Note the following details of the code protection feature on Microchip devices:
•Microchip products meet the specification contained in their particular Microchip Data Sheet.
•Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•Microchip is willing to work with the customer who is concerned about the integrity of their code.
•Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
K
logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
®
MCUs and dsPIC® DSCs, KEELOQ
®
code hopping
DS41609A-page 2Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
20-Pin Flash, 8-Bit Microcontrollers with nanoWatt XLP Technology
High-Performance RISC CPU:
• C Compiler Optimized Architecture
• Only 49 Instructions
• Up to 14 Kbytes Linear Program Memory
Addressing
• Up to 512 bytes Linear Data Memory Addressing
• Operating Speed:
- DC – 20 MHz clock input
- DC – 200 ns instruction cycle
• Interrupt Capability with Automatic Context
Saving
• 16-Level Deep Hardware Stack with Optional
Overflow/Underflow Reset
• Direct, Indirect and Relative Addressing modes:
- Two full 16-bit File Select Registers (FSRs)
- FSRs can read program and data memory
Flexible Oscillator Structure:
• 16 MHz Internal Oscillator Block:
- Factory calibrated to ±1%, typical
- Software selectable frequency range from
16 MHz to 31 kHz
• 31 kHz Low-Power Internal Oscillator
• Three External Clock modes up to 20 MHz
Special Microcontroller Features:
• Operating Voltage Range:
- 1.8V to 3.6V (PIC16LF1508/9)
- 2.3V to 5.5V (PIC16F1508/9)
• Self-Programmable under Software Control
• Power-on Reset (POR)
• Power-up Timer (PWRT)
• Programmable Low-Power Brown-Out Reset
(LPBOR)
• Extended Watchdog Timer (WDT):
- Programmable period from 1 ms to 256s
• Programmable Code Protection
• In-Circuit Serial Programming™ (ICSP™) via Two
Pins
• Enhanced Low-Voltage Programming (LVP)
• In-Circuit Debug (ICD) via two pins
• Power-Saving Sleep mode:
- Low-Power Sleep mode
- Low-Power BOR (LPBOR)
• Integrated Temperature Indicator
• 128 Bytes High-Endurance Flash
- 100,000 write Flash endurance (minimum)
Extreme Low-Power Management
with nanoWatt XLP (PIC16LF1508/9):
• Standby Current:
- 25 nA @ 1.8V, typical
• Watchdog Timer Current:
- 300 nA @ 1.8V, typical
• Operating Current:
-30 A/MHz @ 1.8V, typical
• Timer1 Oscillator Current:
- 600 nA @ 32 kHz, 1.8V, typical
Peripheral Features:
• Analog-to-Digital Converter (ADC):
- 10-bit resolution
- 12 external channels
- 3 internal channels:
- Fixed Voltage Reference
- Digital-to-Analog Converter
- Temperature Indicator channel
- Auto acquisition capability
- Conversion available during Sleep
• 2 Comparators:
- Rail-to-rail inputs
- Power mode control
- Software controllable hysteresis
• Voltage Reference module:
- Fixed Voltage Reference (FVR) with 1.024V,
2.048V and 4.096V output levels
- Up to 1 rail-to-rail resistive 5-bit DAC with
positive reference selection
2.0Enhanced Mid-Range CPU ........................................................................................................................................................ 15
10.0 Flash Program Memory Control ................................................................................................................................................. 95
21.0 Master Synchronous Serial Port Module.................................................................................................................................. 183
27.0 In-Circuit Serial Programming™ (ICSP™) ............................................................................................................................... 313
28.0 Instruction Set Summary.......................................................................................................................................................... 315
30.0 DC and AC Characteristics Graphs and Charts ....................................................................................................................... 357
31.0 Development Support............................................................................................................................................................... 359
Appendix A: Data Sheet Revision History.......................................................................................................................................... 373
Index .................................................................................................................................................................................................. 375
The Microchip Web Site..................................................................................................................................................................... 381
Customer Change Notification Service .............................................................................................................................................. 381
Customer Support .............................................................................................................................................................................. 381
Product Identification System ............................................................................................................................................................ 383
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We
welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip’s Worldwide Web site; http://www.microchip.com
• Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.
Customer Notification System
Register on our web site at www.microchip.com to receive the most current information on all of our products.
DS41609A-page 8Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
1.0DEVICE OVERVIEW
The PIC16(L)F1508/9 are described within this data
sheet. They are available in 14-pin packages. Figure 1-1
shows a block diagram of the PIC16(L)F1508/9 devices.
Tables 1-2 shows the pinout descriptions.
Reference Ta bl e 1 -1 for peripherals available per
device.
DS41609A-page 14Preliminary 2011 Microchip Technology Inc.
2.0ENHANCED MID-RANGE CPU
This family of devices contain an enhanced mid-range
8-bit CPU core. The CPU has 49 instructions. Interrupt
capability includes automatic context saving. The
hardware stack is 16 levels deep and has Overflow and
Underflow Reset capability. Direct, Indirect, and
Relative addressing modes are available. Two File
Select Registers (FSRs) provide the ability to read
program and data memory.
• Automatic Interrupt Context Saving
• 16-level Stack with Overflow and Underflow
• File Select Registers
• Instruction Set
2.1Automatic Interrupt Context
Saving
During interrupts, certain registers are automatically
saved in Shadow registers and restored when returning
from the interrupt. This saves stack space and user
code. See Section 7.5 “Automatic Context Saving”,
for more information.
PIC16(L)F1508/9
2.216-Level Stack with Overflow and
Underflow
These devices have an external stack memory 15 bits
wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF)
in the PCON register, and if enabled will cause a software Reset. See section Section 3.4 “Stack” for more
details.
2.3File Select Registers
There are two 16-bit File Select Registers (FSR). FSRs
can access all file registers and program memory,
which allows one Data Pointer for all memory. When an
FSR points to program memory, there is one additional
instruction cycle in instructions using INDF to allow the
data to be fetched. General purpose memory can now
also be addressed linearly, providing the ability to
access contiguous data larger than 80 bytes. There are
also new instructions to support the FSRs. See
Section 3.5 “Indirect Addressing” for more details.
