Datasheet PS396CAI, PS396CPI, PS396CWI, PS396EPI, PS396EWI Datasheet (PERICOM)

...
Page 1
1
PS8443A 06/12/00
Features
 Low On-Resistance (100 Ohm Max.) Minimizes Distortion
and Error Voltages
 Low Glitching Reduces Step Errors and Improves
Settling Times. Charge Injection: 5pC Max.  Dual-Supply Operation (±2.7V to ±8V)  Single-Supply Operation (+2.7V to +16V)  Improved Second Sources for MAX396/MAX397  On-Resistance Matching Between Channels: <6 Ohm  On-Resistance Flatness: 10 Ohm (Max.)  Low Off-Channel Leakage, I
NO(OFF)
< 1nA @ +85°C,
I
COM(ON)
, <2.5nA @ +85°C  TTL/CMOS Logic Compatible (w/ +5V or ±5V supplies)  Fast Switching Speed, t
TRANS
<250ns  Break-Before-Make action eliminates momentary crosstalk  Rail-to-Rail Analog Signal Range  Low Power Consumption, 10µW  Narrow SOIC and QSOP Packages Minimize Board Area
Description
The PS396/PS397 low-voltage, CMOS analog multiplexers offer low on-resistance (100 Ohm max.), which is matched to within 6 Ohm between switches and remains flat over the specified signal range (10 Ohm max). They also offer low leakage over temperature (input off­leakage current less than 1nA at +85°C) and fast switching speeds (transition time less than 250ns). The PS396 is a 16-channel device, and the PS397 is a dual 8-channel device.
The PS396/PS397 are fabricated using Pericoms 17V silicon gate process. Design improvements yield extremely low charge injection (5pC max) and guarantee electrostatic-discharge (ESD) protection greater than 2000V.
These multiplexers operate with a single +2.7V to +16V supply or with ±2.7V to ±8V dual supplies, while retaining CMOS-logic input compatibility and fast switching. The PS396/PS397 are pin compat­ible with MAX306/MAX307.
PS396/PS397
Precision, 16-Channel/Dual 8-Channel,
17V Analog Multiplexers
Applications
 Data Acquisition Systems  Audio Switching and Routing  Test Equipment  PBX, PABX  Telecommunication Systems  Battery-Powered Systems
693SP
3A2A1A0ANE
nO
hctiwS xx x x 0 enoN 00 0 0 1 1 00 0 11 2 00 1 0 1 3 00 1 11 4 010 01 5 010 11 6 01101 7 01111 8
10 0 0 1 9 10 0 1 1 01 10 1 0 1 11 10 1 1 1 21 110 0 1 31 110 1 1 41 11 1 0 1 51 11 1 1 1 61
V+ N.C. N.C.
NO16 NO15 NO14 NO13 NO12 NO11 NO10
NO9
GND
N.C.
A3
COM V– NO8 NO7 NO6 NO5 NO4 NO3 NO2 NO1 EN A0 A1 A2
1 2 3 4 5 6 7 8
9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
N.C. = NO INTERNAL CONNECTION
NO1
NO16
NO15
NO14
NO13
NO12
NO11
NO10
NO9
NO8
NO7
NO6
NO5
NO4
NO3
NO2
CMOS DECODERS/DRIVERS
V+ V– GND
COM
A0 A1 A2 A3 EN
PS396 16-Channel Single-Ended Multiplexer Functional Block Diagrams and Pin Configurations
Logic "0" = V
AL
0.8V,
Logic "1" = V
AH
2.4V
Page 2
PS396/PS397
Precision, 16-Channel/Dual 8-Channel,
17V Analog Multiplexers
2
PS8443A 06/12/00
PS397 8-Channel Differential Multiplexer Functional Block Diagrams and Pin Configurations
V+
COMB.
N.C. NO8B NO7B NO6B NO5B NO4B NO3B NO2B NO1B
GND
N.C.
N.C.
