Datasheet PIC24FV32KA304 Datasheet

PIC24FV32KA304 FAMILY
20/28/44/48-Pin, General Purpose, 16-Bit Flash
Microcontrollers with XLP Technology

Power Management Modes:

• Run – CPU, Flash, SRAM and Peripherals On
• Doze – CPU Clock Runs Slower than Peripherals
• Idle – CPU Off, Flash, SRAM and Peripherals On
• Sleep – CPU, Flash and Peripherals Off and SRAM on
• Deep Sleep – CPU, Flash, SRAM and Most Peripherals Off; Multiple Autonomous Wake-up Sources
• Low-Power Consumption:
- Run mode currents down to 8 μA, typical
- Idle mode currents down to 2.2 μA, typical
- Deep Sleep mode currents down to 20 nA, typical
- Real-Time Clock/Calendar currents down to
700 nA, 32 kHz, 1.8V
-
Watchdog Timer 500 nA, 1.8V typical

High-Performance CPU:

• Modified Harvard Architecture
• Up to 16 MIPS Operation @ 32 MHz
• 8 MHz Internal Oscillator with 4x PLL Option and Multiple Divide Options
• 17-Bit by 17-Bit Single-Cycle Hardware Multiplier
• 32-Bit by 16-Bit Hardware Divider, 16-Bit x 16-Bit Working Register Array
• C Compiler Optimized Instruction Set Architecture

Peripheral Features:

• Hardware Real-Time Clock and Calendar (RTCC):
- Provides clock, calendar and alarm functions
- Can run in Deep Sleep mode
- Can use 50/60 Hz power line input as clock source
• Programmable 32-bit Cyclic Redundancy Check (CRC)
• Multiple Serial Communication modules:
- Two 3-/4-wire SPI modules
2
-Two I
- Two UART modules supporting RS-485, RS-232,
• Five 16-Bit Timers/Counters with Programmable Prescaler:
- Can be paired as 32-bit timers/counters
• Three 16-Bit Capture Inputs with Dedicated Timers
• Three 16-Bit Compare/PWM Output with Dedicated Timers
• Configurable Open-Drain Outputs on Digital I/O Pins
• Up to Three External Interrupt Sources
C™ modules with multi-master/slave support
LIN/J2602, IrDA
®

Analog Features:

• 12-Bit, Up to 16-Channel Analog-to-Digital Converter:
- 100 ksps conversion rate
- Conversion available during Sleep and Idle
- Auto-sampling timer-based option for Sleep and Idle modes
- Wake on auto-compare option
• Dual Rail-to-Rail Analog Comparators with Programmable Input/Output Configuration
• On-Chip Voltage Reference
• Internal Temperature Sensor
• Charge Time Measurement Unit (CTMU):
- Used for capacitance sensing, 16 channels
- Time measurement, down to 200 ps resolution
-
Delay/pulse generation, down to 1 ns resolution

Special Microcontroller Features:

• Wide Operating Voltage Range:
- 1.8V to 3.6V (PIC24F devices)
- 2.0V to 5.5V (PIC24FV devices)
• Low Power Wake-up Sources and Supervisors:
- Ultra-Low Power Wake-up (ULPWU) for
Sleep/Deep Sleep
- Low-Power Watchdog Timer (DSWDT) for
Deep Sleep
- Extreme Low-Power Brown-out Reset (DSBOR)
for Deep Sleep, LPBOR for all other modes
• System Frequency Range Declaration bits:
- Declaring the frequency range optimizes the
current consumption.
• Standard Watchdog Timer (WDT) with On-Chip, Low-Power RC Oscillator for Reliable Operation
• Programmable High/Low-Voltage Detect (HLVD)
• Standard Brown-out Reset (BOR) with 3 Programmable Trip Points that can be Disabled in Sleep
High-Current Sink/Source (18 mA/18 mA) on All I/O Pins
• Flash Program Memory:
- Erase/write cycles: 10,000 minimum
- 40 years’ data retention minimum
• Data EEPROM:
- Erase/write cycles: 100,000 minimum
- 40 years’ data retention minimum
• Fail-Safe Clock Monitor (FSCM)
• Programmable Reference Clock Output
• Self-Programmable under Software Control
• In-Circuit Serial Programming™ (ICSP™) and In-Circuit Debug (ICD) via 2 Pins
2011-2012 Microchip Technology Inc. DS39995C-page 1
PIC24FV32KA304 FAMILY
Memory
PIC24F Device
PIC24FV16KA301/ PIC24F16KA301
PIC24FV32KA301/ PIC24F32KA301
PIC24FV16KA302/ PIC24F16KA302
PIC24FV32KA302/ PIC24F32KA302
PIC24FV16KA304/ PIC24F16KA304
PIC24FV32KA304/ PIC24F32KA304
Pins
Flash
2016K2K51253322212312Y
2032K2K51253322212312Y
2816K2K51253322213313Y
2832K2K51253322213313Y
4416K2K51253322216316Y
4432K2K51253322216316Y
SRAM
(bytes)
Program
(bytes)
Timers
(bytes)
EE Data
Input
16-Bit
Capture
Compare/PWM
Output
®
IrDA
UART w/
SPI
2
C™ I
RTCC
CTMU (ch)
Comparators
12-Bit A/D (ch)
DS39995C-page 2 2011-2012 Microchip Technology Inc.