2.4Instruction Set
There are 49 instructions for the enhanced mid-range
CPU to support the features of the CPU. See
DS41609A-page 16Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
3.0MEMORY ORGANIZATION
These devices contain the following types of memory:
• Program Memory
- Configuration Words
- Device ID
-User ID
- Flash Program Memory
• Data Memory
- Core Registers
- Special Function Registers
- General Purpose RAM
- Common RAM
The following features are associated with access and
control of program memory and data memory:
• PCL and PCLATH
•Stack
• Indirect Addressing
3.1Program Memory Organization
The enhanced mid-range core has a 15-bit program
counter capable of addressing 32K x 14 program
memory space. Table 3-1 shows the memory sizes
implemented. Accessing a location above these
boundaries will cause a wrap-around within the
implemented memory space. The Reset vector is at
0000h and the interrupt vector is at 0004h (See
Figure 3-1).
TABLE 3-1:DEVICE SIZES AND ADDRESSES
Device
PIC16F1508
PIC16LF1508
PIC16F1509
PIC16LF1509
Note 1: High-endurance Flash applies to low byte of each address in the range.
There are two methods of accessing constants in program memory. The first method is to use tables of
RETLW instructions. The second method is to set an
FSR to point to the program memory.
3.1.1.1RETLW Instruction
The RETLW instruction can be used to provide access
to tables of constants. The recommended way to create
such a table is shown in Example 3-1.
EXAMPLE 3-1:RETLW INSTRUCTION
3.1.1.2Indirect Read with FSR
The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the
lower 8 bits of the addressed word in the W register.
Writes to the program memory cannot be performed via
the INDF registers. Instructions that access the program memory via the FSR require one extra instruction
cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.
The HIGH directive will set bit<7> if a label points to a
location in program memory.
EXAMPLE 3-2:ACCESSING PROGRAM
MEMORY VIA FSR
The BRW instruction makes this type of table very simple to implement. If your code must remain portable
with previous generations of microcontrollers, then the
BRW instruction is not available so the older table read
method must be used.
x00h or x80hINDF0
x01h or x81hINDF1
x02h or x82hPCL
x03h or x83hSTATUS
x04h or x84hFSR0L
x05h or x85hFSR0H
x06h or x86hFSR1L
x07h or x87hFSR1H
x08h or x88hBSR
x09h or x89hWREG
x0Ah or x8AhPCLATH
x0Bh or x8BhINTCON
3.2Data Memory Organization
The data memory is partitioned in 32 memory banks
with 128 bytes in a bank. Each bank consists of
(Figure 3-3):
• 12 core registers
• 20 Special Function Registers (SFR)
• Up to 80 bytes of General Purpose RAM (GPR)
• 16 bytes of common RAM
The active bank is selected by writing the bank number
into the Bank Select Register (BSR). Unimplemented
memory will read as ‘0’. All data memory can be
accessed either directly (via instructions that use the
file registers) or indirectly via the two File Select
Registers (FSR). See Section 3.5 “Indirect
Addressing” for more information.
Data memory uses a 12-bit address. The upper 7-bits
of the address define the Bank address and the lower
5-bits select the registers/RAM in that bank.
3.2.1CORE REGISTERS
The core registers contain the registers that directly
affect the basic operation. The core registers occupy
the first 12 addresses of every data memory bank
(addresses x00h/x08h through x0Bh/x8Bh). These
registers are listed below in Ta b l e 3 -2 . For detailed
information, see Tab le 3 -8 .
TABLE 3-2:CORE REGISTERS
DS41609A-page 20Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
3.2.1.1STATUS Register
The STATUS register, shown in Register 3-1, contains:
• the arithmetic status of the ALU
• the Reset status
The STATUS register can be the destination for any
instruction, like any other register. If the STATUS
register is the destination for an instruction that affects
the Z, DC or C bits, then the write to these three bits is
disabled. These bits are set or cleared according to the
device logic. Furthermore, the TO
writable. Therefore, the result of an instruction with the
STATUS register as destination may be different than
intended.
and PD bits are not
For example, CLRF STATUS will clear the upper three
bits and set the Z bit. This leaves the STATUS register
as ‘000u u1uu’ (where u = unchanged).
It is recommended, therefore, that only BCF, BSF,SWAPF and MOVWF instructions are used to alter the
STATUS register, because these instructions do not
affect any Status bits. For other instructions not
affecting any Status bits (Refer to Section 28.0
“Instruction Set Summary”).
Note 1: The C and DC bits operate as Borrow
and Digit Borrow out bits, respectively, in
subtraction.
REGISTER 3-1:STATUS: STATUS REGISTER
U-0U-0U-0R-1/qR-1/qR/W-0/uR/W-0/uR/W-0/u
———
bit 7bit 0
Legend:
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is clearedq = Value depends on condition
TO
PDZDC
(1)
(1)
C
bit 7-5Unimplemented: Read as ‘0’
bit 4TO
bit 3PD
bit 2Z: Zero bit
bit 1DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)
bit 0C: Carry/Borrow
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order
bit of the source register.
: Time-Out bit
1 = After power-up, CLRWDT instruction or SLEEP instruction
0 = A WDT time-out occurred
: Power-Down bit
1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero
1 = A carry-out from the 4th low-order bit of the result occurred
0 = No carry-out from the 4th low-order bit of the result
(1)
bit
(ADDWF, ADDLW, SUBLW, SUBWF instructions)
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred
The Special Function Registers are registers used by
the application to control the desired operation of
peripheral functions in the device. The Special Function
Registers occupy the 20 bytes after the core registers of
every data memory bank (addresses x0Ch/x8Ch
through x1Fh/x9Fh). The registers associated with the
operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.
3.2.3GENERAL PURPOSE RAM
There are up to 80 bytes of GPR in each data memory
bank. The Special Function Registers occupy the 20
bytes after the core registers of every data memory
bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).
3.2.3.1Linear Access to GPR
The general purpose RAM can be accessed in a
non-banked method via the FSRs. This can simplify
access to large memory structures. See Section 3.5.2
“Linear Data Memory” for more information.
3.2.4COMMON RAM
There are 16 bytes of common RAM accessible from all
banks.
FIGURE 3-3:BANKED MEMORY
PARTITIONING
DS41609A-page 22Preliminary 2011 Microchip Technology Inc.
3.2.5DEVICE MEMORY MAPS
The memory maps for PIC16(L)F1508/9 are as shown
in Table 3-5 and Tab le 3 - 6.
