equipment
The RF2460 is a receiver front-end designed for the receive section of PCS CDMA and W-CDMA applica­tions. It is designed to amplify and downconvert RF sig­nals while providing 29 dB of stepped gain control range and features digital control of LNA gain, mixer gain, and power down mode. A further feature of the chip is adjust­able IIP3 of the LNA and mixer using an off-chip current setting resistor. Noise Figure, IP3, and other specs are designed to be compatible with the IS-98B for CDMA PCS c ommunications. The IC is manufactured on a SiGe HBT process and packaged in a 20-pin leadless chip carrier with an exposed die flag.
• Complete Receiver Front-End
• Stepped LNA/Mixer Gain Control
• Adjustable LNA/Mixer Bias Current
• 24dB Gain and 2.2dB Noise Figure at Maximum Cascade Gain
RF2460 PCS CDMALow Noise Amplifier/Mixer 1500MHz to
2200MHz Downconverter
RF2460 PCBA Fully Assembled EvaluationBoard
8
Rev A7 010912
1.00
0.90
4.00 sq.
0.60
0.24 typ
3
0.20
0.75
0.50
0.23
0.13
4PLCS
0.50
2.10 sq.
0.65
0.30
4PLCS
0.05
12°
MAX
Dimensionsi nmm.
Note orientation of package.
NOTES:
Package Warpage: 0.05 mm max.
4
Die Thickness Allowable: 0.305mm max.
5
Pin 1 identifier mustexist on top surfaceof package by identification mark or feature on the package body. Exact shape and size is optional.
2
Shaded lead is Pin 1.
1
Dimension applies to plated terminal: to be measuredbetween 0.02 mm and 0.25 mm fromterminal end.
3
Package Style: LCC, 20-Pin, 4x4
Page 2
Preliminary
8-34
RF2460
Rev A7 010912
8
FRONT-ENDS
Absolute Maximum Ratings
Parameter Rating Unit
Supply Voltage -0.5 to +5.0 V
DC
Input LO and RF Levels +6 dBm Operating Ambient Temperature -40 to +85 °C Storage Temperature -40 to +150 °C
Parameter
Specification
Unit Condition
Min. Typ. Max.
Overall
T=25°C, VCC=2.75V, RF=1.96GHz,
LO =2170MHz@-7dBm, IF=210MHz RF Frequency Range 1500 to 2200 MHz LO Frequency Range 1200 to 2600 MHz IF Frequency Range 0.1 to 250 MHz Bias Current 2.5 2.8 mA LNA, mixer and preamp for bias circuitry.
LNA
Gain 13.5 15.0 dB Noise Figure 1.4 1.8 dB Input IP3 +6.0 +7.0 dBm IIP3 is adjustable (see plots for setting).
ISET1 (pin 14) external resistor sets current
consumption and performance. Input VSWR 2:1 Output VSWR 2:1 Current at Input IP3 7 7.5 mA
LNA Bypass
Gain -6 -5 dB Noise Figure 5 5.5 dB Input IP3 +23.0 +26.0 dBm Input VSWR 2:1 Output VSWR 2:1 Current 0 mA
Mixer - High Gain Mode
1kΩ balanced load. Gain 10 12 dB
Noise Figure 6.5 7.5 dB Input IP3 +3.0 +4.0 dBm IIP3 is adjustable (see plots for setting). RF to IF Isolation >45 dB ISET2 (pin 13) external resistor sets current
consumption and performance.
Input VSWR 2:1 Output VSWR 2:1 Current 12 13 mA
Mixer - Low Gain Mode
1kΩ b alanced load. Gain 0 1.5 dB
Noise Figure 15 16 dB Input IP3 +13.0 +14.0 dBm IIP3 is adjustable RF to IF Isolation >45 dB ISET2 (pin 13) external resistor sets current
consumption and performance. Input VSWR 2:1 Output VSWR 2:1 Current 7.5 8.0 mA
Caution! ESD sensitive device.
RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).
Page 3
Preliminary
8-35
RF2460
Rev A7 010912
8
FRONT-ENDS
Parameter
Specification
Unit Condition
Min. Typ. Max.