Pin Diagrams

Legend: Pin numbers in bold indicate pin function differences between PIC24FV and PIC24F devices. Note 1: PIC24F32KA304 device pins have a maximum voltage of 3.6V and are not 5V tolerant.
20-Pin SPDIP/SSOP/SOIC
(1)
24FVXXKA301
MCLR/RA5
RA3
RA0 RA1
V
DD
VSS
RB0
RB7
RA4
RB4
RB8
RA2
RB2
RB1
1 2 3 4 5 6 7 8 9 10
20 19 18 17 16
15 14
13 12
11
RB15 RB14 RB13 RB12
RB9
RA6 or V
CAP
Pin
Pin Features
PIC24FVXXKA301 PIC24FXXKA301
1MCLR
/VPP/RA5 MCLR/VPP/RA5
2 PGEC2/V
REF+/CVREF+/AN0/C3INC/SCK2/CN2/RA0 PGEC2/VREF+/CVREF+/AN0/C3INC/SCK2/CN2/RA0
3 PGED2/CV
REF-/VREF-/AN1/SDO2/CN3/RA1 PGED2/CVREF-/VREF-/AN1/SDO2/CN3/RA1
4 PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/SDI2/
OC2/CN4/RB0
PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/SDI2/ OC2/CN4/RB0
5 PGEC1/AN3/C1INC/C2INA/U2RX/OC3/CTED12/CN5/RB1 PGEC1/AN3/C1INC/C2INA/U2RX/OC3/CTED12/CN5/RB1
6 AN4/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2 AN4/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2
7 OSCI/AN13/C1INB/C2IND/CLKI/CN30/RA2 OSCI/AN13/C1INB/C2IND/CLKI/CN30/RA2
8 OSCO/AN14/C1INA/C2INC/CLKO/CN29/RA3 OSCO/AN14/C1INA/C2INC/CLKO/CN29/RA3
9 PGED3/SOSCI/AN15/U2RTS
/CN1/RB4 PGED3/SOSCI/AN15/U2RTS/CN1/RB4
10 PGEC3/SOSCO/SCLKI/U2CTS
/CN0/RA4 PGEC3/SOSCO/SCLKI/U2CTS/CN0/RA4
11 U1TX/C2OUT/OC1/IC1/CTED1/INT0/CN23/RB7 U1TX/INT0/CN23/RB7
12 SCL1/U1CTS
/C3OUT/CTED10/CN22/RB8 SCL1/U1CTS/C3OUT/CTED10/CN22/RB8
13 SDA1/T1CK/U1RTS
/IC2/CTED4/CN21/RB9 SDA1/T1CK/U1RTS/IC2/CTED4/CN21/RB9
14 V
CAP C2OUT/OC1/IC1/CTED1/INT2/CN8/RA6
15 AN12/HLVDIN/SCK1/SS2
/IC3/CTED2/INT2/CN14/RB12 AN12/HLVDIN/SCK1/SS2/IC3/CTED2/CN14/RB12
16 AN11/SDO1/OCFB/CTPLS/CN13/RB13 AN11/SDO1/OCFB/CTPLS/CN13/RB13
17 CV
REF/AN10/C3INB/RTCC/SDI1/C1OUT/OCFA/CTED5/INT1/
CN12/RB14
CVREF/AN10/C3INB/RTCC/SDI1/C1OUT/OCFA/CTED5/INT1/ CN12/RB14
18 AN9/C3INA/SCL2/T3CK/T2CK/REFO/SS1
/CTED6/CN11/RB15 AN9/C3INA/SCL2/T3CK/T2CK/REFO/SS1/CTED6/CN11/RB15
19 V
SS/AVSS VSS/AVSS
20 VDD/AVDD VDD/AVDD
24FXXKA301
PIC24FV32KA304 FAMILY
2011-2012 Microchip Technology Inc. DS39995C-page 3
PIC24FV32KA304 FAMILY
28-Pin SPDIP/SSOP/SOIC
(1,2)
PIC24FVXXKA302
MCLR/RA5
V
SS
VDD
RA0 RA1
V
DD
VSS
RB0
RB6
RA4
RB4
RA7
RA3
RA2
RA6 or V
CAP
RB7
RB9 RB8
RB3
RB2
RB1
1 2 3 4 5 6 7 8 9 10 11 12 13 14
28 27 26 25 24
23
22 21
20
19 18 17
16
15
RB15 RB14 RB13 RB12
RB10
RB11
RB5
Pin
Pin Features
PIC24FVXXKA302 PIC24FXXKA302
1MCLR
/VPP/RA5 MCLR/VPP/RA5
2V
REF+/CVREF+/AN0/C3INC/CTED1/CN2/RA0 VREF+/CVREF+/AN0/C3INC/CTED1/CN2/RA0
3CV
REF-/VREF-/AN1/CN3/RA1 CVREF-/VREF-/AN1/CN3/RA1
4 PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/CN4/RB0
PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/CN4/RB0
5 PGEC1/AN3/C1INC/C2INA/U2RX/CTED12/CN5/RB1 PGEC1/AN3/C1INC/C2INA/U2RX/CN5/RB1
6 AN4/C1INB/C2IND/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2 AN4/C1INB/C2IND/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2
7 AN5/C1INA/C2INC/SCL2/CN7/RB3 AN5/C1INA/C2INC/SCL2/CN7/RB3
8V
SS VSS
9 OSCI/AN13/CLKI/CN30/RA2 OSCI/AN13/CLKI/CN30/RA2
10 OSCO/AN14/CLKO/CN29/RA3 OSCO/AN14/CLKO/CN29/RA3
11 SOSCI/AN15/U2RTS
/CN1/RB4 SOSCI/AN15/U2RTS/CN1/RB4
12 SOSCO/SCLKI/U2CTS
/CN0/RA4 SOSCO/SCLKI/U2CTS/CN0/RA4
13 V
DD VDD
14 PGED3/ASDA
(1)
/SCK2/CN27/RB5 PGED3/ASDA
(1)
/SCK2/CN27/RB5
15 PGEC3/ASCL
(1)
/SDO2/CN24/RB6 PGEC3/ASCL
(1)
/SDO2/CN24/RB6
16 U1TX/C2OUT/OC1/INT0/CN23/RB7 U1TX/INT0/CN23/RB7
17 SCL1/U1CTS
/C3OUT/CTED10/CN22/RB8 SCL1/U1CTS/C3OUT/CTED10/CN22/RB8
18 SDA1/T1CK/U1RTS
/IC2/CTED4/CN21/RB9 SDA1/T1CK/U1RTS/IC2/CTED4/CN21/RB9
19 SDI2/IC1/CTED3/CN9/RA7 SDI2/IC1/CTED3/CN9/RA7
20 V
CAP C2OUT/OC1/CTED1/INT2/CN8/RA6
21 PGED2/SDI1/OC3/CTED11/CN16/RB10 PGED2/SDI1/OC3/CTED11/CN16/RB10
22 PGEC2/SCK1/OC2/CTED9/CN15/RB11 PGEC2/SCK1/OC2/CTED9/CN15/RB11
23 AN12/HLVDIN/SS2
/IC3/CTED2/INT2/CN14/RB12 AN12/HLVDIN/SS2/IC3/CTED2/CN14/RB12
24 AN11/SDO1/OCFB/CTPLS/CN13/RB13 AN11/SDO1/OCFB/CTPLS/CN13/RB13
25 CV
REF/AN10/C3INB/RTCC/C1OUT/OCFA/CTED5/INT1/CN12/RB14 CVREF/AN10/C3INB/RTCC/C1OUT/OCFA/CTED5/INT1/CN12/
RB14
26 AN9/C3INA/T3CK/T2CK/REFO/SS1
/CTED6/CN11/RB15 AN9/C3INA/T3CK/T2CK/REFO/SS1/CTED6/CN11/RB15
27 V
SS/AVSS VSS/AVSS
28 VDD/AVDD VDD/AVDD
PIC24FXXKA302
Legend: Pin numbers in bold indicate pin function differences between PIC24FV and PIC24F devices. Note 1: Alternative multiplexing for SDA1 (ASDA1) and SCL1 (ASCL1) when the I2CSEL Configuration bit is set.
2: PIC24F32KA304 device pins have a maximum voltage of 3.6V and are not 5V toleran.t

Pin Diagrams

DS39995C-page 4 2011-2012 Microchip Technology Inc.