COMA V– NO8A NO7A NO6A NO5A NO4A NO3A NO2A NO1A EN A0 A1 A2
1 2 3 4 5 6 7 8
9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
N.C. = NO INTERNAL CONNECTION
NO1A
NO8A
NO7A
NO6A
NO5A
NO4A
NO3A
NO2A
NO1B
NO8B
NO7B
NO6B
NO5B
NO4B
NO3B
NO2B
CMOS DECODERS/DRIVERS
V+ V– GND
COMA
COMB
A0 A1 A2 EN
793SP
2A1A0ANE
nO
hctiwS
XXX 0 enoN
0001 1 0011 2 0101 3 0111 4 1001 5 10 11 6 1101 7 1111 8
Logic "0" = V
AL
0.8V,
Logic "1" = V
AH
2.4V
niP
emaNnoitcnuF
693SP793SP
11 +VtupnIegatloV-ylppuSevitisoP
31,3,2.C.NnoitcennoClanretnIoN
2BMOC)lanoitceridib(*tuptuOBlangiSgolanA
41,31,3.C.NnoitcennoClanretnIoN
11-49ON61ON)lanoitceridib(*stupnIlangiSgolanA
11-4B1ON-B8ON)lanoitceridib(*stupnIBlangiSgolanA
2121DNGdnuorGcigoL
71-410A-3AstupnIsserddAcigoL
71,61,510A,1A,2AstupnIsserddAcigoL
8181NEtupnIelbanecigoL
62-918ON-1ON)lanoitceridib(*stupnIlangiSgolanA
62-91A8ON-A1ON)lanoitceridib(*stupnIAlangiSgolanA 7272VtupnIegatloV-ylppuSevitageN 82MOC)lanoitceridib(*tuptuOlangiSgolanA
82AMOC)lanoitceridib(*tuptuOAlangiSgolanA
Pin Description
Page 3
3
PS8443A 06/12/00
PS396/PS397
Precision, 16-Channel/Dual 8-Channel,
17V Analog Multiplexers
Note 1:
Signals on any terminal exceeding V+ or V are clamped by internal diodes. Limit forward current to maximum current rating.
CAUTION
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.
Absolute Maximum Ratings
Voltages Referenced to GND
V+ .................................................................... 0.3V to +17V
V .................................................................... +0.3V to 17V
V+ to V .......................................................... 0.3V to +17V
Voltage into any terminal
(1)
................... (V 2V) to (V+ +2V)
........................................ or 30mA, whichever occurs first
Current into any terminal ...........................................±30mA
Peak current into any terminal ................................... ±50mA
Continuous power Dissipation (TA = +70°C)
Plastic DIP (derate 14.29mW/°C above +70°C) ... 1143mW
Wide SO (derate 12.50mW/°C above +70°C) ..... 1000mW
SSOP (derate 9.52mW/°C above +70°C) ................ 762mW
Operating Temperature Ranges
PS39C_I ........................................................ 0°C to +70°C
PS39E_I ..................................................... 40°C to +85°C
Storage Temperature Range .......................65°C to +150°C
Lead Temperature (soldering, 10sec) ......................... +300°C
Figure 1. Overvoltage Protection using Blocking Diodes
Applications Information
Operation with Supply Voltages Other than ±5V
Using supply voltages less than ±5V reduces the analog signal range. The PS396/PS397 multiplexers (muxes) operate with ±3V to ±8V bipolar supplies or with a +3V to +15V single supply. Connect V to GND when operating with a single supply. Both devices can also operate with unbalanced supplies, such as +10V and 5V. The Typical Operating Characteristics graphs show typical on-resis­tance with ±3V, ±5V, +3V, and +5V supplies. (Switching times increase by a factor of two or more for operation at 5V or below.) These muxes operate with a single supply as low as 1V, although on resistance and switching times become extremely high. Performance is not guaranteed below 2.7V. This is useful information only because it assures proper switch state while power supplies ramp up or down slowly. Overvoltage Protection Proper power-supply se­quencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed rat ings can cause permanent damage to the devices. Always sequence V+ on first, then V-, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small-signal diodes (D1, D2) in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog-signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices low switch resistance and low leakage character­istics. Device operation is unchanged, and the difference between V+ and V- should not exceed 17V. These protection diodes are not recommended when using a single supply.