GPS - LNA
Gain 16 dB Noise Figure 1.4 dB Input IP3 +7.0 dBm IIP3 is adjustable. ISET1 (pin 14) external
resistor sets current consumption and per­formance.
Current at Input IP3 7 mA
GPS - Mixer
Gain 17 dB Noise Figure 6 dB Input IP3 -5.0 dBm IIP3 is adjustable. ISET1 (pin 14) external
resistor sets current consumption and per­formance.
Current at Input IP3 16 mA
GPS - Cascaded
Gain 31 dB Noise Figure 2.0 dB Input IP3 -1.0 dBm IIP3 is adjustable. ISET1 (pin 14) external
resistor sets current consumption and per­formance.
Current at Input IP3 23 mA
Local Oscillator Input
Input Level -10 -7 0 dBm LO to RF Isolation >40 dB Any gain state. LO to LNA Isolation >60 dB Any gain state. LO Current Buffer 4.5 5.0 mA I
CC2
when LO signal is present
Cascade -
LNA High/Mixer High
LNA High Gain/Mixer High Gain Assuming 3dB loss of filter
Gain 24 dB IF 1, 1kbalanced load. Noise Figure 2.2 dB Input IP3 -8.0 dBm Single sideband. Total C urrent 26 mA
Cascade -
LNA High/Mixer Low
LNA High Gain/Mixer Low Gain Assuming 3dB loss of filter
Gain 13.5 dB IF 1, 1kbalanced load. Noise Figure 5.3 dB Input IP3 +1.0 dBm Single sideband. Total C urrent 21 mA
Cascade -
LNA Low/Mixer High
LNA Low Gain/Mixer High Gain Assuming 3dB loss of filter
Gain 4 dB IF 1, 1kb a lanced load. Noise Figure 14.5 dB Input IP3 +12.0 dB Single sideband. Total C urrent 19 mA
Cascade -
LNA Low/Mixer Low
LNA Low Gain /Mixer Low Gain Assuming 3dB loss of filter
Gain -6.5 dB IF 1, 1kbalanced load. Noise Figure 23 dB Input IP3 +20.5 dB Single sideband. Total C urrent 14 mA
Power Supply
Voltage 2.7 3.0 3.3 V
Page 4
Preliminary
8-36
RF2460
Rev A7 010912
8
FRONT-ENDS
Pin Function Description Interface Schematic
1 ENABLE
Power down pin. A logic “low” turns the part off. A logic “high” (>1.6V) turns the part on.
2 VCC1
Supply Voltage for the LNA, mixer,bias, and logic circuitry. External RF and IF bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of t he bypass capacitors should connect immediately to ground plane.
See pin 20.
3 VCC2
Supply Voltage for the LO buffer amplifier. External RF and IF bypass­ing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capaci­tors should connect immediately to ground plane.
4LOIN
Mixer LO Input Pin.
5NC
No connection. For isolation purposes, this pin is connected to the ground plane.
6NC
No connection. For isolation purposes, this pin is connected to the ground plane.
7IF+
CDMA IF Output pin. This is a balanced output. The internal circuitry,in conjunction with an external matching/bi as inductor to V
CC
, sets the
operating impedance. This inductor is typically incorporated in the matching network between the output and IF filter. The part is designed todrivea1kΩ load. Because this pin is biased to V
CC
, a DC blocking
capacitor must be used if the IF filter input has a DC path to ground. See Application Schematic.
8NC
No connection. For isolation purposes, this pin is connected to the ground plane.
9IF-
Same as pin 7, except complementary output. See pin 6.
10 NC
No connection. For isolation purposes, this pin is connected to the ground plane.
11 LNA2 E
Emitter for L NA2. Increasing the inductance on this pin will reduce the mixer gain, increase IP3 and noise figure.
12 MIX IN
Mixer RF Input Pin. This pin is internally DC bi ased and should be DC blocked if connected to a device with DC present. External matching network sets RF and IF impedance for optimum perform ance.