Pin Diagrams

Legend: Pin numbers in bold indicate pin function differences between PIC24FV and PIC24F devices. Note 1: Exposed pad on underside of device is connected to V
SS.
2: Alternative multiplexing for SDA1 (ASDA1) and SCL1 (ASCL1) when the I2CSEL Configuration bit is set. 3: PIC24F32KA304 device pins have a maximum voltage of 3.6V and are not 5V tolerant.
28-Pin QFN
(1,2,3)
10 11
2 3
6
1
18
19
20
21
22
12 1314
15
8
7
16
17
232425262728
9
PIC24FVXXKA302
5
4
MCLR/RA5
VSS
VDD
RA0
RA1
VDDVSS
RB0
RB6
RA4
RB4
RA7
RA3
RA2
RA6 or V
CAP
RB7
RB9
RB8
RB3
RB2
RB1
RB15
RB14
RB13 RB12
RB10
RB11
RB5
Pin
Pin Features
PIC24FVXXKA302 PIC24FXXKA302
1
PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/CN4/RB0
PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/CN4/RB0
2 PGEC1/AN3/C1INC/C2INA/U2RX/CTED12/CN5/RB1 PGEC1/AN3/C1INC/C2INA/U2RX/CTED12/CN5/RB1
3 AN4/C1INB/C2IND/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2 AN4/C1INB/C2IND/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2
4 AN5/C1INA/C2INC/SCL2/CN7/RB3 AN5/C1INA/C2INC/SCL2/CN7/RB3
5V
SS VSS
6 OSCI/AN13/CLKI/CN30/RA2 OSCI/AN13/CLKI/CN30/RA2
7 OSCO/AN14/CLKO/CN29/RA3 OSCO/AN14/CLKO/CN29/RA3
8 SOSCI/AN15/U2RTS
/CN1/RB4 SOSCI/AN15/U2RTS/CN1/RB4
9 SOSCO/SCLKI/U2CTS
/CN0/RA4 SOSCO/SCLKI/U2CTS/CN0/RA4
10 V
DD VDD
11 PGED3/ASDA1
(2)
/SCK2/CN27/RB5 PGED3/ASDA1
(2)
/SCK2/CN27/RB5
12 PGEC3/ASCL1
(2)
/SDO2/CN24/RB6 PGEC3/ASCL1
(2)
/SDO2/CN24/RB6
13 U1TX/C2OUT/OC1/INT0/CN23/RB7 U1TX/INT0/CN23/RB7
14 SCL1/U1CTS
/C3OUT/CTED10/CN22/RB8 SCL1/U1CTS/C3OUT/CTED10/CN22/RB8
15 SDA1/T1CK/U1RTS
/IC2/CTED4/CN21/RB9 SDA1/T1CK/U1RTS/IC2/CTED4/CN21/RB9
16 SDI2/IC1/CTED3/CN9/RA7 SDI2/IC1/CTED3/CN9/RA7
17 V
CAP C2OUT/OC1/CTED1/INT2/CN8/RA6
18 PGED2/SDI1/OC3/CTED11/CN16/RB10 PGED2/SDI1/OC3/CTED11/CN16/RB10
19 PGEC2/SCK1/OC2/CTED9/CN15/RB11 PGEC2/SCK1/OC2/CTED9/CN15/RB11
20 AN12/HLVDIN/SS2
/IC3/CTED2/INT2/CN14/RB12 AN12/HLVDIN/SS2/IC3/CTED2/CN14/RB12
21 AN11/SDO1/OCFB/CTPLS/CN13/RB13 AN11/SDO1/OCFB/CTPLS/CN13/RB13
22 CV
REF/AN10/C3INB/RTCC/C1OUT/OCFA/CTED5/INT1/CN12/
RB14
CVREF/AN10/C3INB/RTCC/C1OUT/OCFA/CTED5/INT1/CN12/ RB14
23 AN9/C3INA/T3CK/T2CK/REFO/SS1
/CTED6/CN11/RB15 AN9/C3INA/T3CK/T2CK/REFO/SS1/CTED6/CN11/RB15
24 V
SS/AVSS VSS/AVSS
25 VDD/AVDD VDD/AVDD
26 MCLR/VPP/RA5 MCLR/VPP/RA5
27 V
REF+/CVREF+/AN0/C3INC/CTED1/CN2/RA0 VREF+/CVREF+/AN0/C3INC/CN2/RA0
28 CV
REF-/VREF-/AN1/CN3/RA1 CVREF-/VREF-/AN1/CN3/RA1
PIC24FXXKA302
PIC24FV32KA304 FAMILY
2011-2012 Microchip Technology Inc. DS39995C-page 5
PIC24FV32KA304 FAMILY
Legend: Pin numbers in bold indicate pin
function differences between PIC24FV and PIC24F devices.
Note 1: Exposed pad on underside of device
is connected to V
SS.
2: Alternative multiplexing for SDA1
(ASDA1) and SCL1 (ASCL1) when the I2CSEL Configuration bit is set.
3: PIC24F32KA304 device pins have a
maximum voltage of 3.6V and are not 5V tolerant.
Pin
Pin Features
PIC24FVXXKA304 PIC24FXXKA304
1 SDA1/T1CK/U1RTS
/CTED4/CN21/
RB9
SDA1/T1CK/U1RTS/CTED4/CN21/ RB9
2 U1RX/CN18/RC6 U1RX/CN18/RC6
3 U1TX/CN17/RC7 U1TX/CN17/RC7
4 OC2/CN20/RC8 OC2/CN20/RC8
5 IC2/CTED7/CN19/RC9 IC2/CTED7/CN19/RC9
6 IC1/CTED3/CN9/RA7 IC1/CTED3/CN9/RA7
7V
CAP C2OUT/OC1/CTED1/INT2/CN8/RA6
8 PGED2/SDI1/CTED11/CN16/RB10 PGED2/SDI1/CTED11/CN16/RB10
9 PGEC2/SCK1/CTED9/CN15/RB11 PGEC2/SCK1/CTED9/CN15/RB11
10 AN12/HLVDIN/CTED2 /INT2/CN14/
RB12
AN12/HLVDIN/CTED2/CN14/RB12
11 AN11/SDO1/CTPLS/CN13/RB13 AN11/SDO1/CTPLS/CN13/RB13
12 OC3/CN35/RA10 OC3/CN35/RA10
13 IC3/CTED8/CN36/RA11 IC3/CTED8/CN36/RA11
14 CV
REF/AN10/C3INB/RTCC/
C1OUT/OCFA/CTED5/INT1/CN12/ RB14
CV
REF/AN10/C3INB/RTCC/
C1OUT/OCFA/CTED5/INT1/CN12/ RB14
15 AN9/C3INA/T3CK/T2CK/REFO/
SS1
/CTED6/CN11/RB15
AN9/C3INA/T3CK/T2CK/REFO/ SS1/CTED6/CN11/RB15
16 V
SS/AVSS VSS/AVSS
17 VDD/AVDD VDD/AVDD
18 MCLR/VPP/RA5 MCLR/VPP/RA5
19 V
REF+/CVREF+/AN0/C3INC/
CTED1/CN2/RA0
VREF+/CVREF+/AN0/C3INC/CN2/ RA0
20 CV
REF-/VREF-/AN1/CN3/RA1 CVREF-/VREF-/AN1/CN3/RA1
21
PGED1/AN2/ULPWU/CTCMP/ C1IND/C2INB/C3IND/U2TX/CN4/RB0
PGED1/AN2/ULPWU/CTCMP/C1IND/ C2INB/C3IND/U2TX/CN4/RB0
22 PGEC1/AN3/C1INC/C2INA/U2RX/
CTED12/CN5/RB1
PGEC1/AN3/C1INC/C2INA/U2RX/ CTED12/CN5/RB1
23 AN4/C1INB/C2IND/SDA2/T5CK/
T4CK/CTED13/CN6/RB2
AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2
24 AN5/C1INA/C2INC/SCL2/CN7/
RB3
AN5/C1INA/C2INC/SCL2/CN7/RB3
25 AN6/CN32/RC0 AN6/CN32/RC0
26 AN7/CN31/RC1 AN7/CN31/RC1
27 AN8/CN10/RC2 AN8/CN10/RC2
28 V
DD VDD
29 VSS VSS
30 OSCI/AN13/CLKI/CN30/RA2 OSCI/AN13/CLKI/CN30/RA2
31 OSCO/AN14/CLKO/CN29/RA3 OSCO/AN14/CLKO/CN29/RA3
32 OCFB/CN33/RA8 OCFB/CN33/RA8
33 SOSCI/AN15/U2RTS
/CN1/RB4 SOSCI/AN15/U2RTS/CN1/RB4
34 SOSCO/SCLKI/U2CTS
/CN0/RA4 SOSCO/SCLKI/U2CTS/CN0/RA4
35 SS2
/CN34/RA9 SS2/CN34/RA9
36 SDI2/CN28/RC3 SDI2/CN28/RC3
37 SDO2/CN25/RC4 SDO2/CN25/RC4
38 SCK2/CN26/RC5 SCK2/CN26/RC5
39 V
SS VSS
40 VDD VDD
41 PGED3/ASDA1
(2)
/CN27/RB5 PGED3/ASDA1
(2)
/CN27/RB5
42 PGEC3/ASCL1
(2)
/CN24/RB6 PGEC3/ASCL1
(2)
/CN24/RB6
43 C2OUT/OC1/INT0/CN23/RB7 INT0/CN23/RB7
44 SCL1/U1CTS
/C3OUT/CTED10/
CN22/RB8
SCL1/U1CTS/C3OUT/CTED10/ CN22/RB8
10
11
2 3 4 5 6
1
1819202122
121314
15
38
8
7
4443424140
39
16
17
29
30
31
32
33
23
24
25
26
27
28
363435
9
PIC24FVXXKA304
37
RB8
RB7
RB6
RB5
V
DD
VSS
RC5
RC4
RC3
RA9
RA4
RB4 RA8 RA3 RA2 V
SS
VDD RC2 RC1 RC0 RB3 RB2
RB9 RC6 RC7 RC8 RC9 RA7
RA6 or V
CAP
RB10 RB11 RB12 RB13
RB1
RB0
RA1
RA0
MCLR
/RA5
V
DD
VSS
RB15
RB14
RA11
RA10
44-Pin TQFP/QFN
(1,2,3)
PIC24FXXKA304

Pin Diagrams

DS39995C-page 6 2011-2012 Microchip Technology Inc.

