Datasheet RBO08-40G, RBO08-40M, RBO08-40T Datasheet (SGS Thomson Microelectronics)

Page 1
RBO08-40G/M/T
ApplicationSpecificDiscretes
A.S.D.
FEATURES
8ADIODETOGUARDAGAINSTBATTERYRE­VERSAL.
NEGATIVEOVERVOLTAGEPROTECTIONBY CLAMPING.
COMPLIANTWITHISO/DTR7637STANDARD FORPULSES 1, 2,3a and 3b.
SUITABLE FOR AUTOPROTECTED ALTER­NATORENVIRONMENT.
BREAKDOWNVOLTAGE: 24V min. CLAMPINGVOLTAGE:± 40 V max. MONOLITHIC STRUCTURE FOR GREATER
RELIABILITY.
DESCRIPTION
Designedto protectagainstbatteryreversaland overvoltagesin automotiveapplications,this monolithiccomponentoffersmultiplefunctionsin the samepackage: D1 : reversedbattery protection T1 : clampingagainst negativeovervoltages T2 : Transilfunctionfor overvoltageprotection.
TM
OVERVOL TAGEPROTECT IONCIRCUI T (RBO)
REVERSEDBATTERYAND
D2PAK
RBO08-40G
PowerSO-10
RBO08-40M
TM
January1998 - Ed : 2
TO220AB
RBO08-40T
FUNCTIONAL DIAGRAM
1
3
2
1/14
Page 2
RBO08-40G / RBO08-40M / RBO08-40T
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
I
FSM
Non repetitivesurgepeak forward current
tp = 10 ms 80 A
(DiodeD1)
I
F
P
PP
DC forwardcurrent(Diode D1) Tc = 75°C8 A PeakpulsepowerbetweenInput andOutput
10/1000µs 600 W
(TransilT1) seenote 1 Tjinitial= 25°C
P
PP
T
stg
Tj
T
L
PeakpulsepowerbetweenPins 3 and 2 (10/1000µs) 1500 W Storagetemperature range
Maximumjunction temperature Maximumlead temperaturefor solderingduring 10 s
- 40 to+ 150 150
260 °C
at 4.5mm from case for TO220AB
Note 1 : for a surge greater than themaximum value, thedevice will fail inshort-circuit.. TM :PowerSO-10,TRANSIL and ASD are trademarks ofSGS-THOMSON Microelectronics.
THERMAL RESISTANCE
Symbol Parameter Value Unit
Rth (j-c)
Junctionto case
RBO08-40M RBO08-40G
RBO08-40T
2.4
2.4
2.4
°C
°C/W
2/14
D1
T1
V
V
31 VRM31
CL
I13
31
F
I
T2
2
31
BR
V
IRM31
31
I
R
Ipp31
F13
V13
Ipp32
I
RM
I32
IR32
32
VRM32 V
32 V
R
B
1
V32
32
C
L
3
2
Page 3
RBO08-40G / RBO08-40M / RBO08-40T
Symbol Parameter
V
RM31/VRM32
V
BR31/VBR32
I
R31/IR32
V
CL31/VCL32
V
F13
I
PP
αT
C
31/C32
Stand-offvoltage Transil T1 / TransilT2. Breakdownvoltage TransilT1 / TransilT2. LeakagecurrentTransil T1 / TransilT2. ClampingvoltageTransil T1 / TransilT2. Forwardvoltagedrop DiodeD1. Peak pulsecurrent. Temperaturecoefficientof V
BR
.
CapacitanceTransil T1 / TransilT2.
ELECTRICAL CHARACTERISTICS: DIODED1 (- 40°C< T
amb
Symbol Test Conditions
V
F13
IF=8A
RBO08-40M/G RBO08-40T
V
F13
=8A@T
I
F
IF=4A
=25°C 1.45 V
amb
RBO08-40M/G RBO08-40T
I
V
F13
=4A@T
F
IF= 1A 1.1 V I
=1A@T
F
= 1A@ Tj= 85°C 0.9 V
I
F
=25°C
amb
=25°C 1.0 V
amb
ELECTRICAL CHARACTERISTICS: TRANSIL T1 (- 40°C<T
Symbol Test Conditions
V
BR 31
V
BR 31
I
RM31
I
RM31
V
CL31
αT TemperaturecoefficientofV
C
31
IR=1 mA 22 35 V IR=1 mA, T
=25°C2432V
amb
VRM=20V 50 µA VRM=20V,T IPP=15A,Tjinitial=25°C
amb
=25°C
10/1000µs40V
BR
F = 1MHz VR= 0 V 1000 pF
<+85°C)
<+85°C)
amb
Value
Min. Typ. Max.