+5V
+5V
D1
D1
V+
V–
COM NO
*
*
*
*
*Internal Protection Diodes
Page 4
PS396/PS397
Precision, 16-Channel/Dual 8-Channel,
17V Analog Multiplexers
4
PS8443A 06/12/00
Electrical Characteristics  Dual Supplies
(V+ = +5V ±10%, V = 5V ±10%, GND = 0V, V
AH
= V
ENH
= 2.4V, V
AL
= V
ENL =
0.8V, TA = T
Min
to T
Max
, unless otherwise noted.)
retemaraPlobmySsnoitidnoC
.pmeT
egnaR
.niM
)2(
.pyT
)2(
.xaM
)2(
stinU
hctiwS
egnaRlangiSgolanAV
,MOC
V
ON
)3eton(V+VV
ecnatsiseR-nOlennahCR
NO
I
ON
V,Am1=
MOC
V5.3±=
T
A
C°52+=06001
mhO
T
A
T=
NIM
Tot
XAM
521
ecnatsiseR-nO
neewteBgnihctaM
slennahC
)4(
R
NO
I
ON
V,Am1=
MOC
,V5.3±=
V5=V,V5=+V
T
A
C°52+=8.16
T
A
T=
NIM
Tot
XAM
8
ecnatsiseR-nO
ssentalF
)5(
R
)NO(TALF
I
ON
V,Am1=
MOC
,V0.3±=
V5=V,V5=+V
T
A
C°52+=501
T
A
T=
NIM
Tot
XAM
31
ONegakaeL-ffO
tnerruC
)6(
I
)FFO(ON
V
ON
,V5.4±=
V
MOC
,V5.5=+V,V5.4±=
V5.5=V
T
A
C°52+=1.030.01.0
An
T
A
T=
NIM
Tot
XAM
E,C0.10.1
egakaeL-ffOMOC
tnerruC
)6(
I
)FFO(MOC
V
MOC
,V5.4±=
V
ON
,V5.4±=
,V5.5=+V
V5.5=V
693SP
T
A
C°52+=2.050.02.0
T
A
T=
NIM
Tot
XAM
E,C5.25.2
793SP
T
A
C°52+=0.130.01.0
T
A
T=
NIM
Tot
XAM
E,C5.25.2
egakaeL-nOMOC
tnerruC
)6(
I
)NO(MOC
V
MOC
,V5.4±=
V
ON
V5.4=
693SP
T
A
C°52+=4.090.04.0
T
A
T=
NIM
Tot
XAM
E,C55
793SP
T
A
C°52+=2.050.02.0
T
A
T=
NIM
Tot
XAM
E,C5.25.2
tupnIcigoLlatigiD
hgiHcigoL
egatloVtupnI
V
HA
V,
HNE
4.2 V
woLcigoL
egatloVtupnI
V
LA
V,
LNE
8.0
htiwtnerruCtupnI
hgiHegatloVtupnI
I
HA
I,
HNE
VAV=
NE
V4.2=1.01.0
Aµ
htiwtnerruCtupnI
woLegatloVtupnI
I
LAI,LNE
VAV=
NE
V8.0=1.01.0
Page 5
5
PS8443A 06/12/00
PS396/PS397
Precision, 16-Channel/Dual 8-Channel,
17V Analog Multiplexers
Electrical Characteristics  Dual Supplies (continued)
(V+ = +5V ±10%, V = 5V ±10%, GND = 0V, V
AH
= V
ENH
= 2.4V, V
AL
= V
ENL =
0.8V, TA = T
Min
to T
Max
, unless otherwise noted.)