Pin Diagrams

Pin
Pin Features
PIC24FVXXKA304 PIC24FXXKA304
1
SDA1/T1CK/U1RTS/CTED4/CN21/RB9 SDA1/T1CK/U1RTS/CTED4/CN21/
RB9
2
U1RX/CN18/RC6 U1RX/CN18/RC6
3
U1TX/CN17/RC7 U1TX/CN17/RC7
4
OC2/CN20/RC8 OC2/CN20/RC8
5
IC2/CTED7/CN19/RC9 IC2/CTED7/CN19/RC9
6
IC1/CTED3/CN9/RA7 IC1/CTED3/CN9/RA7
7VCAP C20UT/OC1/CTED1/INT2CN8/RA6
8N/C N/C
9
PGED2/SDI1/CTED11/CN16/RB10 PGED2/SDI1/CTED11/CN16/RB10
10
PGEC2/SCK1/CTED9/CN15/RB11 PGEC2/SCK1/CTED9/CN15/RB11
11
AN12/HLVDIN/CTED2/
INT2/
CN14/RB12 AN12/HLVDIN/CTED2/CN14/RB12
12
AN11/SDO1/CTPLS/CN13/RB13 AN11/SDO1/CTPLS/CN13/RB13
13
OC3/CN35/RA10 OC3/CN35/RA10
14
IC3/CTED8/CN36/RA11 IC3/CTED8/CN36/RA11
15
CV
REF
/AN10/C3INB/RTCC/
C1OUT/OCFA/CTED5/
INT1/
CN12/RB14
CV
REF
/AN10/C3INB/RTCC/C1OUT/
OCFA/CTED5/
INT1/
CN12/RB14
16
AN9/C3INA/T3CK/T2CK/REFO/ SS1
/CTED6/CN11/RB15
AN9/C3INA/T3CK/T2CK/REFO/ SS1/CTED6/CN11/RB15
17 VSS/AVSS VSS/AVSS
18 VDD/AVDD VDD/AVDD
19 MCLR/RA5 MCLR/RA5
20 N/C N/C
21
V
REF
+/CV
REF
+/AN0/C3INC/
CTED1/CN2/RA0
V
REF
+/CV
REF
+/AN0/C3INC/CN2/
RA0
22
CV
REF
-/V
REF
-/AN1/CN3/RA1 CV
REF
-/V
REF
-/AN1/CN3/RA1
23
PGED1/AN2/ULPWU/CTCMP/C1IND/ C2INB/C3IND/U2TX/CN4/RB0
PGED1/AN2/ULPWU/CTCMP/C1IND/ C2INB/C3IND/U2TX/CN4/RB0
24
PGEC1/AN3/C1INC/C2INA/U2RX/ CTED12/CN5/RB1
PGEC1/AN3/C1INC/C2INA/U2RX/ CTED12/CN5/RB1
25
AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2
AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2
26
AN5/C1INA/C2INC/SCL2/CN7/RB3 AN5/C1INA/C2INC/SCL2/CN7/RB3
27
AN6/CN32/RC0 AN6/CN32/RC0
28
AN7/CN31/RC1 AN7/CN31/RC1
29
AN8/CN10/RC2 AN8/CN10/RC2
30 VDD VDD
31 VSS VSS
32 N/C N/C
33
OSCI/AN13/CLKI/CN30/RA2 OSCI/AN13/CLKI/CN30/RA2
34
OSCO/AN14/CLKO/CN29/RA3 OSCO/AN14/CLKO/CN29/RA3
35
OCFB/CN33/RA8 OCFB/CN33/RA8
36
SOSCI/AN15/U2RTS/CN1/RB4 SOSCI/AN15/U2RTS/CN1/RB4
37
SOSCO/SCLKI/U2CTS/CN0/RA4 SOSCO/SCLKI/U2CTS/CN0/RA4
38
SS2/CN34/RA9 SS2/CN34/RA9
39
SDI2/CN28/RC3 SDI2/CN28/RC3
40
SDO2/CN25/RC4 SDO2/CN25/RC4
41
SCK2/CN26/RC5 SCK2/CN26/RC5
42 VSS VSS
43 VDD VDD
44 N/C N/C
45
PGED3/ASDA1
(2)
/CN27/RB5 PGED3/ASDA1
(2)
/CN27/RB5
46
PGEC3/ASCL1
(2)
/CN24/RB6 PGEC3/ASCL1
(2)
/CN24/RB6
47
C2OUT/OC1/
INT0/
CN23/RB7
INT0/
CN23/RB7
48
SCL1/U1CTS/C3OUT/CTED10/ CN22/RB8
SCL1/U1CTS/C3OUT/CTED10/ CN22/RB8
R
B
8
R
B
7
R
B
6
R
B
5
N
/
C
V
D
D
V
S
S
R
C
5
R
C
4
R
C
3
R
A
9
R
A
4
RB9
RB4
RC6
RA8
RC7
RA3
RC8
RA2
RC9
N/C
RA7
V
SS
RA6 or V
CAP
V
DD
N/C
RC2
RB10
RC1
RB11
RC0
RB12
RB3
RB13
RB2
R
A
1
0
R
A
1
1
R
B
1
4
R
B
1
5
V
S
S
/
A
V
S
S
V
D
D
/
A
V
D
D
N
/
C
R
A
0
R
A
1
R
B
0
R
B
1
Legend: Pin numbers in bold indicate pin func-
tion differences between PIC24FV and PIC24F devices.
Note 1: Exposed pad on underside of device is
connected to V
SS.
2: Alternative multiplexing for SDA1
(ASDA1) and SCL1 (ASCL1) when the I2CSEL Configuration bit is set.
3: PIC24F32KA3XX device pins have a
maximum voltage of 3.6V and are not 5V tolerant.
48-Pin UQFN
(1,2,3)
M
C
L
R
/
R
A
5
4
8
4
7
4
6
4
5
4
4
4
3
4
2
4
1
4
0
3
9
3
8
3
7
36 35 34 33 32 31 30 29 28 27 26 25
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
PIC24FVXXKA304
PIC24FXXKA304
1
2 3 4 5 6
7
8 9 10 11
12
PIC24FV32KA304 FAMILY
2011-2012 Microchip Technology Inc. DS39995C-page 7
PIC24FV32KA304 FAMILY

Table of Contents

1.0 Device Overview ........................................................................................................................................................................ 11
2.0 Guidelines for Getting Started with 16-Bit Microcontrollers........................................................................................................ 23
3.0 CPU ........................................................................................................................................................................................... 29
4.0 Memory Organization ................................................................................................................................................................. 35
5.0 Flash Program Memory.............................................................................................................................................................. 57
6.0 Data EEPROM Memory ............................................................................................................................................................. 63
7.0 Resets ........................................................................................................................................................................................ 69
8.0 Interrupt Controller ..................................................................................................................................................................... 75
9.0 Oscillator Configuration ............................................................................................................................................................ 113
10.0 Power-Saving Features............................................................................................................................................................ 123
11.0 I/O Ports ................................................................................................................................................................................... 135
12.0 Timer1 ..................................................................................................................................................................................... 139
13.0 Timer2/3 and Timer4/5 ............................................................................................................................................................. 141
14.0 Input Capture with Dedicated Timers ....................................................................................................................................... 147
15.0 Output Compare with Dedicated Timers .................................................................................................................................. 151
16.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 161
17.0 Inter-Integrated Circuit™ (I
18.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 177
19.0 Real-Time Clock and Calendar (RTCC) .................................................................................................................................. 185
20.0 32-Bit Programmable Cyclic Redundancy Check (CRC) Generator ........................................................................................ 199
21.0 High/Low-Voltage Detect (HLVD)............................................................................................................................................. 205
22.0 12-Bit A/D Converter with Threshold Detect ............................................................................................................................ 207
23.0 Comparator Module.................................................................................................................................................................. 225
24.0 Comparator Voltage Reference................................................................................................................................................ 229
25.0 Charge Time Measurement Unit (CTMU) ................................................................................................................................ 231
26.0 Special Features ...................................................................................................................................................................... 239
27.0 Development Support............................................................................................................................................................... 251
28.0 Instruction Set Summary.......................................................................................................................................................... 255
29.0 Electrical Characteristics.......................................................................................................................................................... 263
30.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 295
31.0 Packaging Information.............................................................................................................................................................. 315
Appendix A: Revision History............................................................................................................................................................. 339
Index .................................................................................................................................................................................................. 341
The Microchip Web Site..................................................................................................................................................................... 347
Customer Change Notification Service .............................................................................................................................................. 347
Customer Support .............................................................................................................................................................................. 347
Reader Response .............................................................................................................................................................................. 348
Product Identification System............................................................................................................................................................. 349
2
C™).............................................................................................................................................. 169
DS39995C-page 8 2011-2012 Microchip Technology Inc.
PIC24FV32KA304 FAMILY
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip’s Worldwide Web site; http://www.microchip.com
• Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.
2011-2012 Microchip Technology Inc. DS39995C-page 9
PIC24FV32KA304 FAMILY
NOTES:
DS39995C-page 10 2011-2012 Microchip Technology Inc.
PIC24FV32KA304 FAMILY

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:
• PIC24FV16KA301, PIC24F16KA301
• PIC24FV16KA302, PIC24F16KA302
• PIC24FV16KA304, PIC24F16KA304
• PIC24FV32KA301, PIC24F32KA301
• PIC24FV32KA302, PIC24F32KA302
• PIC24FV32KA304, PIC24F32KA304
The PIC24FV32KA304 family introduces a new line of extreme low-power Microchip devices. This is a 16-bit microcontroller family with a broad peripheral feature set and enhanced computational performance. This family also offers a new migration option for those high-performance applications which may be outgrowing their 8-bit platforms, but do not require the numerical processing power of a digital signal processor.

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip’s
®
digital signal controllers. The PIC24F CPU core
dsPIC offers a wide range of enhancements, such as:
• 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
• Linear addressing of up to 12 Mbytes (program space) and 64 Kbytes (data)
• A 16-element working register array with built-in software stack support
• A 17 x 17 hardware multiplier with support for integer math
• Hardware support for 32-bit by 16-bit division
• An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as C
• Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24FV32KA304 family incorporate a range of features that can significantly reduce power consumption during operation. Key features include:
On-the-Fly Clock Switching: The device clock
can be changed under software control to the Timer1 source or the internal, low-power RC oscillator during operation, allowing users to incorporate power-saving ideas into their software designs.
Doze Mode Operation: When timing-sensitive
applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
Instruction-Based Power-Savi ng Modes: There
are three instruction-based power-saving modes:
- Idle Mode: The core is shut down while leaving the peripherals active.
- Sleep Mode: The core and peripherals that require the system clock are shut down, leaving the peripherals that use their own clock, or the clock from other devices, active.
- Deep Sleep Mode: The core, peripherals (except RTCC and DSWDT), Flash and SRAM are shut down.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

The PIC24FV32KA304 family offers five different oscillator options, allowing users a range of choices in developing application hardware. These include:
• Two Crystal modes using crystals or ceramic
resonators.
• Two External Clock modes offering the option of a
divide-by-2 clock output.
• Two Fast Internal oscillators (FRCs): One with a
nominal 8 MHz output and the other with a nominal 500 kHz output. These outputs can also be divided under software control to provide clock speed as low as 31 kHz or 2 kHz.
• A Phase Locked Loop (PLL) frequency multiplier,
available to the external Oscillator modes and the 8 MHz FRC oscillator, which allows clock speeds of up to 32 MHz.
• A separate internal RC oscillator (LPRC) with a
fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.
2011-2012 Microchip Technology Inc. DS39995C-page 11
PIC24FV32KA304 FAMILY
The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all the devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.
The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, or even jumping from 20-pin or 28-pin devices to 44-pin/48-pin devices.
The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex.