1.5 V
1.7 V
1.3 V
1.35 V
1.2 V
Value
Min. Typ. Max.
10 µA
910-4/°C
Unit
Unit
ELECTRICAL CHARACTERISTICS: TRANSIL T2 (- 40°C<T
Symbol Test Conditions
V
BR 32
V
BR 32
I
RM 32
I
RM 32
V
CL 32
αT C
32
IR=1 mA 22 35 V IR=1 mA, T
=25°C2432V
amb
VRM=20V 50 µA VRM=20V,T IPP= 37.5 A Temperaturecoefficientof V
=25°C10µA
amb
10/1000µs40V
BR
F = 1MHz VR=0 V 2000 pF
amb
<+85°C)
Value
Min. Typ. Max.
Unit
8.5 10-4/°C
3/14
Page 4
RBO08-40G / RBO08-40M / RBO08-40T
PRODUCTDESCRIPTION
1
2
BASICAPPLICATION
TheRBO has 3 functionsintegratedon thesame
3
chip. D1 : “Diode function”in order to protect against
reversedbattery operation. T2:“Transil function” in order to protect against
positive surge generated by electric systems
(ignition, relay. ...).
T1 : Protection againt negative surges such as inductive overvoltages (see motor application below).
* The monolithic multi-function protection (RBO) has been developed to protect sensitivesemiconductorsin car e lect ronic modules against both overvoltage and batteryreverse.
* In addition, the RBO circuit prevents overvoltages generated by the module from affecting the carsupply network.
MOTORDRIVER APPLICATION
BATTERY
Filter
D1
T2
T1
MOTOR
RBO
DEVICE MOTOR CONTROL
In thisapplication,onehalfofthemotordrivecircuitis suppliedthroughthe “RBO”and isthusprotected as per its basic function application. The secondpart is connecteddirectlyto the “carsupplynetwork” andis protectedas follows:
- Forpositive surges: T2 (clampingphase) and D1 in forward-biased.
- Fornegative surges: T1(clampingphase) and T2 inforward-biased.
4/14
Page 5
2
PINOUTconfigurationin D
PAK:
-Input (1) : Pin1
-Output (3) : Pin3
-Gnd (2) : Connectedto base Tab
Marking : Logo, datecode, RBO08-40G
PINOUTconfigurationin PowerSO-10:
-Input (1) : Pin3
-Output (3) : Pin7 and9
-Gnd (2) : Connectedto base Tab
Marking : Logo, datecode, RBO08-40M
RBO08-40G / RBO08-40M / RBO08-40T
D1
T2
T1
TAB
Pin 1 (NC) Pin 2 (NC)
Pin 3 (Input 1)
Pin 4 (NC) Pin 5 (NC)
Input (1)
D1
Output(3)
T2
T1
Gnd (2)
Tab
Pin 10(NC) Pin 9 (Ouput 3)
Pin 8 (NC) Pin 7 (Ouput 3) Pin 6 (NC)
PINOUTconfigurationin TO220AB:
-Input (1) : Pin1
-Output (3) : Pin3
-GND (2) : Connectedto base Tab
Marking : Logo, datecode, RBO08-40T
TOP VIEW
D1
T2
T1
(TAB)
5/14
Page 6
RBO08-40G / RBO08-40M / RBO08-40T
Fig. 1 : Peak pulse power versus exponential
pulseduration(Tj initial = 85°C).
(kW)
p
P
p
10.0
5.0
2.0
1.0
Transil T 2
0.5
0.2
Diode D1
0.1 1 2 5 10 20 50 100
tp(ms)
Fig. 2-2 : Clamping voltage versus peak pulse
current (Tj initial =85°C). Exponential waveform tp = 1 ms and tp = 20 µs
(TRANSILT1).