retemaraPlobmySsnoitidnoC
.pmeT
egnaR
.niM
)2(
.pyT
)2(
.xaM
)2(
stinU
cimanyD
emiTnoitisnarTt
SNART
2erugiF
T
A
C°52+=59051
sn
T
A
T=
NIM
Tot
XAM
052
ekaM-erofeB-kaerB
lavretnI
t
NEPO
4erugiFT
A
C°52+=507
emiTnO-nruTelbanEt
)NE(NO
3erugiF
T
A
C°52+=001051
T
A
T=
NIM
Tot
XAM
052
emiTffO-nruTelbanEt
)NE(FFO
3erugiF
T
A
C°52+=55051
T
A
T=
NIM
Tot
XAM
002
noitcejnIegrahC
)3(
V
ETC
C
L
fnI=
V
ON
,V0=
5erugiF
T
A
C°52+=25Cp
noitalosIffO
)7(
V
OSI
V
NE
,mhOk1=LR,V0=
ZHk001=f
T
A
C°52+=57
Bd
neewteBklatssorC
slennahC
V
TC
V
NE
V,ZHk001=f,V4.2=
ON
R,p-pV1=
L
7erugiF,mhOk1=
T
A
C°52+=29
tupnIcigoL ecnaticapaC
C
NI
zHM1=fT
A
C°52+=8
Fp
ecnaticapaCffOONC
)FFO(ON
VzHM1=f
NE
V=
MOC
V0=TAC°52+=11
ecnaticapaCffOMOCC
)FFO(MOC
VzHM1=f
NE
=
V
MOC
V0=
693SPT
A
C°52+=08
793SPT
A
C°52+=04
ecnaticapaCnOMOCC
)NO(MOC
4erugiF,zHM1=f
693SPT
A
C°52+=09
793SPT
A
C°52+=86
ylppuS
egnaRylppuS-rewoP 3±8±V
ylppuSevitisoP
tnerruC
+I
V
NE
V=
A
=+V,+V/V0=
,V5.5=V,V5.5
T
A
C°52+=0.10.1
Aµ
ylppuSevitageN
tnerruC
IV
NE
V=
A
V5.5=V,V5.5=+V,+V/V0=0.10.1
tnerruCdnuorGI
DNG
VNEV=
A
=+V,+V/V0=
V5.5=V,V5.5
T
A
C°52+=0.10.1
T
A
T=
NIM
Tot
XAM
0.10.1
Page 6
PS396/PS397
Precision, 16-Channel/Dual 8-Channel,
17V Analog Multiplexers
6
PS8443A 06/12/00
Electrical Characteristics  Single +5V Supply
(V+ = +5V ±10%, V = 0V, GND = 0V, V
AH
= V
ENH
= 2.4V, V
AL
= V
ENL
= 0.8V, TA = T
Min
to T
Max
, unless otherwise noted.)
retemaraPlobmySsnoitidnoC
.pmeT
egnaR
.niM
)2(
.pyT
)2(
.xaM
)2(
stinU
hctiwS
egnaRlangiSgolanA
V
,MOC
V
,ONVCN
)3eton(V+VV
ecnatsiseR-nOR
NO
I
ON
V,Am1=
MOC
,V5.3=
V5.4=+V
T
A
C°52+=021522
mhO
T
A
T=
NIM
Tot
XAM
082
ecnatsiseR-nO
neewteBgnihctaM
slennahC
)4(
R
NO
I
ON
V,Am1=
MOC
,V5.3=
V5.4=+V
T
A
C°52+=201
T
A
T=
NIM
Tot
XAM
21
ssentalFecnatsiseR-nOR
TALF
I
ON
V,Am1=
MOC
,V2,V3=
V5=+V;V1
T
A
C°52+=561
T
A
T=
NIM
Tot
XAM
02
ONegakaeLffO
tnerruC
)8(
I
)FFO(ON
V
ON
V,V5.4=
MOC
,V0=
V5.5=+V
T
A
C°52+=1.030.01.0
An
T
A
T=
NIM
Tot
XAM
E,C0.10.1
egakaeL-ffOMOC
tnerruC
)8(
I
)FFO(MOC
V
ON
,V0=
V
MOC
,V5.4=
V5.5=+V
693SP
T
A
C°52+=2.050.02.0
T
A
T=
NIM
Tot
XAM
E,C5.25.2
V
ON
,V0=
V
MOC
,V5.4=
V5.5=+V
793SP
T
A
C°52+=2.020.02.0
T
A
T=
NIM
Tot
XAM
E,C5.25.2
egakaeL-nOMOC
tnerruC
)8(
I
)NO(MOC
V
ON
,V5.4=
V
MOC
,V5.4=
V5.5=+V
693SP
T
A
C°52+=4.090.04.0
T
A
T=
NIM
Tot
XAM
E,C0.50.5
V
ON
,V5.4=
V
MOC
,V5.4=
V5.5=+V
793SP
T
A
C°52+=2.040.02.0
T
A
T=
NIM
Tot
XAM
E,C5.25.2
tupnIcigoLlatigiD
tupnIhgiHcigoL
egatloV
V
HA
V,
HNE
4.2 V
tupnIwoLcigoL
egatloV
V
LA
V,
LNE
8.0
htiwtnerruCtupnI
hgiHegatloVtupnI
I
,HAIHNE
VAV=
NE
V4.2=1.0100.01.0
Aµ
htiwtnerruCtupnI
woLegatloVtupnI
I
,LAILNE
V
A
V,V0=
NE
V8.0=1.0100.01.0
Page 7
7
PS8443A 06/12/00
PS396/PS397
Precision, 16-Channel/Dual 8-Channel,
17V Analog Multiplexers
Electrical Characteristics  Single +5V Supply (continued)
(V+ = +5V ±10%, V = 0V, GND = 0V, V
AH
= V
ENH
= 2.4V, V
AL
= V
ENL
= 0.8V, TA = T
Min
to T
Max
, unless otherwise noted.)