13 ISET2
This pin is used to set the bias current and IIP3 of the mixer amplifier using a res istor to ground. See plots for values and current settings.
14 ISET1
This pin is used to set the bias current and IIP3 of the LNA amplifier using a res istor to ground. See plots for values and current settings.
15 LNA OUT
LNA output pin. Open collector. See pin 20 .
16 MIX GAIN
CMOS compatible signal controlling mixer gain mode. Setting this sig­nal high pl a ces the mixer in the high gain mode. Settin g this signal low places the mixer in low gain mode by bypassing and shutting off the mixerbufferamplifiercurrent.
17 LNA GAIN
CMOS compatible signal controlling LNA gain mode. Setting this signal high places the LNA in the high gain mode. Setting this signal low bypasses the LNA and shuts off the LNA bias current.
18 NC
No connection. For isolation purposes, this pin is connected to the ground plane.
19 NC
No connection. For isolation purposes, this pin is connected to the ground plane.
IF1-IF1+
1.2 pF 1.2 pF
GND2
MIX IN
MIX GAIN
LNA GAIN
Page 5
Preliminary
8-37
RF2460
Rev A7 010912
8
FRONT-ENDS
Pin Funct ion Description Interface Schematic
20 LNA IN
RF Input pin. This pin is internally matched for optimum noise figure from a 50source.
Pkg
Base
GND
Ground connection. The backside ofthe package should be soldered to a top side ground pad which is connected to the ground plane with mul­tiple vias.
LNA OUT
LNA IN
V
CC1
Page 6
Preliminary
8-38
RF2460
Rev A7 010912
8
FRONT-ENDS
Application Schematic - US PCS
82 7.5 nH
LNA GAIN MIX GAIN
C1
C3
R
C1
L2
0.1 µF
0.1 µF 47 nH
9.1 k
18 k
2nH
19 nH 510
10
0.1 µF
19 18 17 16
14
13
12
10987
5
4
3
2
1
* *
* *
20
6
11
15
*
Represents "GND".
L1
C2
1nH
10 nH
22 pF
ENABLE
LO IN
V
CC2
V
CC1
C3
0.1 µF
VCC1
C4
0.1 µF
VCC2
C3 and C4 should be placed as
closely as possible to pins 2 and 3
V
CC1
IF OUT
MIX IN
LNA OUT
V
CC1
0.1 µF
LNA IN
8 1103 6 82 4.7 kUS PCS, IF = 184 MHz
4 823 5 150 3kGPS, IF = 184 MHz
3.6 1202 7 82 4.7 kKorean PCS, IF = 220 MHz
4 1103 6 82 4.7 kUS PCS, IF = 210 MHz
C1 (pF) L2 (nH)C2 (pF) C3 (pF) L1 (nH) R(Ω)
Page 7
Preliminary
8-39
RF2460
Rev A7 010912
8
FRONT-ENDS
Output Interface Network of the Mixer
L1, C1, C2, and R form a current combiner which per­forms a differentialtosingle-endedconversion at the IF frequency and sets the output impedance. In most cases, the resonance frequency is independent of R and can be set according to the following equation:
Where C
EQ
is the equivalent stray capacitance and
capacitance looking into pins 7 and 9. An average value to use for C
EQ
is 2.5pF.
R can then be used to set the output impedance according to the followingequation:
where R
OUT
is the desired output impedanceand RPis
the parasitic equivalent parallel resistance of L1.
C
2
should first be set to 0 and C1 should be chosen as
high as possible (suggested less than 20 pF), while maintaining an R
P
of L1 that allows for the desired
R
OUT
. If the self-resonant frequencies of the selected
C1 produce unsatisfactory linearity performance, their values may be reduced and compensated for by including C2 capacitor with a value chosen to maintain the desired F
IF
frequency.
L2 and C3 serve dual purposes. L2 serves as an out­put bias choke, and C3 serves as a series DC block.