Fig. 2-1 : Clamping voltage versus peak pulse current (Tj initial = 85°C).
Exponential waveform tp = 40 ms and tp = 1 ms (TRANSILT2).
VCL(V)
45
40
tp = 40ms
35
tp = 1ms
30
Ipp(A)
25
0.1 0.2 0.5 1.0 5.0 10.0 20.0 50.0
Fig. 3 :
Relative variation of peak pulse power
2.0
versus junction temperature.
VCL(V)
50 45 40 35
tp = 1ms
tp = 20 s
µ
30
Ipp(A)
25
0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0
Ppp[Tj]/Ppp[Tj initial=85°C]
1.20
1.00
0.80
0.60
0.40
0.20
0.00 0 25 50 75 100 125 150 175
Tj initial(°C)
6/14
Page 7
RBO08-40G / RBO08-40M / RBO08-40T
Fig. 4 :
Relative variation of thermal impedance
junctionto caseversuspulse duration.
Zth(j-c)/Rth(j-c)
1.0
0.5
0.2
0.1 1E-3 1E-2 1E-1 1E+0 1E+1
Fig. 5-2 :
Peak forward voltage drop versus peak
tp (s)
forwardcurrent(typical values)- (DIODED1).
V(VFM )
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
Tj=25°C
Tj=150°C
IFM (A)
0.1 1.0 10.0 20.0
Fig. 5-1 :
Peakforward voltage drop versus peak
forwardcurrent (typicalvalues)- (TRANSILT2).
V(V
FM )
2.0
1.8
1.6
1.4
1.2
Tj=25°C
1.0
0.8
0.6
0.4
0.2
0.0
0.1 1.0 10.0 20.0
Tj=150°C
IFM (A)
Fig.6 : Relative variation of leakage current
versus junction temperature.
ORDERINGINFORMATION
RBO 08 - 40 M
ReversedBattery& Overvoltageprotection
I
F(AV)
=8A
Package: M = PowerSO-10
2
PAK
G=D T =TO220AB
=40V
V
CL
7/14
Page 8
RBO08-40G / RBO08-40M / RBO08-40T
PACKAGEMECHANICAL DATA
2
PAK Plastic
D
A
E
L2
L
L3
A1
B2 B
G
2.0 MIN. FLATZONE
C2
C
A2
R
V2
DIMENSIONS
REF.
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 4.30 4.60 0.169 0.181 A1 2.49 2.69 0.098 0.106 A2 0.03 0.23 0.001 0.009
D
B 0.70 0.93 0.027 0.037 B2 1.40 0.055
C 0.45 0.60 0.017 0.024
C2 1.21 1.36 0.047 0.054
D 8.95 9.35 0.352 0.368
E 10.00 10.28 0.393 0.405
G 4.88 5.28 0.192 0.208
L 15.00 15.85 0.590 0.624 L2 1.27 1.40 0.050 0.055 L3 1.40 1.75 0.055 0.069
R 0.40 0.016
V2 0° 8° 0° 8°
FOOT-PRINT D
10.30
2
PAK
8.90
16.90
5.08
1.30
3.70
8/14
Page 9
RBO08-40G / RBO08-40M / RBO08-40T
SOLDERINGRECOMMENDATION
The soldering process causes considerable thermal stress to a semiconductor component. This has to be minimized to assure a reliable and extended lifetime of thedevice. The PowerSO-10 package can be exposed to a maximum temperatureof 260°C for 10 seconds. However a proper soldering of the package could be done at 215°C for 3 seconds. Any solder temperature profile should be within these limits. As reflow techniquesaremost commonin surfacemounting, typical heating profiles are given in Figure 1,either for mounting on FR4 or on metal-backed boards. For each particular board, the appropriate heat profile has to be adjusted experimentally. The present proposal is just a starting point. In any case, the following precautions have to be considered:
- alwayspreheatthe device
- peak temperatureshould be at least30 °C higherthanthe melting point of thesolder alloychosen
Fig. 1 : Typicalreflowsoldering heat profile
-thermalcapacity of thebasesubstrate Voids pose a difficult reliability problem for large surface mount devices. Such voids under the package result in poor thermal contact and the high thermal resistance leads to component failures. The PowerSO-10 is designed from scratch to be solely a surface mount package, hence symmetry in the x- and y-axis gives the package excellent weight balance. Moreover, the PowerSO-10offersthe uniquepossibilityto control easily the flatness and quality of the soldering process. Both the top and the bottom soldered edges of the package are accessible for visual inspection(soldering meniscus). Coplanarity between the substrate and the package can be easily verified. The quality of the solder joints is very importantfor two reasons : (I) poor quality solder joints result directly in poor reliability and (II) solder thickness affects the thermal resistance significantly. Thus a tight control of this parameter results in thermally efficientandreliable solder joints.