1.2 Other Special Features

Communications: The PIC24FV32KA304 family
incorporates a range of serial communication peripherals to handle a range of application requirements. There is an I supports both the Master and Slave modes of operation. It also comprises UARTs with built-in
®
encoders/decoders and an SPI module.
IrDA
Real-Time Clock/Calendar: This module
implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
12-Bit A/D Converter: This module incorporates
programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep to reduce power, or in Active mode to improve throughput.
Charge Time Measurement Unit (CTMU) Interface: The PIC24FV32KA304 family includes
the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation.
2
C™ module that

1.3 Details on Individual Family Members

Devices in the PIC24FV32KA304 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in
Figure 1-1.
The devices are different from each other in four ways:
1. Flash program memory (16 Kbytes for
PIC24FV16KA devices, 32 Kbytes for PIC24FV32KA devices).
2. Available I/O pins and ports (18 pins on two
ports for 20-pin devices, 22 pins on two ports for 28-pin devices and 38 pins on three ports for 44/48-pin devices).
3. Alternate SCLx and SDAx pins are available
only in 28-pin, 44-pin and 48-pin devices and not in 20-pin devices.
4. Members of the PIC24FV32KA301 family are
available as both standard and high-voltage devices. High-voltage devices, designated with an “FV” in the part number (such as PIC24FV32KA304), accommodate an operating
DD range of 2.0V to 5.5V, and have an
V on-board voltage regulator that powers the core. Peripherals operate at VDD. Standard devices, designated by “F” (such as PIC24F32KA304), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from V
All other features for devices in this family are identical; these are summarized in Ta bl e 1 -1 .
A list of the pin features available on the PIC24FV32KA304 family devices, sorted by function, is provided in Table 1-3.
Note: Table 1-1 provides the pin location of
DD.
individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams on pages 3, 4, 5, 6 and 7 of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.
DS39995C-page 12 2011-2012 Microchip Technology Inc.
PIC24FV32KA304 FAMILY

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FV32KA304 FAMILY

Features
PIC24FV16KA301
Operating Frequency DC – 32 MHz
Program Memory (bytes) 16K 32K 16K 32K 16K 32K
Program Memory (instructions) 5632 11264 5632 11264 5632 11264
Data Memory (bytes) 2048
Data EEPROM Memory (bytes) 512
Interrupt Sources (soft vectors/ NMI traps)
I/O Ports PORTA<5:0>
PORTB<15:12,9:7,4,2:0>
Total I/O Pins 17 23 38
Timers: Total Number (16-bit) 5
32-Bit (from paired 16-bit timers) 2
Input Capture Channels 3
Output Compare/PWM Channels 3
Input Change Notification Interrupt 16 22 37
Serial Communications: UART SPI (3-wire/4-wire)
2
C™ 2
I
12-Bit Analog-to-Digital Module (input channels)
Analog Comparators 3 Resets (and delays) POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode,
Instruction Set 76 Base Instructions, Multiple Addressing Mode Variations
Packages 20-Pin
PDIP/SSOP/SOIC
12 13 16
REPEAT Instruction, Hardware Traps, Configuration Word Mismatch
PIC24FV32KA301
( P WR T, OS T, P L L L oc k )
PIC24FV16KA302
30 (26/4)
PORTA<7,5:0>
PORTB<15:0>
2
28-Pin
SPDIP/SSOP/SOIC/QFN
PIC24FV32KA302
PIC24FV16KA304
PORTA<11:7,5:0>
PORTB<15:0>
PORTC<9:0>
44-Pin QFN/TQFP
48-Pin UQFN
PIC24FV32KA304
2011-2012 Microchip Technology Inc. DS39995C-page 13
PIC24FV32KA304 FAMILY

TABLE 1-2: DEVICE FEATURES FOR THE PIC24F32KA304 FAMILY

Features
PIC24F16KA301
Operating Frequency DC – 32 MHz
Program Memory (bytes) 16K 32K 16K 32K 16K 32K
Program Memory (instructions) 5632 11264 5632 11264 5632 11264
Data Memory (bytes) 2048
Data EEPROM Memory (bytes) 512
Interrupt Sources (soft vectors/ NMI traps)
I/O Ports PORTA<6:0>,
PORTB<15:12, 9:7, 4, 2:0>
Total I/O Pins 18 24 39
Timers: Total Number (16-bit) 5
32-Bit (from paired 16-bit timers) 2
Input Capture Channels 3
Output Compare/PWM Channels 3
Input Change Notification Interrupt 17 23 38
Serial Communications: UART SPI (3-wire/4-wire)
2
C™ 2
I
12-Bit Analog-to-Digital Module (input channels)
Analog Comparators 3 Resets (and delays) POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode,
Instruction Set 76 Base Instructions, Multiple Addressing Mode Variations
Packages 20-Pin
PDIP/SSOP/SOIC
12 13 16
REPEAT Instruction, Hardware Traps, Configuration Word Mismatch
PIC24F32KA301
( P WR T, OS T, P L L L oc k )
PIC24F16KA302
30 (26/4)
PORTA<7:0>,
PORTB<15:0>
2
28-Pin
SPDIP/SSOP/SOIC/QFN
PIC24F32KA302
PIC16F16KA304
PORTA<11:0>,
PORTB<15:0>,
PORTC<9:0>
44-Pin QFN/TQFP
48-Pin UQFN
PIC24F32KA304
DS39995C-page 14 2011-2012 Microchip Technology Inc.
PIC24FV32KA304 FAMILY
Instruction
Decode and
Control
16
PCH PCL
16
Program Counter
16-Bit ALU
23
24
Data Bus
Inst Register
16
Divide
Support
Inst Latch
16
EA MUX
Read AGU Write AGU
16
16
8
Interrupt
Controller
PSV and Table
Data Access Control Block
Stac k
Control
Logic
Repeat Control
Logic
Data Latch
Data RAM
Address
Latch
Address Latch
Program Memory
Data Latch
16
Address Bus
Literal Data
23
Control Signals
16
16
16 x 16
W Reg Array
Multiplier
17x17
PORTA
(1)
RA<0:7>
PORTB
(1)
RB<0:15>
Note 1: All pins or features are not implemented on all device pinout configurations. See Table 1-3 for I/O port pin
descriptions.
Comparators
Timer4/5
Timer2/3
CTMU
IC1-3
A/D
12-Bit
PWM/
SPI1
I2C1
CN1-22
(1)
UART1/2
Data EEPROM
OSCI/CLKI
OSCO/CLKO
V
DD, VSS
Timi ng
Generation
MCLR
Power-up
Time r
Oscillator
Star t -u p Ti mer
Power-on
Reset
Watchdog
Time r
BOR
FRC/LPRC Oscillators
DSWDT
Timer1RTCC
REFO
OC1-3
HLVD
PORTC
(1)
RC<9:0>
Precision
Reference
Band Gap
Voltag e
V
CAP
Regulator

FIGURE 1-1: PIC24FV32KA304 FAMILY GENERAL BLOCK DIAGRAM

2011-2012 Microchip Technology Inc. DS39995C-page 15
DS39995C-page 16 2011-2012 Microchip Technology Inc.
PIC24FV32KA304 FAMILY