In addition, L2 and C3 may be chosen to for m an impedance matching network if the input impedance of the IF filter is not equal to R
OUT
.Otherwise,L2ischo-
sen to be large (suggested 120nH) and C3 is chosen to be large (suggested 22nF) if a DC path to ground is present in the IF filter, or omitted if the filter is DC blocked.
f
IF
1
L1
2
------
C12C2C
EQ
++()2π
-----------------------------------------------------------
=
R
1
4 R
OUT
---------------------
1
R
P
------
èø
æö
1–
=
Page 8
Preliminary
8-40
RF2460
Rev A7 010912
8
FRONT-ENDS
Application Schema t ic - W-CDMA
(See W-CDMA charts for lab measurements at the end of the data sheet)
19 18 17 16
14
13
12
10987
5
4
3
2
1
* *
* *
20
6
11
15ENABLE
VCC1
VCC2
50 Ωµstrip
R1
82
L2
7.5 nH
50 Ωµstrip
50 Ωµstrip
C7
4.3 pF
C8
4.3 pF
50 Ωµstrip
50 Ωµstrip
C9
4.3 pF
L4
82 nH
R2
DNI
50 Ωµstrip
L3
150 nH
C5
0.1 µF
VCC1
C6
5.6 pF
50 Ωµstrip
L5
1.0 nH
50 Ωµstrip
C10
0.1 µF
50 Ωµstrip
L6
47 nH
R3
9.1 k
R6
18 k
50 Ωµstrip
L7
2.0 nH
C11
22 pF
50 Ωµstrip
L8
19 nHR4510
R5
10
C12
0.1 µF
VCC1
MIX_GAIN
LNA_GAIN
50 Ωµstrip
C2
0.1 µF
50 Ωµstrip
L1
10 nH
RF2460PCBA-U WCDMA
RF @ 2.14 GHz, LO @ 2.33 GHz, IF @ 190 MHz
IF=190 MHz
C3
0.1 µF
VCC1
C4
0.1 µF
VCC2
C2andC3shouldbeplacedas
closely as possible to pins 2 and 3
P1
1 2 3
CON3
P1-1 VCC1
GND
C1
1 µF
+
P1-3
C13 1 µF
+
LO IN
LNA IN
LNA OUT
MIX IN
IF OUT
P2
1 2 3
CON3
P2-1 ENABLE
LNA_GAIN
P2-3 MIX_GAIN
P2-1
Page 9
Preliminary
8-41
RF2460
Rev A7 010912
8
FRONT-ENDS
Application Schematic - GPS
RF=1575MHz, IF=184MHz, LO=1759MHz
ENABLE
50 Ωµstrip
82 7.5 nH
LNA GAIN
MIX GAIN
50 Ωµstrip
50 Ωµstrip
4pF
5pF
50 Ωµstrip
50 Ωµstrip
50 Ωµstrip
4pF
82 nH
50 Ωµstrip
.1 uF
***323 pS electrical delay***
***0.03 dB line loss***
1.8 nH
50 Ωµstrip
33 nF
50 Ωµstrip
50 Ωµstrip
10 nH
***397 pS electrical delay***
***0.26 dB lineloss***
9.1 k
8.2 k
50 Ωµstrip
5.6 nH
22 pF
50 Ωµstrip
***359 pS electrical delay***
***0.23 dB lineloss***
10 nH DNP
10
0.1 uF
50 Ωµstrip
6pF
50 Ωµstrip
4.7 nH
50 Ωµstrip
***C2 & C3 should be placed as
closeaspossibletopins2&3***
***390 pS electrical delay***
***0.28 dB line loss***
***439 pS electrical delay***
***0.33 dB line loss***
19 18 17 16
14
13
12
10987
5
4
3
2
1
* *
* *
20
6
11
15
*
Represents"GND".
3pF
150 nH
3k
VCC1
VCC2
IF OUT
V
CC1
LO IN
LNA IN
V
CC1
LNA OUT
MIX IN
Page 10
Preliminary
8-42
RF2460
Rev A7 010912
8
FRONT-ENDS
Current Measurement
To measure only the currentof the different circuitry in the evaluation board, use the following procedure. First, replace the bias choke inductor at the output of the mixer (L3 for US-PCS) with a 1resistor. The voltage across
the resistor will represent the mixer current. Terminate all SMA connections at 50Ω. Second, follow the table below.