retemaraPlobmySsnoitidnoC
.pmeT
egnaR
.niM
)2(
.pyT
)2(
.xaM
)2(
stinU
cimanyD
emiTnoitisnarT
)3(
t
SNART
V
ON
2erugiF,V3=
T
A
C°52+=501542
sn
T
A
T=
NIM
Tot
XAM
053
ekaM-erofeB-kaerB
yaleDemiT
t
NEPO
)3eton(T
A
C°52+=0156
-nO-nruTelbanE
emiT
)3(
t
)NE(NO
T
A
C°52+=521002
T
A
T=
NIM
Tot
XAM
572
-ffO-nruTelbanE
emiT
)3(
t
)NE(FFO
T
A
C°52+=001521
T
A
T=
NIM
Tot
XAM
002
noitcejnIegrahC
)3(
V
ETC
C
L
V,fnI=
ON
,V0=
5erugiF
T
A
C°52+=5.15Cp
ylppuS
egnaRylppuS-rewoP+V 7.251V
ylppuSevitisoP
tnerruC
+IV
NE
V=
A
V0=V,V5.5=+V,+V,V0=0.160.00.1
Aµ
ylppuSevitageN
tnerruC
IV
NE
V=
A
V0=V,V5.5=+V,+V,V0=0.180.00.1
tnerruCylppuSdnuorGI
DNG
V
NE
V,+V;V0,+V=
A
,V5.5=
V0=V
T
A
C°52+=0.180.00.1
T
A
T=
NIM
Tot
XAM
0.10.1
Page 8
PS396/PS397
Precision, 16-Channel/Dual 8-Channel,
17V Analog Multiplexers
8
PS8443A 06/12/00
Electrical Characteristics  Single +3.3V Supply
(V+ = 3.0V to 3.6V, GND = 0V, V
INH
= 2.4V, V
INL
= 0.8V, TA = T
Min
to T
Max
, unless otherwise noted.)
retemaraPlobmySsnoitidnoC.niM
)2(
.pyT
)2(
.xaM
)2(
stinU
hctiwS
egnaRlangiSgolanAV
GOLANA
)3eton(V+VV
ecnatsiseR-nOR
NO
I
ON
V,Am1=
MOC
,V5.1=
V3=+V
T
A
C°52+=
513055
mhO
T
A
T=
NIM
Tot
XAM
056
cimanyD
emiTnoitisnarT
)3(
t
SNART
V
NI
V,V4.2=
1ON
,V5.1=
V
8ON
2erugiF,V0=
T
A
C°52+=032575
sn
T
A
T=
NIM
Tot
XAM
057
-nO-nruTelbanE
emiT
)3(
t
)NE(NO
V
HNI
V,V4.2=
LNI
,V0=
V
1ON
3erugiF,V5.1=
T
A
C°52+=062005
-ffO-nruTelbanE
emiT
)3(
t
)NE(FFO
V
HNI
V,V4.2=
LNI
,V0=
V
1ON
3erugiF,V5.1=
T
A
C°52+=531004
noitcejnIegrahC
)3(
V
ETC
C
L
V,Fn0.1=
NEG
,V0=
R
NEG
mhO0=6erugiF
T
A
C°52+=15Cp
Notes:
2. The algebraic covention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
3. Guaranteed by design
4. ∆R
ON
= ∆R
ON(MAX)
 R
ON(MIN)
5. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges. i.e., V
NO
= 3V to 0V and 0V to 3V.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
6. See Figure 6. Off isolation = 20log
10 VCOM/VNC
or VNO, V
COM
= output, VNC or NO = input to off switch
7. Worst-case isolation is on channel 4 because of its proximity to the COM pin. Off-isolation - 20log V
COM/VNO
,
V
COM
= output, VNO = input to off switch.