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS

FFV
Pin Number Pin Number
Function
AN0 2 2 27 19 21 2 2 27 19 21 I ANA A/D Analog Inputs
AN1 3 32820223 3282022IANA
AN2 4 4 1 21 23 4 4 1 21 23 I ANA
AN3 5 5 2 22 24 5 5 2 22 24 I ANA
AN4 6 6 3 23 25 6 6 3 23 25 I ANA
AN5 7 4 24 26 7 4 24 26 I ANA
AN6 25 27 25 27 I ANA
AN7 — 26 28 26 28 I ANA
AN8 — 27 29 27 29 I ANA
AN9 18 26 23 15 16 18 26 23 15 16 I ANA
AN10 17 25 22 14 15 17 25 22 14 15 I ANA
AN11 16 24 21 11 12 16 24 21 11 12 I ANA
AN12 15 23 20 10 11 15 23 20 10 11 I ANA
AN13 7 9 6 30 33 7 9 6 30 33 I ANA
AN14 8107313481073134IANA
AN15 9 11 8 33 36 9 11 8 33 36 I ANA
ASCL1 — 15 12 42 46 15 12 42 46 I/O I
ASDA1 — 14 11 41 45 14 11 41 45 I/O I
AV
DD 20 28 25 17 18 20 28 25 17 18 I ANA A/D Supply Pins
AV
SS 19 27 24 16 17 19 27 24 16 17 I ANA
C1INA 8 7 4 24 26 8 7 4 24 26 I ANA Comparator 1 Input A (+)
C1INB 7 6 3 23 25 7 6 3 23 25 I ANA Comparator 1 Input B (-)
C1INC 5 5 2 22 24 5 5 2 22 24 I ANA Comparator 1 Input C (+)
C1IND 4 4 1 21 23 4 4 1 21 23 I ANA Comparator 1 Input D (-)
C1OUT 17 25 22 14 15 17 25 22 14 15 O Comparator 1 Output
C2INA 5 5 2 22 24 5 5 2 22 24 I ANA Comparator 2 Input A (+)
C2INB 4 4 1 21 23 4 4 1 21 23 I ANA Comparator 2 Input B (-)
C2INC 8 7 4 24 26 8 7 4 24 26 I ANA Comparator 2 Input C (+)
C2IND 7 6 3 23 25 7 6 3 23 25 I ANA Comparator 2 Input D (-)
C2OUT 14 20 17 7 7 11 16 13 43 47 O Comparator 2 Output
20-Pin
PDIP/
SSOP/
SOIC
28-Pin SPDIP/ SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
20-Pin
PDIP/
SSOP/
SOIC
28-Pin
SPDIP/
SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
I/O Buffer Description
2
C™ Alternate I2C1 Clock Input/Output
2
C Alternate I2C1 Data Input/Output
2011-2012 Microchip Technology Inc. DS39995C-page 17
TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
FFV
Pin Number Pin Number
Function
C3INA 18 26 23 15 16 18 26 23 15 16 I ANA Comparator 3 Input A (+)
C3INB 17 25 22 14 15 17 25 22 14 15 I ANA Comparator 3 Input B (-)
C3INC 2 2 27 19 21 2 2 27 19 21 I ANA Comparator 3 Input C (+)
C3IND 4 4 1 21 23 4 4 1 21 23 I ANA Comparator 3 Input D (-)
C3OUT 12171444481217144448OComparator 3 Output
CLK I 7 9 6 30 33 7 9 6 30 33 I ANA Main Clock Input
CLKO 8107313481073134OSystem Clock Output
CN0 10 12 9 34 37 10 12 9 34 37 I ST Interrupt-on-Change Inputs
CN1 9118333691183336IST
CN2 2 2 27 19 21 2 2 27 19 21 I ST
CN3 3 3 28 20 22 3 3 28 20 22 I ST
CN4 4 4 1 21 23 4 4 1 21 23 I ST
CN5 5 5 2 22 24 5 5 2 22 24 I ST
CN6 6 6 3 23 25 6 6 3 23 25 I ST
CN7 — 7 4 24 26 –- 7 4 24 26 I ST
CN8 14 20 17 7 7 –- –- –- –- I ST
CN9 –- 19 16 6 6 –- 19 16 6 6 I ST
CN10 –- 27 29 –- –- –- 27 29 I ST
CN11 18 26 23 15 16 18 26 23 15 16 I ST
CN12 17 25 22 14 15 17 25 22 14 15 I ST
CN13 16 24 21 11 12 16 24 21 11 12 I ST
CN14 15 23 20 10 11 15 23 20 10 11 I ST
CN15 –- 22 19 9 10 –- 22 19 9 10 I ST
CN16 –- 21 18 8 9 –- 21 18 8 9 I ST
CN17 –- 3 3 –- 3 3 I ST
CN18 — 2 2 2 2 I ST
CN19 –- 5 5 –- 5 5 I ST
CN20 –- 4 4 –- –- 4 4 I ST
CN21 13 18 15 1 1 13 18 15 1 1 I ST
CN22 12 17 14 44 48 12 17 14 44 48 I ST
20-Pin
PDIP/
SSOP/
SOIC
28-Pin SPDIP/ SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
20-Pin
PDIP/
SSOP/
SOIC
28-Pin
SPDIP/
SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
I/O Buffer Description
PIC24FV32KA304 FAMILY
DS39995C-page 18 2011-2012 Microchip Technology Inc.
TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
FFV
Pin Number Pin Number
Function
CN23 11 16 13 43 47 11 16 13 43 47 I ST Interrupt-on-Change Inputs
CN24 –- 15 12 42 46 –- 15 12 42 46 I ST
CN25 –- 37 40 –- –- –- 37 40 I ST
CN26 –- 38 41 –- –- –- 38 41 I ST
CN27 –- 14 11 41 45 –- 14 11 41 45 I ST
CN28 –- 36 39 –- –- –- 36 39 I ST
CN29 8107313481073134IST
CN30 7 9 6 30 33 7 9 6 30 33 I ST
CN31 –- 26 28 26 28 I ST
CN32 –- 25 27 25 27 I ST
CN33 –- 32 35 32 35 I ST
CN34 –- 35 38 35 38 I ST
CN35 –- 12 13 12 13 I ST
CN36 –- 13 14 13 14 I ST
CV
REF 17 25 22 14 15 17 25 22 14 15 I ANA Comparator Voltage Reference Output
CV
REF+ 2 2 27 19 21 2 2 27 19 21 I ANA Comparator Reference Positive Input Voltage
CV
REF- 3 3 28 20 22 3 3 28 20 22 I ANA Comparator Reference Negative Input Voltage
CTCMP 4 4 1 21 23 4 4 1 21 23 I ANA CTMU Comparator Input
CTED1 14 20 17 7 7 11 2 27 19 21 I ST
CTED2 15 23 20 10 11 15 23 20 10 11 I ST
CTED3 — 19 16 6 6 19 16 6 6 I ST
CTED4 13 18 15 1 1 13 18 15 1 1 I ST
CTED5 17 25 22 14 15 17 25 22 14 15 I ST
CTED6 18 26 23 15 16 18 26 23 15 16 I ST
CTED7 — 5 5 5 5 I ST
CTED8 — 13 14 13 14 I ST
CTED9 —2219 9 10—2219 9 10IST
CTED10 12 17 14 44 48 12 17 14 44 48 I ST
CTED11 — 21 18 8 9 21 18 8 9 I ST
CTED12 5 5 2 22 24 5 5 2 22 24 I ST
CTED13 6 6 3 23 25 6 6 3 23 25 I ST
20-Pin
PDIP/
SSOP/
SOIC
28-Pin SPDIP/ SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
20-Pin
PDIP/
SSOP/
SOIC
28-Pin
SPDIP/
SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
I/O Buffer Description
CTMU Trigger Edge Inputs
PIC24FV32KA304 FAMILY
2011-2012 Microchip Technology Inc. DS39995C-page 19
TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
FFV
Pin Number Pin Number
Function
CTPLS 16 24 21 11 12 16 24 21 11 12 O CTMU Pulse Output
HLVDIN 15 23 20 10 11 15 23 20 10 11 I ST High/Low-Voltage Detect Input
IC1 14 19 16 6 6 11 19 16 6 6 I ST Input Capture 1 Input
IC2 13 18 15 5 5 13 18 15 5 5 I ST Input Capture 2 Input
IC3 15 23 20 13 14 15 23 20 13 14 I ST Input Capture 3 Input
INT0 11 16 13 43 47 11 16 13 43 47 I ST Interrupt 0 Input
INT1 17 25 22 14 15 17 25 22 14 15 I ST Interrupt 1 Input
INT2 14 20 17 7 7 15 23 20 10 11 I ST Interrupt 2 Input
MCLR
1 1 26 18 19 1 1 26 18 19 I ST Master Clear (Device Reset) Input (active-low)
OC1 14 20 17 7 7 11 16 13 43 47 O Output Compare/PWM1 Output
OC2 4 22 19 4 4 4 22 19 4 4 O Output Compare/PWM2 Output
OC3 5 21 18 12 13 5 21 18 12 13 O Output Compare/PWM3 Output
OCFA 17 25 22 14 15 17 25 22 14 15 O Output Compare Fault A
OFCB 16 24 21 32 35 16 24 21 32 35 O Output Compare Fault B
OSCI 7 9 6 30 33 7 9 6 30 33 I ANA Main Oscillator Input
OSCO 8 10 7 31 34 8 10 7 31 34 O ANA Main Oscillator Output
PGEC1 5 5 2 22 24 5 5 2 22 24 I/O ST ICSP™ Clock 1
PCED1 4 4 1 21 23 4 4 1 21 23 I/O ST ICSP Data 1
PGEC2 2 22191910 2 22191910I/OSTICSP Clock 2
PGED2 3 21 18 8 9 3 21 18 8 9 I/O ST ICSP Data 2
PGEC3 10 15 12 42 46 10 15 12 42 46 I/O ST ICSP Clock 3
PGED3 9 14 11 41 45 9 14 11 41 45 I/O ST ICSP Data 3
20-Pin
PDIP/
SSOP/
SOIC
28-Pin SPDIP/ SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
20-Pin
PDIP/
SSOP/
SOIC
28-Pin
SPDIP/
SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
I/O Buffer Description
PIC24FV32KA304 FAMILY
DS39995C-page 20 2011-2012 Microchip Technology Inc.
TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
