The PTF 10120 is an internally matched common source N-channel
enhancement-mode lateral MOSFET intended for CDMA and TDMA
applications from 1.8 to 2.0 GHz. It is rated at 120 watts power output.
Nitride surface passivation and full gold metallization ensure excellent
device lifetime and reliability.
Typical Output Pow er vs. Input Pow er
150
120
90
60
30
Output Power (Watts
0
Output P ower
VDD = 28 V
I
= 1.2 A Total
DQ
f = 1990 MHz
0369121518
Input Power (Watts)
Efficiency
100
80
60
40
Efficiency (%
20
0
INTERNALLY MATCHED
•
• Guaranteed Performance at 1.99 GHz, 28 V
- Output Power = 120 Watts Min
- Power Gain = 11 dB Typ
• Full Gold Metallization
• Silicon Nitride Passivated
• Back Side Common Source
• Excellent Thermal Stability
• 100% Lot Traceability
10120
A-1234569849
Package 20250
RF Specifications (100% Tested)
CharacteristicSymbolMinTypMaxUnits
Gain
(V
Power Output at 1 dB Compression
(V
Drain Efficiency
(V
Load Mismatch Tolerance
(V
—all phase angles at frequency of test)
All published data at T
= 28 V, P
DD
= 28 V, IDQ = 1.2 A Total, f = 1.99 GHz)P-1dB120——Watts
DD
= 28 V, P
DD
= 28 V, P
DD
= 30 W, IDQ = 1.2 A Total, f = 1.99 GHz)G
OUT
= 120 W, IDQ = 1.2 A Total, f = 1.99 GHz)h
OUT
= 60 W, IDQ = 1.2 A Total, f = 1.99 GHzY——10:1—
OUT
= 25°C unless otherwise indicated.
CASE
ps
D
1011—dB
—40 — %
e
1
Page 2
PTF 10120
y
y
y
s
e
Electrical Characteristics (100% Tested—characteristics, conditions and limits shown per side)
Drain-Source Breakdown Voltage VGS = 0 V , ID = 100 mAV
(BR)DSS
Zero Gate Voltage Drain CurrentVDS = 28 V , VGS = 0 VI
Gate Threshold VoltageVDS = 10 V , ID = 150 mAV
Forward TransconductanceVDS = 10 V , ID = 2 Ag
DSS
GS(th)
fs
65——Volts
——5.0mA
3.0—5.0Volts
—4.0—Siemens
Maximum Ratings
ParameterSymbolValueUnit
Drain-Source Voltage
Gate-Source Voltage
Operating Junction TemperatureT
Total Device Dissipation atP
Above 25°C derate by2.51W/°C
Storage Temperature RangeT
Thermal Resistance (T
(1)
per side
(1)
(1)
= 70°C)R
CASE
V
DSS
V
STG
GS
J
D
qJC
65Vdc
±20Vdc
200°C
440Watts
–40 to +150°C
0.39°C/W
Typical Performance
Typical P
12
11
10
Gain (dB)
9
Gain (dB)
8
7
1750185019502050
, Gain & Efficiency
OUT
vs. Frequenc
Outp ut P ower (W)
VDD = 28 V
= 1.2 A Tota l
I
DQ
Frequency (MHz)
(at P-1dB)
Efficiency (%)
160
140
120
100
80
60
40
Output Power & Efficienc
20
12
11
10
Gain (dB)
9
8
Broadband Test Fixture Performance
Efficiency (%)
@P-1dB
Gain (dB)
Return Loss (dB)
1930194019501960197019801990
Frequency (MHz)
VDD = 28 V
= 1.2 A Tota l
I
DQ
= 120 W
P
OUT
60
45
30
0
- 5
15
-10
-15
0
-20
Efficienc
Return Los
2
Page 3
e
I
PTF 10120
Power Gain vs. Out put Power
13
12
= 1200 mA
I
DQ
11
10
= 600 mA
DQ
9
= 300 mA
IDQ
Power Gain (dB)
8
7
1101001000
VDD = 28 V
f = 1990 MHz
Output Power (Watts)
Output Power vs. Supply Voltage
180
160
140
120
100
Output Power (Watts)
80
22242628303234
Supply Voltage (Volts)
IDQ = 1.2 A To ta l
f = 1990 MHz
Inter modulation Distort ion vs. O utput Pow er
(as measured in a broadband circuit)
-15
VDD = 28 V
-25
-35
-45
IMD (dBc)
-55
-65
Capacitance vs. Supply Volt age
Cds and Cgs (pF)
= 1.2 A Tota l
I
DQ
= 1959 MHz
f
1
= 1960 MHz
f
2
020406080100120140
IM3
IM5
IM7
Output Power (Watts-PEP)
(per side)
240
200
160
120
80
40
0
0 10203040
C
gs
C
ds
VGS =0 V
f = 1 MHz
C
rss
Supply Voltage (Volts)
*
30
25
20
15
Crss
10
5
0
* This part is internally matched. Measurements of the finished
Impedance Data
(VDD = 28 V, P
IDQ = 1.2 A Total)
OUT
= 120 W,
Z SourceZ Load
G
G
product will not yield these results.
D
S
D
Z0 = 50 W
FrequencyZ Source WZ Load W
GHzRjXRjX
1.757.6-10.54.6-3.6
1.808.8-13.04.2-3.2
1.859.8-14.14.0-2.8
1.9011.0-15.23.7-2.8
1.9512.0-17.03.6-3.2
2.0013.4-17.53.4-3.8
2.0514.6-18.03.2-4.4
3
Page 4
PTF 10120
Test Circuit
e
Test Circuit Block Diagram for f = 2.0 GHz
Q1PTF 10120LDMOS RF Transistor
l1, l2Microstrip 50 W
l3, l4.048 l @ 2.0 GHzMicrostrip 31.7 W
l5, l6.18 l @ 2.0 GHzMicrostrip 70 W
l7, l8.097 l @ 2.0 GHzMicrostrip 9.35 W
l9, l10.129 l @ 2 GHzMicrostrip 7.6 W
l11, l12.031 l @ 2 GHzMicrostrip 8.8 W
l13, l14.25 l @ 2 GHzMicrostrip 65 W