09ChADRESHA/D Result Register Highxxxx xxxx uuuu uuuu
09DhADCON0
09EhADCON1ADFMADCS<2:0>
09FhADCON2TRIGSEL<3:0>
Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’.
Note 1:PIC16F1508/9 only.
Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’.
Note 1:PIC16F1508/9 only.
—Unimplemented——
—Unimplemented——
—Unimplemented——
2:Unimplemented, read as ‘1’.
——ANSB5ANSB4————--11 ---- --11 ----
——ANSC3ANSC2ANSC1ANSC011-- 1111 11-- 1111
—Flash Program Memory Address Register High Byte-000 0000 -000 0000
——Flash Program Memory Read Data Register High Byte--xx xxxx --uu uuuu
(2)
—
(1)
——————VREGPMReserved---- --01 ---- --01
CFGSLWLOFREEWRERRWRENWRRD0000 x000 0000 q000
—SCKPBRG16—WUEABDEN01-0 0-00 01-0 0-00
Value on all
other
Resets
DS41609A-page 30Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
TABLE 3-9:SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
AddressNameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2 Bit 1Bit 0
Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’.
Note 1:PIC16F1508/9 only.
TABLE 3-9:SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
AddressNameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2 Bit 1Bit 0
Bank 10
50Ch
—Unimplemented——
to
51Fh
Value on
POR, BOR
Bank 11
58Ch
to
—Unimplemented——
59Fh
Bank 12
60Ch
—Unimplemented——
to
610h
611hPWM1DCLPWM1DCL<7:6>
612hPWM1DCHPWM1DCH<7:0>xxxx xxxx uuuu uuuu
613hPWM1CON0 PWM1EN PWM1OE PWM1OUT PWM1POL
614hPWM2DCLPWM2DCL<7:6>
615hPWM2DCHPWM2DCH<7:0>xxxx xxxx uuuu uuuu
616hPWM2CON0 PWM2EN PWM2OE PWM2OUT PWM2POL
617hPWM3DCLPWM3DCL<7:6>
618hPWM3DCHPWM3DCH<7:0>xxxx xxxx uuuu uuuu
619hPWM3CON0 PWM3EN PWM3OE PWM3OUT PWM3POL
61AhPWM4DCLPWM4DCL<7:6>
61BhPWM4DCHPWM4DCH<7:0>xxxx xxxx uuuu uuuu
61ChPWM4CON0PWM4EN PWM4OE PWM4OUT PWM4POL
61Dh
to
—Unimplemented——
61Fh
——————00-- ---- 00-- ----
————0000 ---- 0000 ----
——————00-- ---- 00-- ----
————0000 ---- 0000 ----
——————00-- ---- 00-- ----
————0000 ---- 0000 ----
——————00-- ---- 00-- ----
————0000 ---- 0000 ----
Bank 13
68Ch
—Unimplemented——
to
690h
691hCWG1DBR
692hCWG1DBF
693hCWG1CON0G1ENG1OEBG1OEAG1POLBG1POLA
694hCWG1CON1G1ASDLB<1:0>G1ASDLA<1:0>
695hCWG1CON2G1ASEG1ARSEN
696h
—Unimplemented——
to
69Fh
Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’.
Note 1:PIC16F1508/9 only.
Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’.
Note 1:PIC16F1508/9 only.
TABLE 3-9:SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
AddressNameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2 Bit 1Bit 0
Bank 31
F8Ch
—
FE3h
FE4hSTATUS_
FE5hWREG_
FE6hBSR_
FE7hPCLATH_
FE8hFSR0L_
FE9hFSR0H_
FEAhFSR1L_
FEBhFSR1H_
FECh
FEDh
FEEh
FEFh
Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’.
Note 1:PIC16F1508/9 only.
—Unimplemented——
—————Z_SHADDC_SHADC_SHAD---- -xxx ---- -uuu
SHAD
Working Register Shadowxxxx xxxx uuuu uuuu
SHAD
———Bank Select Register Shadow---x xxxx ---u uuuu
SHAD
—Program Counter Latch High Register Shadow-xxx xxxx uuuu uuuu
Indirect Data Memory Address 1 High Pointer Shadowxxxx xxxx uuuu uuuu
SHAD
—Unimplemented——
STKPTR
TOSL
TOSH
2:Unimplemented, read as ‘1’.
———Current Stack Pointer---1 1111 ---1 1111
Top-of-Stack Low bytexxxx xxxx uuuu uuuu
—Top-of-Stack High byte-xxx xxxx -uuu uuuu
Value on
POR, BOR
Value on all
other
Resets
DS41609A-page 34Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
PCL
PCH
0
14
PC
PCL
PCH
0
14
PC
ALU Result
8
7
6
PCLATH
0
Instruction with
PCL as
Destination
GOTO, CALL
OPCODE <10:0>
11
4
6
PCLATH
0
PCL
PCH
0
14
PC
W
8
7
6
PCLATH
0
CALLW
PCL
PCH
0
14
PC
PC + W
15
BRW
PCLPCH
0
14
PC
PC + OPCODE <8:0>
15
BRA
3.3PCL and PCLATH
The Program Counter (PC) is 15 bits wide. The low byte
comes from the PCL register, which is a readable and
writable register. The high byte (PC<14:8>) is not directly
readable or writable and comes from PCLATH. On any
Reset, the PC is cleared. Figure 3-4 shows the five
situations for the loading of the PC.
FIGURE 3-4:LOADING OF PC IN
DIFFERENT SITUATIONS
3.3.2COMPUTED GOTO
A computed GOTO is accomplished by adding an offset to
the program counter (ADDWF PCL). When performing a
table read using a computed GOTO method, care should
be exercised if the table location crosses a PCL memory
boundary (each 256-byte block). Refer to Application
Note AN556, “Implementing a Table Read” (DS00556).
3.3.3COMPUTED FUNCTION CALLS
A computed function CALL allows programs to maintain
tables of functions and provide another way to execute
state machines or look-up tables. When performing a
table read using a computed function CALL, care
should be exercised if the table location crosses a PCL
memory boundary (each 256-byte block).
If using the CALL instruction, the PCH<2:0> and PCL
registers are loaded with the operand of the CALL
instruction. PCH<6:3> is loaded with PCLATH<6:3>.