FFV
Pin Number Pin Number
Function
RA0 2 2 27 19 21 2 2 27 19 21 I/O ST PORTA Pins
RA1 3 3 28 20 22 3 3 28 20 22 I/O ST
RA2 7 9 6 30 33 7 9 6 30 33 I/O ST
RA3 8107313481073134I/OST
RA4 1012 9 34371012 9 3437I/OST
RA5 1 1 26 18 19 1 1 26 18 19 I/O ST
RA6 14 20 17 7 7 I/O ST
RA7 — 19 16 6 6 19 16 6 6 I/O ST
RA8 — 32 35 32 35 I/O ST
RA9 — 35 38 35 38 I/O ST
RA10 — 12 13 12 13 I/O ST
RA11 ———1314———1314I/OST
RB0 4 4 1 21 23 4 4 1 21 23 I/O ST PORTB Pins
RB1 5 5 2 22 24 5 5 2 22 24 I/O ST
RB2 6 6 3 23 25 6 6 3 23 25 I/O ST
RB3 — 7 4 24 26 7 4 24 26 I/O ST
RB4 9118333691183336I/OST
RB5 —14114145—14114145I/OST
RB6 — 15 12 42 46 15 12 42 46 I/O ST
RB7 11 16 13 43 47 11 16 13 43 47 I/O ST
RB8 12 17 14 44 48 12 17 14 44 48 I/O ST
RB9 13 18 15 1 1 13 18 15 1 1 I/O ST
RB10 — 21 18 8 9 21 18 8 9 I/O ST
RB11 —2219 9 10—2219 9 10I/OST
RB12 15 23 20 10 11 15 23 20 10 11 I/O ST
RB13 16 24 21 11 12 16 24 21 11 12 I/O ST
RB14 17 25 22 14 15 17 25 22 14 15 I/O ST
RB15 18 26 23 15 16 18 26 23 15 16 I/O ST
20-Pin
PDIP/
SSOP/
SOIC
28-Pin SPDIP/ SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
20-Pin
PDIP/
SSOP/
SOIC
28-Pin
SPDIP/
SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
I/O Buffer Description
PIC24FV32KA304 FAMILY
2011-2012 Microchip Technology Inc. DS39995C-page 21
TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
FFV
Pin Number Pin Number
Function
RC0 — 25 27 25 27 I/O ST PORTC Pins
RC1 — 26 28 26 28 I/O ST
RC2 — 27 29 27 29 I/O ST
RC3 — 36 39 36 39 I/O ST
RC4 — 37 40 37 40 I/O ST
RC5 — 38 41 38 41 I/O ST
RC6 — 2 2 2 2 I/O ST
RC7 — 3 3 3 3 I/O ST
RC8 — 4 4 4 4 I/O ST
RC9 — 5 5 5 5 I/O ST
REFO 18 26 23 15 16 18 26 23 15 16 O Reference Clock Output
RTCC 17 25 22 14 15 17 25 22 14 15 O Real-Time Clock/Calendar Output
SCK1 15 22 19 9 10 15 22 19 9 10 I/O ST SPI1 Serial Input/Output Clock
SCK2 2 14 11 38 41 2 14 11 38 41 I/O ST SPI2 Serial Input/Output Clock
SCL1 12 17 14 44 48 12 17 14 44 48 I/O I
SCL2 18 7 4 24 26 18 7 4 24 26 I/O I
SCLKI 10 12 9 34 37 10 12 9 34 37 I ST Digital Secondary Clock Input
SDA1 13 18 15 1 1 13 18 15 1 1 I/O I
SDA2 6 6 3 23 25 6 6 3 23 25 I/O I
SDI1 17 21 18 8 9 17 21 18 8 9 I ST SPI1 Serial Data Input
SDI2 4 19 16 36 39 4 19 16 36 39 I ST SPI2 Serial Data Input
SDO1 16 24 21 11 12 16 24 21 11 12 O SPI1 Serial Data Output
SDO2 3 15123740 3 15123740OSPI2 Serial Data Output
SOSCI 9 11 8 33 36 9 11 8 33 36 I ANA Secondary Oscillator Input
SOSCO 10 12 9 34 37 10 12 9 34 37 O ANA Secondary Oscillator Output
SS1
SS2
20-Pin
PDIP/
SSOP/
SOIC
18 26 23 15 16 18 26 23 15 16 O SPI1 Slave Select
15 23 20 35 38 15 23 20 35 38 O SPI2 Slave Select
28-Pin SPDIP/ SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
20-Pin
PDIP/
SSOP/
SOIC
28-Pin
SPDIP/
SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
I/O Buffer Description
2
C I2C1 Clock Input/Output
2
C I2C2 Clock Input/Output
2
C I2C1 Data Input/Output
2
C I2C2 Data Input/Output
PIC24FV32KA304 FAMILY
DS39995C-page 22 2011-2012 Microchip Technology Inc.
TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)
FFV
Pin Number Pin Number
Function
T1CK 13 18 15 1 1 13 18 15 1 1 I ST Timer1 Clock
T2CK 18 26 23 15 16 18 26 23 15 16 I ST Timer2 Clock
T3CK 18 26 23 15 16 18 26 23 15 16 I ST Timer3 Clock
T4CK 6 6 3 23 25 6 6 3 23 25 I ST Timer4 Clock
T5CK 6 6 3 23 25 6 6 3 23 25 I ST Timer5 Clock
U1CTS 12 17 14 44 48 12 17 14 44 48 I ST UART1 Clear-to-Send Input
U1RTS 13 18 15 1 1 13 18 15 1 1 O UART1 Request-to-Send Output
U1RX 6632266322ISTUART1 Receive
U1TX 11 16 13 3 3 11 16 13 3 3 O UART1 Transmit
U2CTS 10 12 9 34 37 10 12 9 34 37 I ST UART2 Clear-to-Send Input
U2RTS 9 11 8 33 36 9 11 8 33 36 O UART2 Request-to-Send Output
U2RX 5 5 2 22 24 5 5 2 22 24 I ST UART2 Receive
U2TX 4 4 1 21 23 4 4 1 21 23 O UART2 Transmit
ULPWU 4 4 1 21 23 4 4 1 21 23 I ANA Ultra Low-Power Wake-up Input
V
CAP —————142017 7 7PCore Power
V
DD 20 28,13 25,10 17,28,40 18,30,43 20 28,13 25,10 17,28,40 18,30,43 P Device Digital Supply Voltage
V
REF+ 2 2 27 19 21 2 2 27 19 21 I ANA A/D Reference Voltage Input (+)
V
REF- 3 3 28 20 22 3 3 28 20 22 I ANA A/D Reference Voltage Input (-)
V
SS 19 27,8 24,5 16,29,39 17,31,42 19 27,8 24,5 16,29,39 17,31,42 P Device Digital Ground Return
20-Pin
PDIP/
SSOP/
SOIC
28-Pin SPDIP/ SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
20-Pin
PDIP/
SSOP/
SOIC
28-Pin
SPDIP/
SSOP/
SOIC
28-Pin
QFN
44-Pin
QFN/
TQFP
48-Pin UQFN
I/O Buffer Description
PIC24FV32KA304 FAMILY
PIC24FV32KA304 FAMILY
PIC24FXXKXX
VDD
VSS
VDD
VSS
VSS
VDD
AVDD
AVSS
VDD
VSS
C1
R1
V
DD
MCLR
VCAP
R2
C7
C2
(2)
C3
(2)
C4
(2)
C5
(2)
C6
(2)
Key (all values are recommendations):
C1 through C6: 0.1 F, 20V ceramic C7: 10 F, 16V tantalum or ceramic
R1: 10 k
R2: 100 to 470
Note 1: See Section 2.4 “Voltage Regulator Pin
(V
CAP)” for explanation of VCAP pin
connections.
2: The example shown is for a PIC24F device
with five V
DD/VSS and AVDD/AVSS pairs.
Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.
3: Some PIC24F K parts do not have a
regulator.
(1)
(3)
2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT
FIGURE 2-1: RECOMMENDED
MINIMUM CONNECTIONS
MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FV32KA304 family family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.
The following pins must always be connected:
DD and VSS pins
•All V
(see Section 2.2 “Power Supply Pins”)
•All AV
•MCLR
•V
These pins must also be connected if they are being used in the end application:
• PGECx/PGEDx pins used for In-Circuit Serial
• OSCI and OSCO pins when an external oscillator
Additionally, the following pins may be required:
•V
The minimum mandatory connections are shown in
Figure 2-1.
DD and AVSS pins, regardless of whether or
not the analog device features are used
(see Section 2.2 “Power Supply Pins”)
pin
(see Section 2.3 “Master Clear (MCLR) Pin”)
CAP pins
(see Section 2.4 “Voltage Regulator Pin (V
CAP)”)
Programming™ (ICSP™) and debugging purposes
(see Section 2.5 “ICSP Pins”)
source is used
(see Section 2.6 “External Oscillator Pins”)
REF+/VREF- pins are used when external voltage
reference for analog modules is implemented
Note: The AVDD and AVSS pins must always be
connected, regardless of whether any of the analog modules are being used.
2011-2012 Microchip Technology Inc. DS39995C-page 23
PIC24FV32KA304 FAMILY
Note 1: R1  10 k is recommended. A suggested
starting value is 10 k. Ensure that the MCLR
pin VIH and VIL specifications are met.
2: R2  470 will limit any current flowing into
MCLR
from the external capacitor, C, in the
event of MCLR
pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR
pin
V
IH and VIL specifications are met.
C1
R2
R1
V
DD
MCLR
PIC24FXXKXX
JP