Therefore
,
CONDITION
Current (mA) V
CC1
V
CC2
EN LNA Gain Mix Gain
I
CC
Total 25.8211111
LNA Off 18.7711101 Mixer Preamp Off 14.2811100 V
CC2
Off 10.0510100
Mixer Current 7.7210100
LNA (Bypass) = (Computer Simulation) = 0mA
LNA (High Gain) = 25.82-18.77 = 7.05mA
Mixer (Preamp) = 18.77-14.28 = 4.49mA
Mixer = (Measured) = 7.70mA
Bias = 10.05-7.7 = 2.35mA
LO Circuitr y (V
CC2
) = 14.28-10.05 = 4.23mA
25.82mA
Page 11
Preliminary
8-43
RF2460
Rev A7 010912
8
FRONT-ENDS
Evaluation Board Schematic
US-PCS, IF=210MHz
(Download Bill of Materials from www.rfmd.com.)
ENABLE
R1
82
L2
7.5 nH
J2
LO IN
LNA GAIN MIX GAIN
C7
4pF
C6
6pF
J3
IF OUT
R2
4.7 k
C9
4pF
L3
110 nH
VCC1
C5
0.1 µF
***323 pS electrical delay***
***0.03 dB line loss***
C10
0.1 µF
L6
47 nH
J4
MIX IN
***397 pS electrical delay***
***0.26 dB line loss***
R3
9.1 k
R6
18 k
L7
2nH
J5
LNA OUT
***359 pS electrical delay***
***0.23 dB line loss***
L8
19 nHR4510
R5
10
C12
0.1 µF
VCC1
C2
0.1 µF
J1
LNA IN
***C3 and C4 should be placed as
close as possible to pins 2 and 3***
***390 pS electrical delay***
***0.28 dB line loss***
***439 pS electrical delay***
***0.33 dB line loss***
19 18 17 16
14
13
12
10987
5
4
3
2
1
* *
* *
20
6
11
15
*
Represents "GND".
P2
1 2 3
CON3
P2-3 MIX GAIN
P2-2 LNA GAIN
P2-1 ENABLE
L4
82 nH
C8
3pF
P1
1 2 3
CON3
GND
P1-1
C1
0.1 µF
VCC1
P1-3
C13
0.1 µF
VCC2
VCC1
VCC1
L5
1nH
C3
0.1 µF
C4
0.1 µF
L1
10 nH
C11
22 pF
Page 12
Preliminary
8-44
RF2460
Rev A7 010912
8
FRONT-ENDS
Evaluation Board Schema t ic
Korean-PCS, IF=220MHz
ENABLE
R1
68
L3
9nH
J2
LO IN
LNA GAIN MIX GAIN
C8
3.6 pF
C7
7pF
J3
IF OUT
R2
4.7 k
C10
3.6 pF
L4
120 nH
VCC1
C6
0.1 µF
***291 pS electrical delay***
***0.05 dB line loss***
C11
0.1 µF
L7
47 nH
J4
MIX IN
***399 pS electrical delay***
***0.32 dB line loss***
R3
7.5 k
R6
24 k
L8
2.2 nH
J5
LNA OUT
***358 pS electrical delay***
***0.26 dB line loss***
L9
8.2 nHR4510
R5
20
VCC1
C3
0.1 µF
J1
LNA IN
***C4 and C5 should be placed as
close as possible to pins 2 and 3***
***396 pS electrical delay***
***0.30 dB line loss***
***400 pS electrical delay***
***0.30 dB line loss***
19 18 17 16
14
13
12
10987
5
4
3
2
1
* *
* *
20
6
11
15
*
Represents "GND".