The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address.
A computed CALLW is accomplished by loading the W
register with the desired address and executing CALLW.
The PCL register is loaded with the value of W and
PCH is loaded with PCLATH.
3.3.4BRANCHING
The branching instructions add an offset to the PC.
This allows relocatable code and code that crosses
page boundaries. There are two forms of branching,
BRW and BRA. The PC will have incremented to fetch
the next instruction in both cases. When using either
branching instruction, a PCL memory boundary may be
crossed.
If using BRW, load the W register with the desired
unsigned address and execute BRW. The entire PC will
3.3.1MODIFYING PCL
Executing any instruction with the PCL register as the
destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents
of the PCLATH register. This allows the entire contents
of the program counter to be changed by writing the
desired upper 7 bits to the PCLATH register. When the
lower 8 bits are written to the PCL register, all 15 bits of
the program counter will change to the values contained in the PCLATH register and those being written
to the PCL register.
be loaded with the address PC + 1 + W.
If using BRA, the entire PC will be loaded with PC + 1 +,
the signed value of the operand of the BRA instruction.
After Reset, the stack is empty. The
empty stack is initialized so the Stack
Pointer is pointing at 0x1F. If the Stack
Overflow/Underflow Reset is enabled, the
TOSH/TOSL registers will return ‘0’. If
the Stack Overflow/Underflow Reset is
disabled, the TOSH/TOSL registers will
return the contents of stack address 0x0F.
0x1FSTKPTR = 0x1F
Stack Reset Disabled
(STVREN = 0)
Stack Reset Enabled
(STVREN = 1)
TOSH:TOSL
TOSH:TOSL
3.4Stack
All devices have a 16-level x 15-bit wide hardware
stack (refer to Figures 3-5 through 3-8). The stack
space is not part of either program or data space. The
PC is PUSHed onto the stack when CALL or CALLW
instructions are executed or an interrupt causes a
branch. The stack is POPed in the event of a RETURN,RETLW or a RETFIE instruction execution. PCLATH is
not affected by a PUSH or POP operation.
The stack operates as a circular buffer if the STVREN
bit is programmed to ‘0‘ (Configuration Words). This
means that after the stack has been PUSHed sixteen
times, the seventeenth PUSH overwrites the value that
was stored from the first PUSH. The eighteenth PUSH
overwrites the second PUSH (and so on). The
STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is
enabled.
Note 1: There are no instructions/mnemonics
called PUSH or POP. These are actions
that occur from the execution of the
CALL, CALLW, RETURN, RETLW and
RETFIE instructions or the vectoring to
an interrupt address.
3.4.1ACCESSING THE STACK
The stack is available through the TOSH, TOSL and
STKPTR registers. STKPTR is the current value of the
Stack Pointer. TOSH:TOSL register pair points to the
TOP of the stack. Both registers are read/writable. TOS
is split into TOSH and TOSL due to the 15-bit size of the
PC. To access the stack, adjust the value of STKPTR,
which will position TOSH:TOSL, then read/write to
TOSH:TOSL. STKPTR is 5 bits to allow detection of
overflow and underflow.
Note:Care should be taken when modifying the
STKPTR while interrupts are enabled.
During normal program operation, CALL, CALLW and
Interrupts will increment STKPTR while RETLW,RETURN, and RETFIE will decrement STKPTR. At any
time STKPTR can be inspected to see how much stack
is left. The STKPTR always points at the currently used
place on the stack. Therefore, a CALL or CALLW will
increment the STKPTR and then write the PC, and a
return will unload the PC and then decrement the
STKPTR.
Reference Figure 3-5 through Figure 3-8 for examples
of accessing the stack.
FIGURE 3-5:ACCESSING THE STACK EXAMPLE 1
DS41609A-page 36Preliminary 2011 Microchip Technology Inc.
FIGURE 3-6:ACCESSING THE STACK EXAMPLE 2
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
Return Address0x00
STKPTR = 0x00
This figure shows the stack configuration
after the first CALL or a single interrupt.
If a RETURN instruction is executed, the
return address will be placed in the
Program Counter and the Stack Pointer
decremented to the empty state (0x1F).
TOSH:TOSL
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
Return Address0x06
Return Address0x05
Return Address0x04
Return Address0x03
Return Address0x02
Return Address0x01
Return Address0x00
STKPTR = 0x06
After seven CALLs or six CALLs and an
interrupt, the stack looks like the figure
on the left. A series of RETURN instructions
will repeatedly place the return addresses
into the Program Counter and pop the stack.
When the stack is full, the next CALL or
an interrupt will set the Stack Pointer to
0x10. This is identical to address 0x00
so the stack will wrap and overwrite the
return address at 0x00. If the Stack
Overflow/Underflow Reset is enabled, a
Reset will occur and location 0x00 will
not be overwritten.
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
Return Address
TOSH:TOSL
FIGURE 3-8:ACCESSING THE STACK EXAMPLE 4
3.4.2OVERFLOW/UNDERFLOW RESET
If the STVREN bit in Configuration Words is
programmed to ‘1’, the device will be reset if the stack
is PUSHed beyond the sixteenth level or POPed
beyond the first level, setting the appropriate bits
(STKOVF or STKUNF, respectively) in the PCON
register.
3.5Indirect Addressing
The INDFn registers are not physical registers. Any
instruction that accesses an INDFn register actually
accesses the register at the address specified by the
File Select Registers (FSR). If the FSRn address
specifies one of the two INDFn registers, the read will
return ‘0’ and the write will not occur (though Status bits
may be affected). The FSRn register value is created
by the pair FSRnH and FSRnL.
The FSR registers form a 16-bit address that allows an
addressing space with 65536 locations. These locations
are divided into three memory regions:
• Traditional Data Memory
• Linear Data Memory
• Program Flash Memory
DS41609A-page 38Preliminary 2011 Microchip Technology Inc.
FIGURE 3-9:INDIRECT ADDRESSING
0x0000
0x0FFF
Traditional
FSR
Address
Range
Data Memory
0x1000
Reserved
Linear
Data Memory
Reserved
0x2000
0x29AF
0x29B0
0x7FFF
0x8000
0xFFFF
0x0000
0x0FFF
0x0000
0x7FFF
Program
Flash Memory
Note:Not all memory regions are completely implemented. Consult device memory tables for memory limits.