Temperature ( C)
250
o
o
245 C
o
215 C
200
Soldering
Cooli ng
150
Epoxy FR4
board
Preheating
100
Metal-backed
50
board
0
0 40 80 120 1 60 200 240 280 320 360
Time (s)
9/14
Page 10
RBO08-40G / RBO08-40M / RBO08-40T
SUBSTRATES AND MOUNTINGINFORMATION
The use of epoxyFR4 boards is quite commonfor surface mounting techniques,however, their poor thermal conduction compromisesthe otherwise outstanding thermal performance of the PowerSO-10. Some methods to overcome this limitationare discussedbelow.
One possibility to improve the thermal conduction is the use of large heat spreader areas at the copper layer of the PC board. This leads to a reductionof thermal resistance to 35 °C for 6 cm of theboard heatsink(see fig. 2).
Use of copper-filledthroughholes on conventional FR4 techniqueswillincreasethe metallizationand
Fig.2 :
Mountingon epoxyFR4head dissipationbyextendingthe area of thecopperlayer
Copper foil
decrease thermal resistance accordingly. Using a configurationwith 16holesunderthe spreaderof the packagewitha pitchof1.8 mm and a diameter of 0.7 mm, the thermal resistance (junction ­heatsink) can be reduced to 12°C/W (see fig. 3). Besidethe thermaladvantage,thissolution allows multi-layer boards to be used. However, a drawback of this traditional material prevents its use in very high power, high current circuits. For instance, it is not advisable to surface mount devices with currents greater than 10 A on FR4
2
boards. A Power Mosfet or Schottky diode in a surfacemount power packagecan handleup to around50 A ifbetter substratesare used.
FR4 board
Fig. 3 :
10/14
Mountingon epoxy FR4 byusingcopper-filledthrough holesfor heattransfer
Copperfoil
heattransferheatsink
FR4board
Page 11
RBO08-40G / RBO08-40M / RBO08-40T
A new technology available today is IMS - an Insulated Metallic Substrate. This offers greatly enhanced thermal characteristics for surface mount components.IMS is a substrateconsisting of threedifferentlayers,(I)thebasematerialwhich is availableas an aluminiumor a copper plate,(II) a thermal conductive dielectrical layer and (III) a copper foil, which can be etched as a circuitlayer. Using this materiala thermalresistance of 8°C/W with 40 cm
2
of board floating in air is achievable (seefig.4).If evenhigherpoweristo bedissipated an externalheatsinkcould be applied which leads to an R that R
(j-a) of 3.5°C/W (see Fig. 5), assuming
th
(heatsink-air) is equal to R
th
(junction-heatsink). This is commonly applied in practice, leading to reasonable heatsink dimensions. Often power devices are defined by
Fig.4 : Mountingon metalbacked board
Copper foil
Insulation
consideringthe maximumjunction temperature of the device. In practice , however, this is far from being exploited. A summary of various power managementcapabilities is made in table 1 based on a reasonabledeltaT of70°Cjunctionto air.
The PowerSO-1 0 concept also represents a n attractive alternative to C.O.B. techniques. PowerSO-10 offers devices fully tested at low and high temperature. Mounting is simple - only conventionalSMT is required- enablingthe users togetrid ofbond wire problemsand the problemto controlthe hightemperaturesoftsolderingaswell. An optimized thermal managementis guaranteed
th
through PowerSO-10 as the power chips must in any case be mounted on heat spreaders before beingmountedonto the substrate.