8. Leakage testing at single supply is guaranteed by correlation testing with dual supplies.
Page 9
9
PS8443A 06/12/00
PS396/PS397
Precision, 16-Channel/Dual 8-Channel,
17V Analog Multiplexers
Figure 2. Transition Time
V+
+5V
–5V
+3V
–3V
GND
V–
A0 A1 A2 A3
EN
V
DD
NO1
NO2-NO15
NO16
COM
50
50
V+
+5V
–5V
+3V
–3V
GND
V–
A0 A1 A2
EN
V
DD
V
OUT
NO1B
NO1A-NO8A,
COMA
NO8A
COMB
300
300
35pF
V
OUT
35pF
+3V
0V
0V
V
NO
1
V
NO
8
Logic
Input
V
EN
Switch Output
V
OUT
50%
t
TRANS
t
R
< 20ns
t
F
< 20ns
90%
90%
Figure 3. Enable Switching Time
V+
+5V
–5V
+3V
GND
V–
A0 A1 A2 A3
EN
V
EN
NO1
NO2-NO16
COM
50
V+
+5V
–5V
+3V
GND
V–
EN
V
EN
V
OUT
NO1B
NO1A-NO8A, NO2B-NO8B,
COMA
COMB
50
300
300
35pF
V
OUT
35pF
+3V
0V
0V
V
OUT
Logic
Input
V
EN
Switch Output
V
OUT
50%
t
ON(EN)
t
OFF(EN)
t
R
< 20ns
t
F
< 20ns
90%
90%
A0 A1 A2
Test Circuits and Timing Diagrams
Page 10
PS396/PS397
Precision, 16-Channel/Dual 8-Channel,
17V Analog Multiplexers
10
PS8443A 06/12/00
Figure 4. Break-Before-Make Interval
V+
+5V
–5V
+3V
+2.4V
300
GND
V–
A0 A1 A2 A3
EN
NO1-NO16
COM
50
V
OUT
35pF
+3V
0V
0V
V
OUT
Logic
Input
Switch Output
50%
t
R
< 20ns
t
F
< 20ns
80%
t
OPEN
Figure 5. Charge Injection (V
CTE
)
V+
+5V
–5V
GND
V–
A0 A1 A2 A3
EN
NO1-NO16
COM
V
S
CL = 100pF
+3V
0V
V
OUT
V
CTE
= CL =
V
OUT
V
OUT
V
OUT
is the measured Voltage due to charge transfer
error Q when the channel turns off.
Logic
Input
Channel
Select
V
OUT
OFF ON OFF
Figure 6. Off-Isolation (V
ISO
)
V+
+5V
–5V
GND
V–
A0 A1 A2 A3
EN
NO1 NO16
COM
V
IN
RL = 1k
V
OUT
10nF
RS = 50
Off-isolation = 20log
V
OUT
V
IN
Note: Similar Connection Applies for PS397
Figure 7. Cross Talk (VCT)
V+
+5V
–5V
GND
V–
A0 A1 A2 A3
EN
NO2 NO16
COM
V
IN
RL = 1k
V
OUT
10nF
R = 1k
Crosstalk = 20log
V
OUT
V
IN
Note: Similar Connection Applies for PS397
NO1
Test Circuits and Timing Diagrams (continued)
Page 11
11
PS8443A 06/12/00
PS396/PS397
Precision, 16-Channel/Dual 8-Channel,
17V Analog Multiplexers
Pericom Semiconductor Corporation
2380 Bering Drive  San Jose, CA 95131  1-800-435-2336  Fax (408) 435-1100  http://www.pericom.com
rebmuNtraPegnaRerutarepmeTegakcaP-niP
IPC693SPC°07+otC°0PIDcitsalPnip-82
IWC693SPC°07+otC°0OSediWnip-82
IAC693SPC°07+otC°0POSSnip-82
IPE693SPC°58+otC°04PIDcitsalPnip-82
IWE693SPC°58+otC°04OSediWnip-82
IPC793SPC°07+otC°0PIDcitsalPnip-82
IWC793SPC°07+otC°0OSediWnip-82
IAC793SPC°07+otC°0POSSnip-82
IPE793SPC°58+otC°04PIDcitsalPnip-82
IWE793SPC°58+otC°04OSediWnip-82
Ordering Information
Figure 8. NO/COM Capacitance
V+
+5V
–5V
GND
V–
A3 A2 A1 A0
EN
COM
Note: Similar Connection Applies for PS397
NO1
NO16
METER
IMPEDANCE ANALYZER
{
Channel
Select
f = 1MHz
Loading...