The traditional data memory is a region from FSR
address 0x000 to FSR address 0xFFF. The addresses
correspond to the absolute addresses of all SFR, GPR
and common registers.
FIGURE 3-10:TRADITIONAL DATA MEMORY MAP
DS41609A-page 40Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
7
0
1
7
0
0
Location Select
0x2000
FSRnH
FSRnL
0x020
Bank 0
0x06F
0x0A0
Bank 1
0x0EF
0x120
Bank 2
0x16F
0xF20
Bank 30
0xF6F
0x29AF
0
7
1
7
0
0
Location Select
0x8000
FSRnH
FSRnL
0x0000
0x7FFF
0xFFFF
Program
Flash
Memory
(low 8
bits)
3.5.2LINEAR DATA MEMORY
The linear data memory is the region from FSR
address 0x2000 to FSR address 0x29AF. This region is
a virtual region that points back to the 80-byte blocks of
GPR memory in all the banks.
Unimplemented memory reads as 0x00. Use of the
linear data memory region allows buffers to be larger
than 80 bytes because incrementing the FSR beyond
one bank will go directly to the GPR memory of the next
bank.
The 16 bytes of common memory are not included in
the linear data memory region.
FIGURE 3-11:LINEAR DATA MEMORY
MAP
3.5.3PROGRAM FLASH MEMORY
To make constant data access easier, the entire
program Flash memory is mapped to the upper half of
the FSR address space. When the MSB of FSRnH is
set, the lower 15 bits are the address in program
memory which will be accessed through INDF. Only the
lower 8 bits of each memory location is accessible via
INDF. Writing to the program Flash memory cannot be
accomplished via the FSR/INDF interface. All
instructions that access program Flash memory via the
FSR/INDF interface will require one additional
instruction cycle to complete.
DS41609A-page 42Preliminary 2011 Microchip Technology Inc.
4.0DEVICE CONFIGURATION
Device configuration consists of Configuration Words,
Code Protection and Device ID.
4.1Configuration Words
There are several Configuration Word bits that allow
different oscillator and memory protection options.
These are implemented as Configuration Word 1 at
8007h and Configuration Word 2 at 8008h.
Note:The DEBUG bit in Configuration Words is
managed automatically by device
development tools including debuggers
and programmers. For normal device
operation, this bit should be maintained as
a '1'.
R = Readable bitP = Programmable bitU = Unimplemented bit, read as ‘1’
‘0’ = Bit is cleared‘1’ = Bit is set-n = Value when blank or after Bulk Erase
MCLREPWRTEWDTE<1:0>FOSC<2:0>
BOREN<1:0>
—
bit 13 FCMEN: Fail-Safe Clock Monitor Enable bit
bit 12IESO: Internal External Switchover bit
bit 11CLKOUTEN
bit 10-9BOREN<1:0>: Brown-out Reset Enable bits
bit 8Unimplemented: Read as ‘1’
bit 7CP: Code Protection bit
bit 6MCLRE: MCLR/VPP Pin Function Select bit
bit 5PWRTE
bit 4-3WDTE<1:0>: Watchdog Timer Enable bits
bit 2-0FOSC<2:0>: Oscillator Selection bits
1 = Fail-Safe Clock Monitor is enabled
0 = Fail-Safe Clock Monitor is disabled
1 = Internal/External Switchover mode is enabled
0 = Internal/External Switchover mode is disabled
1 = CLKOUT function is disabled. I/O function on the CLKOUT pin
0 = CLKOUT function is enabled on the CLKOUT pin
11 = BOR enabled
10 = BOR enabled during operation and disabled in Sleep
01 = BOR controlled by SBOREN bit of the BORCON register
00 = BOR disabled
1 = Program memory code protection is disabled
0 = Program memory code protection is enabled
If LVP bit =
If LVP bit =
1 = PWRT disabled
0 = PWRT enabled
11 = WDT enabled
10 = WDT enabled while running and disabled in Sleep
01 = WDT controlled by the SWDTEN bit in the WDTCON register
00 = WDT disabled
111 = ECH:External clock, High-Power mode: on CLKIN pin
110 = ECM: External clock, Medium-Power mode: on CLKIN pin
101 = ECL: External clock, Low-Power mode: on CLKIN pin
100 = INTOSC oscillator: I/O function on CLKIN pin
011 = EXTRC oscillator: External RC circuit connected to CLKIN pin
010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins
001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins
000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins
: Clock Out Enable bit
(2)
1:
This bit is ignored.
0:
1 =MCLR
0 =MCLR
/VPP pin function is MCLR; Weak pull-up enabled.
/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of
WPUE3 bit.
: Power-Up Timer Enable bit
(1)
Note 1:Enabling Brown-out Reset does not automatically enable Power-up Timer.
2:Once enabled, code-protect can only be disabled by bulk erasing the device.
DS41609A-page 44Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
REGISTER 4-2:CONFIG2: CONFIGURATION WORD 2
R/P-1R/P-1R/P-1R/P-1R/P-1U-1
LVP
bit 13bit 8
U-1U-1U-1U-1U-1U-1R/P-1R/P-1
——
bit 7bit 0
Legend:
R = Readable bitP = Programmable bitU = Unimplemented bit, read as ‘1’
‘0’ = Bit is cleared‘1’ = Bit is set-n = Value when blank or after Bulk Erase
——
DEBUG
(3)
LPBORBORVSTVREN—
——WRT<1:0>
bit 13LVP: Low-Voltage Programming Enable bit
1 = Low-voltage programming enabled
0 = High-voltage on MCLR
bit 12DEBUG
1 = In-Circuit Debugger disabled, ICSPCLK and ICSPDAT are general purpose I/O pins
0 = In-Circuit Debugger enabled, ICSPCLK and ICSPDAT are dedicated to the debugger
bit 11
bit 10BORV: Brown-out Reset Voltage Selection bit
bit 9STVREN: Stack Overflow/Underflow Reset Enable bit
bit 8-2Unimplemented: Read as ‘1’
bit 1-0WRT<1:0>: Flash Memory Self-Write Protection bits
Note 1: The LVP bit cannot be programmed to ‘0’ when Programming mode is entered via LVP.