P2
1 2 3
CON3
P2-3 MIX GAIN
P2-2 LNA GAIN
P2-1 ENABLE
L5
82 nH
C9
2pF
P1
1 2 3
CON3
GND
P1-1
C1
0.1 µF VCC1
P1-3
C14
0.1 µF
VCC2
VCC1
VCC1
L6
1nH
L1
1.6 nH
L2
10 nH
C2
1pF
C4
0.1 µF
C5
0.1 µF
C12
22 pF
C13
0.1 µF
2460310, Rev. 5
Page 13
Preliminary
8-45
RF2460
Rev A7 010912
8
FRONT-ENDS
Evaluation Board Layout - US PCS
Board Size 2.0" x 2.0"
Board Thickness 0.034”, Board Material FR-4, Multi-Layer
Assembly Top
Power Plane 1 Power Plane 2
Page 14
Preliminary
8-46
RF2460
Rev A7 010912
8
FRONT-ENDS
Back
Page 15
Preliminary
8-47
RF2460
Rev A7 010912
8
FRONT-ENDS
Evaluation Board Layout - Korean PCS
Assembly Top
Power Plane 1 Power Plane 2
Back
Page 16
Preliminary
8-48
RF2460
Rev A7 010912
8
FRONT-ENDS
Special Instructions (Board loss, taking into consideration description in the schematic)
LNA V
CC1=VCC2
= E nable=2.75V; Mix Gain=0.0V
To measure I
CC
LNA only:
LNA Gain was switched between 0V and 2.75V, and record the delta current. Mixer V
CC1=VCC2
= Enable= Mix Gain=2.75V; LNA Gain=0.0V
To measure I
CC
Mixer (LNA should be in bypass mode and LO signal should be present):
Total mixer current= I
CC1
V
CC2
only affects LO current buffer and R6 doesn’t affect the mixer current.
LNAGain,NoiseFigureandIIP3versusICC-LNAOnly
(LNA High Gain)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0
1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0
ICC(mA)
Gain and Noise Figure (dB)
-15.0
-10.0
-5.0
0.0
5.0
10.0
15.0
IIP3 (dBm)
Gain (dB) NF (dB) IIP3 (dBm)
MixerGain, Noise Figure and IIP3 versus ICC-Mixer
(Mixer High Gain, LO = -7 dBm)
-20.0
-15.0
-10.0
-5.0
0.0
5.0
10.0
15.0
20.0
25.0
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0
ICC(mA)
Gain and Noise Figure (dB)
-15.0
-10.0
-5.0
0.0
5.0
10.0
IIP3 (dBm)
Gain (dB) NF (dB) IIP3 (dBm)
Resistor(R6) versusICC(mA) - LNA Only
(LNA High Gain)
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
180.0
200.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0
ICC(mA)
Resistor R6 (k
)
Resistor(R3) versusICC- Mixer
(MixerHigh Gain, LO = 2170 @ -7 dBm)
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
180.0
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0
ICC(mA)
Resistor R3 (k
)
US-PCS
Page 17
Preliminary
8-49
RF2460
Rev A7 010912
8
FRONT-ENDS
Instructions (Board loss,taking into consideration description in the W-CDMA schematic)
LNA
ICCLNA current=total current (VCC=LNA Gain=2.75)-total current (VCC= 2.75; LNA Gain= 0)
To measure I
CC
LNA only:
LNA Gain was switched between 0V and 2.75V, and record the delta current. Mixer ICCMix and bias current=total current (VCC;=EN=V
CC2
= M ix Gain=2.75; LNA Gain=0)-total current (VCC;=EN=2.75;
Mix Gain=LNA Gain =V
CC2
=0
LO signal should be present. V
CC2
only affects LO current buffer and R6 doesn’t affect the mixer current.
LNA Gain, Noise Figure, and IIP3versus ICC-LNAOnly
(LNA High Gain)
-10.00
-5.00
0.00
5.00
10.00
15.00
20.00
1.00 3.00 5.00 7.00 9.00 11.00 13.00 15.00 17.00
ICC(mA)
Gain (dB) and IIP3 (dBm)
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
NF (dB)
Gain (dB) IIP3 (dBm) NF (dBm)
Mixer Gain, Noise Figure and IIP3 versus ICC- Mixerand
Bias Circuits (Mixer High Gain, LO=-7dBm)
-8.00
-6.00
-4.00
-2.00
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00
ICC(mA)
Gain (dB) and IIP3 (dBm)
0.00
2.00
4.00
6.00
8.00
10.00
12.00
NF (dB)
Gain (dB) IIP3 (dBm) NF (dBm)
R6 versus ICCfor LNA
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0
ICC(mA)
R6 (mA)
R3 versus ICCfor Mixer and Bias Circuits
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
10.0 12.0 14.0 16.0 18.0 20.0 22. 0 24.0
ICC(mA)
R3 (k
)
W-CDMA
(See W-CDMA Application Schematic)
Page 18
Preliminary
8-50
RF2460
Rev A7 010912
8
FRONT-ENDS
By using a R6=39kand R3=24k, the following results wereobtained. RF=2140MHz, LO=2330MHz, IF=190 MHz.