Fig. 5 :
Mounting on metal backed board with an
externalheatsinkapplied
Copper foil
FR4board
Alumini um
Aluminium
heatsink
TABLE1
PowerSo-10packagemountedon Rth(j-a) PDiss
1.FR4usingtherecommendedpad-layout
2
2.FR4withheatsinkon board (6cm
)35°C/W 2.0 W
50 °C/W 1.5 W
3.FR4withcopper-filledthroughholesand externalheatsink applied 12 °C/W 5.8W
4. IMS floating in air (40 cm
5. IMS with externalheatsinkapplied
2
)8°C/W 8.8 W
3.5 °C/W 20W
11/14
Page 12
RBO08-40G / RBO08-40M / RBO08-40T
PACKAGEMECHANICAL DATA
B
H
A1
Q
0.10A B
E3 E1
SEATING
PLANE
A
C
10
E
1
eB
0.25 M
6
E2
5
DETAIL”A”
D
h
D1
A
F
SEATING
PLANE
A1
L
DETAIL ”A”
a
E4
DIMENSIONS
REF.
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 3.35 3.65 0.131 0.143
A1 0.00 0.10 0.00 0.0039
B 0.40 0.60 0.0157 0.0236 C 0.35 0.55 0.0137 0.0217 D 9.40 9.60 0.370 0.378
D1 7.40 7.60 0.291 0.299
E 9.30 9.50 0.366 0.374 E1 7.20 7.40 0.283 0.291 E2 7.20 7.60 0.283 0.299
12/14
DIMENSIONS
REF.
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
E3 6.10 6.35 0.240 0.250 E4 5.90 6.10 0.232 0.240
e 1.27 0.05 F 1.25 1.35 0.0492 0.0531
H 13.80 14.40 0.543 0.567
h 0.50 0.019 L 1.20 1.80 0.0472 0.0708
Q 1.70 0.067
a0° 8°0° 8°
Page 13
RBO08-40G / RBO08-40M / RBO08-40T
FOOTPRINT MOUNTINGPAD LAYOUT
RECOMMENDED
Dimensionsin millimeters Dimensionsin millimeters
HEADERSHAPE
SHIPPINGTUBE
C
B
A
Surfacemount film taping: contactsalesoffice
A B C Lengthtube
Quantityper tube
DIMENSIONS(mm)
TYP
18 12
0,8
532
50
13/14
Page 14
RBO08-40G / RBO08-40M / RBO08-40T
PACKAGEMECHANICALDATA
TO220AB Plastic
DIMENSIONS
REF.
Millimeters Inches
Min. Max. Min. Max.
A 14.23 15.87 0.560 0.625 a1 4.50 0.177 a2 12.70 14.70 0.500 0.579
B 10.20 10.45 0.402 0.411 b1 0.64 0.96 0.025 0.038 b2 1.15 1.39 0.045 0.055
C 4.48 4.82 0.176 0.190 c1 0.35 0.65 0.020 0.026 c2 2.10 2.70 0.083 0.106
e 2.29 2.79 0.090 0.110
F 5.85 6.85 0.230 0.270
I 3.55 4.00 0.140 0.157
L 2.54 3.00 0.100 0.118
l2 1.45 1.75 0.057 0.069 l3 0.80 1.20 0.031 0.047
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of thirdparties which may result from its use. No license is grantedby implication or otherwise under any patentor patent rights of SGS-THOMSON Microelectronics.Specifications mentioned in thispublication are subjectto change without notice. This publicationsupersedes and replaces all informationpreviously supplied. SGS-THOMSONMicroelectronics productsare notauthorized for use as criticalcomponents in lifesupport devices or systems withoutexpress written approval of SGS-THOMSON Microelectronics.
1997 SGS-THOMSON Microelectronics -Printed in Italy - All rights reserved.
SGS-THOMSON MicroelectronicsGROUP OF COMPANIES
Australia- Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore- Spain -Sweden - Switzerland - Taiwan - Thailand - United Kingdom -U.S.A.
14/14
Loading...