2: See Vborparameter for specific trip point voltages.
3: The DEBUG bit in Configuration Words is managed automatically by device development tools including
LPBOR
1 = Low-Power Brown-out Reset is disabled
0 = Low-Power Brown-out Reset is enabled
1 = Brown-out Reset voltage (Vbor), low trip point selected.
0 = Brown-out Reset voltage (Vbor), high trip point selected.
1 = Stack Overflow or Underflow will cause a Reset
0 = Stack Overflow or Underflow will not cause a Reset
2 k
debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.
: In-Circuit Debugger Mode bit
: Low-Power BOR Enable bit
W Flash memory:
11 = Write protection off
10 = 000h to 1FFh write-protected, 200h to 7FFh may be modified
01 = 000h to 3FFh write-protected, 400h to 7FFh may be modified
00 = 000h to 7FFh write-protected, no addresses may be modified
Code protection allows the device to be protected from
unauthorized access. Internal access to the program
memory is unaffected by any code protection setting.
4.2.1PROGRAM MEMORY PROTECTION
The entire program memory space is protected from
external reads and writes by the CP
Words. When CP
program memory are inhibited and a read will return all
‘0’s. The CPU can continue to read program memory,
regardless of the protection bit settings. Writing the
program memory is dependent upon the write
protection setting. See Section 4.3 “Write
Protection” for more information.
= 0, external reads and writes of
4.3Write Protection
Write protection allows the device to be protected from
unintended self-writes. Applications, such as
bootloader software, can be protected while allowing
other regions of the program memory to be modified.
The WRT<1:0> bits in Configuration Words define the
size of the program memory block that is protected.
bit in Configuration
4.4User ID
Four memory locations (8000h-8003h) are designated as
ID locations where the user can store checksum or other
code identification numbers. These locations are
readable and writable during normal execution. See
Section 10.4 “User ID, Device ID and Configuration
Word Access” for more information on accessing these
memory locations.
calculation, see the “PIC12(L)F1501/PIC16(L)F150X
Memory Programming Specification” (DS41573).
For more information on checksum
DS41609A-page 46Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
Device
DEVICEID<13:0> Values
DEV<8:0>REV<4:0>
PIC16F150810 1101 001x xxxx
PIC16LF150810 1101 111x xxxx
PIC16F150910 1101 010x xxxx
PIC16LF150910 1101 000x xxxx
4.5Device ID and Revision ID
The memory location 8006h is where the Device ID and
Revision ID are stored. The upper nine bits hold the
Device ID. The lower five bits hold the Revision ID. See
Section 10.4 “User ID, Device ID and Configuration
Word Access” for more information on accessing
these memory locations.
Development tools, such as device programmers and
debuggers, may be used to read the Device ID and
Revision ID.
REGISTER 4-3:DEVICEID: DEVICE ID REGISTER
RRRRRR
DEV<8:3>
bit 13bit 8
RRRRRRRR
DEV<2:0>REV<4:0>
bit 7bit 0
Legend:
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘1’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is clearedP = Programmable bit
bit 13-5DEV<8:0>: Device ID bits
bit 4-0REV<4:0>: Revision ID bits
These bits are used to identify the revision (see Table under DEV<8:0> above).
The oscillator module has a wide variety of clock
sources and selection features that allow it to be used
in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1
illustrates a block diagram of the oscillator module.
Clock sources can be supplied from external oscillators,
quartz crystal resonators, ceramic resonators and
Resistor-Capacitor (RC) circuits. In addition, the system
clock source can be supplied from one of two internal
oscillators, with a choice of speeds selectable via
software. Additional clock features include:
• Selectable system clock source between external
or internal sources via software.
• Two-Speed Start-up mode, which minimizes
latency between external oscillator start-up and
code execution.
• Fail-Safe Clock Monitor (FSCM) designed to
detect a failure of the external clock source (LP,
XT, HS, EC or RC modes) and switch
automatically to the internal oscillator.
5.XT – Medium Gain Crystal or Ceramic Resonator
Oscillator mode (up to 4 MHz)
6.HS – High Gain Crystal or Ceramic Resonator
mode (4 MHz to 20 MHz)
7.RC – External Resistor-Capacitor (RC)
8.INTOSC – Internal oscillator (31 kHz to 16 MHz)
Clock Source modes are selected by the FOSC<2:0>
bits in the Configuration Words. The FOSC bits
determine the type of oscillator that will be used when
the device is first powered.
The EC clock mode relies on an external logic level
signal as the device clock source. The LP, XT, and HS
clock modes require an external crystal or resonator to
be connected to the device. Each mode is optimized for
a different frequency range. The RC clock mode
requires an external resistor and capacitor to set the
oscillator frequency.
The INTOSC internal oscillator block produces a low
and high-frequency clock source, designated
LFINTOSC and HFINTOSC. (See Internal Oscillator
Block, Figure 5-1). A wide selection of device clock
frequencies may be derived from these two clock
sources.
DS41609A-page 50Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
OSC1/CLKIN
OSC2/CLKOUT
Clock from
Ext. System
PIC
®
MCU
FOSC/4 or
I/O
(1)
Note 1:Output depends upon CLKOUTEN bit of the
Configuration Words.
5.2Clock Source Types
Clock sources can be classified as external or internal.
External clock sources rely on external circuitry for the
clock source to function. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic
resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.
Internal clock sources are contained within the oscillator
module. The internal oscillator block has two internal
oscillators that are used to generate the internal system
clock sources: the 16 MHz High-Frequency Internal
Oscillator and the 31 kHz Low-Frequency Internal
Oscillator (LFINTOSC).
The system clock can be selected between external or
internal clock sources via the System Clock Select
(SCS) bits in the OSCCON register. See Section 5.3
“Clock Switching” for additional information.
5.2.1EXTERNAL CLOCK SOURCES
An external clock source can be used as the device
system clock by performing one of the following
actions:
• Program the FOSC<2:0> bits in the Configuration
Words to select an external clock source that will
be used as the default system clock upon a
device Reset.
• Write the SCS<1:0> bits in the OSCCON register
to switch the system clock source to:
- Secondary oscillator during run-time, or
- An external clock source determined by the
value of the FOSC bits.
See Section 5.3 “Clock Switching”for more informa-
tion.