LNA (High Gain Mode) WCDMA
12.00
12.20
12.40
12.60
12.80
13.00
13.20
13.40
13.60
13.80
14.00
2.75 2.85 2.95 3.05 3.15 3.25
VCC(V)
Gain (dB)
Gain, -30º Gain, 25º Gain, 85º
LNA (High Gain Mode) W-CDMA
4.00
5.00
6.00
7.00
8.00
9.00
10.00
2.75 2.85 2.95 3.05 3.15 3.25 3.35
VCC(V)
IIP3 (dBm)
IIP3,-30º IIP3,25º IIP3,85º
LNA (High Gain Mode) W-CDMA
0.00
0.50
1.00
1.50
2.00
2.50
2.75 2.85 2.95 3.05 3.15 3.25 3.35
VCC(V)
Noise Figure (dB)
NF, -30º NF, 25º NF, 85º
LNA Current W-CDMA
3.90
3.95
4.00
4.05
4.10
4.15
4.20
4.25
4.30
4.35
2.75 2.85 2.95 3.05 3.15 3.25 3.35
VCC(V)
I
CC
(mA)
Icc, -30º Icc, 25º Icc, 85º
Page 19
Preliminary
8-51
RF2460
Rev A7 010912
8
FRONT-ENDS
Mixer High Gain Mode,
LO @ -7 dBm W-CDMA
8.00
9.00
10.00
11.00
12.00
13.00
14.00
2.75 2.85 2.95 3.05 3.15 3.25 3.35
VCC(V)
Gain (dB)
Gain, -30º Gain, 25º Gain, 85º
Mixer High Gain Mode,
LO @ -7 dBm W-CDMA
8.00
8.50
9.00
9.50
10.00
10.50
11.00
2.75 2.85 2.95 3.05 3.15 3.25 3.35
VCC(V)
Noise Figure (dB)
NF, -30º NF, 25º NF, 85º
Mixer High Gain Mode,
VCC@2.75W-CDMA
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
-10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0
LO (dBm)
Gain (dB)
Gain, -30º Gain, 25º Gain, 85º
MixerIFHighGainMode,
VCC@2.75W-CDMA
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
-10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0
LO (dBm)
IIP3 (dBm)
IIP3, -30º IIP3, 25º IIP3, 85º
MixerIFHighGainMode,
VCC@2.75W-CDMA
8.0
8.5
9.0
9.5
10.0
10.5
11.0
-10.0 -8. 0 -6.0 -4.0 -2.0 0.0
LO (dBm)
Noise Figure (dB)
NF,-30º NF,25º NF,85º
MixerIFHighGainMode,
VCC@2.75W-CDMA
5.5
5.6
5.7
5.8
5.9
6.0
6.1
6.2
-10.0 -8.0 -6.0 -4.0 -2.0 0.0
LO (dBm)
I
CC
Mixer and Bias Current (mA)
Icc, -30º Icc, 25º Icc, 85º
Page 20
Preliminary
8-52
RF2460
Rev A7 010912
8
FRONT-ENDS
MixerIFHighGainMode,
LO @ -7 dBm W-CDMA
5.00
5.50
6.00
6.50
7.00
7.50
2.75 2.85 2.95 3.05 3.15 3.25 3.35
VCC(V)
I
CC
Mixer and Bias Circuit (mA)
Icc,-30º Icc,25º Icc,85º
Loading...