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as V
SS, is required.
AV
Consider the following criteria when using decoupling capacitors:
Value and type of capacitor: A 0.1 F (100 nF),
10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
Placement on the printed circuit board: The
decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
Handling high-frequency noise: If the board is
experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capaci­tor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 F to 0.001 F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 F in parallel with 0.001 F).
Maximizing performance: On the board layout
from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.
DD, VSS, AVDD and

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to V addition of other components, to help increase the application’s resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application’s requirements.
During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR levels (V not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.
Any components associated with the MCLR should be placed within 0.25 inch (6 mm) of the pin.
FIGURE 2-2: EXAMPLE OF MCLR PIN
DD may be all that is required. The
pin. Consequently, specific voltage
IH and VIL) and fast signal transitions must
pin during programming and
pin
CONNECTIONS

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capac­itor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 F to 47 F.
DS39995C-page 24 2011-2012 Microchip Technology Inc.
PIC24FV32KA304 FAMILY
10
1
0.1
0.01
0.001
0.01 0.1 1 10 100 1000 10,000
Frequency (MHz)
ESR ()
Note: Typical data measurement at 25°C, 0V DC bias.

2.4 Voltage Regulat or Pin (VCAP)

Refer to Se ction 29.0 “Electri cal Characteristics” for
information on V
DD and VDDCORE.
Note: This section applies only to PIC24F K
devices with an on-chip voltage regulator.
Some of the PIC24F K devices have an internal voltage regulator. These devices have the voltage regulator
FIGURE 2-3: FREQUENCY vs. ESR
PERFORMANCE FOR SUGGESTED V
CAP
output brought out on the VCAP pin. On the PIC24F K devices with regulators, a low-ESR (< 5) capacitor is required on the V regulator output. The V
DD and must use a capacitor of 10 µF connected to
V
CAP pin to stabilize the voltage
CAP pin must not be connected to
ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.
Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.
The placement of this capacitor should be close to V
CAP.
It is recommended that the trace length not exceed
0.25 inch (6 mm). Refer to Section 29.0 “Electrical
Characteristics” for additional information.

TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS

Make Part #
TDK C3216X7R1C106K 10 µF ±10% 16V -55 to 125ºC
TDK C3216X5R1C106K 10 µF ±10% 16V -55 to 85ºC
Panasonic ECJ-3YX1C106K 10 µF ±10% 16V -55 to 125ºC
Panasonic ECJ-4YB1C106K 10 µF ±10% 16V -55 to 85ºC
Murata GRM32DR71C106KA01L 10 µF ±10% 16V -55 to 125ºC
Murata GRM31CR61C106KC31L 10 µF ±10% 16V -55 to 85ºC
Nominal
Capacitance
Base Tolerance Rated Voltage Temp. Range
2011-2012 Microchip Technology Inc. DS39995C-page 25
PIC24FV32KA304 FAMILY
-80
-70
-60
-50
-40
-30
-20
-10
0
10
5 1011121314151617
DC Bias Voltage (VDC)
Capacitance Change (%)
01234 67 89
16V Capacitor
10V Capacitor
6.3V Capacitor

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.
Ceramic capacitors are suitable for use with the inter­nal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.
Typical low-cost, 10 F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial toler­ance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or
-20%/+80% (Y5V). However, the effective capacitance
that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.
The X5R and X7R capacitors typically exhibit satisfac­tory temperature stability (ex: ±15% over a wide temperature range, but consult the manufacturer’s data sheets for exact specifications). However, Y5V capaci­tors typically have extreme temperature tolerance specifications of +22%/-82%. Due to the extreme temperature tolerance, a 10 F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.
In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very signifi­cant, but is often overlooked or is not always documented.
A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.
FIGURE 2-4: DC BIAS VOLTAGE vs.
CAPACITANCE CHARACTERISTICS
When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor volt­age. For example, choose a ceramic capacitor rated at 16V for the 3.3V or 2.5V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGC and PGD pins are used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recom­mended, with the value in the range of a few tens of ohms, not to exceed 100Ω.
Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communica­tions to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alter­natively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high
IH) and input low (VIL) requirements.
(V
For device emulation, ensure that the “Communication Channel Select” (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.
For more information on available Microchip development tools connection requirements, refer to
Section 27.0 “Development Support”.
DS39995C-page 26 2011-2012 Microchip Technology Inc.
PIC24FV32KA304 FAMILY
GND
`
`
`
OSC1
OSC2
T1OSO
T1OS I
Copper Pour
Primary Oscillator
Crystal
Timer1 Oscillator
Crystal
DEVICE PINS
Primary
Oscillator
C1
C2
T1 Oscillator: C1
T1 Oscillator: C2
(tied to ground)
Single-Sided and In-Line Layouts:
Fine-Pitch (Dual-Sided) Layouts:
GND
OSCO
OSCI
Bottom Layer
Copper Pour
Oscillator
Crystal
Top Layer Copper Pour
C2
C1
DEVICE PINS
(tied to ground)
(tied to ground)

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to for
Section 9.0 “Oscillator Configuration”details).
The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.
Use a grounded copper pour around the oscillator cir­cuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.
Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to com­pletely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.
In planning the application’s routing and I/O assign­ments, ensure that adjacent port pins and other signals, in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).
For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):
AN826, Crystal Os cillator Basics and Crystal
Selection for rfPIC™ and PICmicro
• AN849, “Basic PICmicro
• AN943, “Practical PICmicro and Design”
AN949, “Making Your Oscill ator Work ”

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k to 10 k resistor to VSS on unused pins and drive the output to logic low.
®
®
Oscillator Design”
®
Devices”
Oscillator Analysis
FIGURE 2-5: SUGGESTED PLACEMENT
OF THE OSCILLATOR CIRCUIT
2011-2012 Microchip Technology Inc. DS39995C-page 27
PIC24FV32KA304 FAMILY
NOTES:
DS39995C-page 28 2011-2012 Microchip Technology Inc.
PIC24FV32KA304 FAMILY

3.0 CPU

Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not intended to be a comprehensive refer­ence source. For more information on the
CPU, refer to the “PIC24F Family Reference Manual”, Section 2. “CPU”
(DS39703).
The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.
PIC24F devices have sixteen, 16-bit working registers in the programmer’s model. Each of the working registers can act as a data, address or address offset register. The 16 Software Stack Pointer (SSP) for interrupts and calls.
The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K word boundary of either program memory or data EEPROM memory, defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.
The Instruction Set Architecture (ISA) has been signifi­cantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibil­ity. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.
The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.
th
working register (W15) operates as a
For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a pro­gram (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (i.e., A + B = C) to be executed in a single cycle.
A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.
The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.
The PIC24F has a vectored exception scheme with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.
A block diagram of the CPU is illustrated in Figure 3-1.

3.1 Programmer’s Model

Figure 3-2 displays the programmer’s model for the
PIC24F. All registers in the programmer’s model are memory mapped and can be manipulated directly by instructions.
Table 3-1 provides a description of each register. All
registers associated with the programmer’s model are memory mapped.
2011-2012 Microchip Technology Inc. DS39995C-page 29
PIC24FV32KA304 FAMILY
Instruction
Decode and
Control
PCH PCL
16
Program Counter
16-Bit ALU
23
23
24
23
Data Bus
Instruction Reg
16
16 x 16
W Register Array
Divide
Support
ROM Latch
16
EA MUX
RAGU WAGU
16
16
8
Interrupt
Controller
PSV and Table
Data Access
Control Block
Stac k
Control
Logic
Loop
Control
Logic
Data Latch
Data RAM
Address
Latch
Control Signals
to Various Blocks
Program Memory
Data Latch
Address Bus
16
Literal Data
16
16
Hardware
Multiplier
16
To Peripheral Modules
Address Latch
Data EEPROM

FIGURE 3-1: PIC24F CPU CORE BLOCK DIAGRAM

TABLE 3-1: CPU CORE REGISTERS

Register(s) Name Description
W0 through W15 Working Register Array
PC 23-Bit Program Counter
SR ALU STATUS Register
SPLIM Stack Pointer Limit Value Register
TBLPAG Table Memory Page Address Register
PSVPAG Program Space Visibility Page Address Register
RCOUNT Repeat Loop Counter Register
CORCON CPU Control Register
DS39995C-page 30 2011-2012 Microchip Technology Inc.
Loading...
+ 322 hidden pages