5.2.1.1EC Mode
The External Clock (EC) mode allows an externally
generated logic level signal to be the system clock
source. When operating in this mode, an external clock
source is connected to the OSC1 input.
OSC2/CLKOUT is available for general purpose I/O or
CLKOUT. Figure 5-2 shows the pin connections for EC
mode.
EC mode has 3 power modes to select from through
Configuration Words:
• High power, 4-20 MHz (FOSC = 111)
• Medium power, 0.5-4 MHz (FOSC = 110)
• Low power, 0-0.5 MHz (FOSC = 101)
The Oscillator Start-up Timer (OST) is disabled when
EC mode is selected. Therefore, there is no delay in
operation after a Power-on Reset (POR) or wake-up
from Sleep. Because the PIC
®
MCU design is fully
static, stopping the external clock input will have the
effect of halting the device while leaving all data intact.
Upon restarting the external clock, the device will
resume operation as if no time had elapsed.
FIGURE 5-2:EXTERNAL CLOCK (EC)
MODE OPERATION
5.2.1.2LP, XT, HS Modes
The LP, XT and HS modes support the use of quartz
crystal resonators or ceramic resonators connected to
OSC1 and OSC2 (Figure 5-3). The three modes select
a low, medium or high gain setting of the internal
inverter-amplifier to support various resonator types
and speed.
LP Oscillator mode selects the lowest gain setting of the
internal inverter-amplifier. LP mode current consumption
is the least of the three modes. This mode is designed to
drive only 32.768 kHz tuning-fork type crystals (watch
crystals).
XT Oscillator mode selects the intermediate gain
setting of the internal inverter-amplifier. XT mode
current consumption is the medium of the three modes.
This mode is best suited to drive resonators with a
medium drive level specification.
HS Oscillator mode selects the highest gain setting of the
internal inverter-amplifier. HS mode current consumption
is the highest of the three modes. This mode is best
suited for resonators that require a high drive setting.
Figure 5-3 and Figure 5-4 show typical circuits for
quartz crystal and ceramic resonators, respectively.
Note 1: A series resistor (RS) may be required for
quartz crystals with low drive level.
2: The value of R
F varies with the Oscillator mode
selected (typically between 2 M
to 10 M.
C1
C2
Quartz
R
S
(1)
OSC1/CLKIN
RF
(2)
Sleep
To Internal
Logic
PIC® MCU
Crystal
OSC2/CLKOUT
Note 1: A series resistor (RS) may be required for
ceramic resonators with low drive level.
2: The value of R
F varies with the Oscillator mode
selected (typically between 2 M
to 10 M.
3: An additional parallel feedback resistor (R
P)
may be required for proper ceramic resonator
operation.
C1
C2
Ceramic
R
S
(1)
OSC1/CLKIN
RF
(2)
Sleep
To Internal
Logic
PIC® MCU
RP
(3)
Resonator
OSC2/CLKOUT
FIGURE 5-3:QUARTZ CRYSTAL
OPERATION (LP, XT OR
HS MODE)
Note 1: Quartz crystal characteristics vary
according to type, package and
manufacturer. The user should consult the
manufacturer data sheets for specifications
and recommended application.
2: Always verify oscillator performance over
DD and temperature range that is
the V
expected for the application.
3: For oscillator design assistance, reference
the following Microchip Applications Notes:
• AN826, “Crystal Oscillator Basics and
Crystal Selection for rfPIC
Devices” (DS00826)
• AN849, “Basic PIC
(DS00849)
• AN943, “Practical PICAnalysis and Design” (DS00943)
• AN949, “Making Your Oscillator Work”
(DS00949)
®
and PIC®
®
Oscillator Design”
®
Oscillator
FIGURE 5-4:CERAMIC RESONATOR
OPERATION
(XT OR HS MODE)
5.2.1.3Oscillator Start-up Timer (OST)
If the oscillator module is configured for LP, XT or HS
modes, the Oscillator Start-up Timer (OST) counts
1024 oscillations from OSC1. This occurs following a
Power-on Reset (POR) and when the Power-up Timer
(PWRT) has expired (if configured), or a wake-up from
Sleep. During this time, the program counter does not
increment and program execution is suspended. The
OST ensures that the oscillator circuit, using a quartz
crystal resonator or ceramic resonator, has started and
is providing a stable system clock to the oscillator
module.
In order to minimize latency between external oscillator
start-up and code execution, the Two-Speed Clock
Start-up mode can be selected (see Section 5.4
“Two-Speed Clock Start-up Mode”).
DS41609A-page 52Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
C1
C2
32.768 kHz
SOSCI
To Internal
Logic
PIC® MCU
Crystal
SOSCO
Quartz
OSC2/CLKOUT
CEXT
REXT
PIC® MCU
OSC1/CLKIN
F
OSC/4 or
Internal
Clock
VDD
VSS
Recommended values: 10 k REXT 100 k, <3V
3 k
REXT 100 k, 3-5V
C
EXT > 20 pF, 2-5V
Note 1:Output depends upon CLKOUTEN bit of the
Configuration Words.
I/O
(1)
5.2.1.4Secondary Oscillator
The secondary oscillator is a separate crystal oscillator
that is associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz
crystal connected between the SOSCO and SOSCI
device pins.
The secondary oscillator can be used as an alternate
system clock source and can be selected during
run-time using clock switching. Refer to Section 5.3
“Clock Switching” for more information.
FIGURE 5-5:QUARTZ CRYSTAL
OPERATION
(SECONDARY
OSCILLATOR)
5.2.1.5External RC Mode
The external Resistor-Capacitor (RC) modes support
the use of an external RC circuit. This allows the
designer maximum flexibility in frequency choice while
keeping costs to a minimum when clock accuracy is not
required.
The RC circuit connects to OSC1. OSC2/CLKOUT is
available for general purpose I/O or CLKOUT. The
function of the OSC2/CLKOUT pin is determined by the
CLKOUTEN
bit in Configuration Words.
Figure 5-6 shows the external RC mode connections.
FIGURE 5-6:EXTERNAL RC MODES
Note 1: Quartz crystal characteristics vary
according to type, package and
manufacturer. The user should consult the
manufacturer data sheets for specifications
and recommended application.
• AN943, “Practical PIC
Analysis and Design” (DS00943)
• AN949, “Making Your Oscillator Work”
(DS00949)
• TB097, “Interfacing a Micro Crystal
MS1V-T1K 32.768 kHz Tuning Fork
Crystal to a PIC16F690/SS” (DS91097)
• AN1288, “Design Practices for
Low-Power External Oscillators”
(DS01288)
®
and PIC®
®
Oscillator Design”
®
Oscillator
The RC oscillator frequency is a function of the supply
voltage, the resistor (R
EXT) and capacitor (CEXT) values
and the operating temperature. Other factors affecting
the oscillator frequency are:
• threshold voltage variation
• component tolerances
• packaging variations in capacitance
The user also needs to take into account variation due
to tolerance of external RC components used.
PIC16(L)F1508/9
5.2.2INTERNAL CLOCK SOURCES
The device may be configured to use the internal oscillator block as the system clock by performing one of the
following actions:
• Program the FOSC<2:0> bits in Configuration
Words to select the INTOSC clock source, which
will be used as the default system clock upon a
device Reset.
• Write the SCS<1:0> bits in the OSCCON register
to switch the system clock source to the internal
oscillator during run-time. See Section 5.3
“Clock Switching”for more information.
In INTOSC mode, OSC1/CLKIN is available for general
purpose I/O. OSC2/CLKOUT is available for general
purpose I/O or CLKOUT.
The function of the OSC2/CLKOUT pin is determined
by the CLKOUTEN
The internal oscillator block has two independent
oscillators that provides the internal system clock
source.
1.The HFINTOSC (High-Frequency Internal
Oscillator) is factory calibrated and operates at
16 MHz.
2.The LFINTOSC (Low-Frequency Internal
Oscillator) is uncalibrated and operates at
31 kHz.
bit in Configuration Words.
5.2.2.1HFINTOSC
The High-Frequency Internal Oscillator (HFINTOSC) is
a factory calibrated 16 MHz internal clock source.
The output of the HFINTOSC connects to a postscaler
and multiplexer (see Figure 5-1). The frequency derived
from the HFINTOSC can be selected via software using
the IRCF<3:0> bits of the OSCCON register. See
Section 5.2.2.4 “Internal Oscillator Clock Switch
Timing” for more information.
The HFINTOSC is enabled by:
• Configure the IRCF<3:0> bits of the OSCCON
register for the desired HF frequency, and
•FOSC<2:0> = 100, or
• Set the System Clock Source (SCS) bits of the
OSCCON register to ‘1x’.
A fast start-up oscillator allows internal circuits to
power-up and stabilize before switching to HFINTOSC.
The High-Frequency Internal Oscillator Ready bit
(HFIOFR) of the OSCSTAT register indicates when the
HFINTOSC is running.
The High-Frequency Internal Oscillator Stable bit
(HFIOFS) of the OSCSTAT register indicates when the
HFINTOSC is running within 0.5% of its final value.
5.2.2.2LFINTOSC
The Low-Frequency Internal Oscillator (LFINTOSC) is
an uncalibrated 31 kHz internal clock source.
The output of the LFINTOSC connects to a postscaler
and multiplexer (see Figure 5-1). Select 31 kHz, via
software, using the IRCF<3:0> bits of the OSCCON
register. See Section 5.2.2.4 “Internal Oscillator
Clock Switch Timing” for more information. The
LFINTOSC is also the frequency for the Power-up Timer
(PWRT), Watchdog Timer (WDT) and Fail-Safe Clock
Monitor (FSCM).
The LFINTOSC is enabled by selecting 31 kHz
(IRCF<3:0> bits of the OSCCON register = 000) as the
system clock source (SCS bits of the OSCCON
register = 1x), or when any of the following are
enabled:
• Configure the IRCF<3:0> bits of the OSCCON
register for the desired LF frequency, and
•FOSC<2:0> = 100, or
• Set the System Clock Source (SCS) bits of the
OSCCON register to ‘1x’
Peripherals that use the LFINTOSC are:
• Power-up Timer (PWRT)
• Watchdog Timer (WDT)
• Fail-Safe Clock Monitor (FSCM)
The Low-Frequency Internal Oscillator Ready bit
(LFIOFR) of the OSCSTAT register indicates when the
LFINTOSC is running.
DS41609A-page 54Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
5.2.2.3Internal Oscillator Frequency
Selection
The system clock speed can be selected via software
using the Internal Oscillator Frequency Select bits
IRCF<3:0> of the OSCCON register.
The output of the 16 MHz HFINTOSC and 31 kHz
LFINTOSC connects to a postscaler and multiplexer
(see Figure 5-1). The Internal Oscillator Frequency
Select bits IRCF<3:0> of the OSCCON register select
the frequency output of the internal oscillators. One of
the following frequencies can be selected via software:
•HFINTOSC
-16 MHz
-8 MHz
-4 MHz
-2 MHz
-1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
•LFINTOSC
-31 kHz
Note:Following any Reset, the IRCF<3:0> bits
of the OSCCON register are set to ‘0111’
and the frequency selection is set to
500 kHz. The user can modify the IRCF
bits to select a different frequency.
The IRCF<3:0> bits of the OSCCON register allow
duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower
power consumption can be obtained when changing
oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes
that use the same oscillator source.
5.2.2.4Internal Oscillator Clock Switch
Timing
When switching between the HFINTOSC and the
LFINTOSC, the new oscillator may already be shut
down to save power (see Figure 5-7). If this is the case,
there is a delay after the IRCF<3:0> bits of the
OSCCON register are modified before the frequency
selection takes place. The OSCSTAT register will
reflect the current active status of the HFINTOSC and
LFINTOSC oscillators. The sequence of a frequency
selection is as follows:
1.IRCF<3:0> bits of the OSCCON register are
modified.
2. If the new clock is shut down, a clock start-up
delay is started.
3.Clock switch circuitry waits for a falling edge of
the current clock.
4. The current clock is held low and the clock
switch circuitry waits for a rising edge in the new
clock.
5. The new clock is now active.
6. The OSCSTAT register is updated as required.
7.Clock switch is complete.
See Figure 5-7 for more details.
If the internal oscillator speed is switched between two
clocks of the same source, there is no start-up delay
before the new frequency is selected. Clock switching
time delays are shown in Table 5-1.
Start-up delay specifications are located in the
oscillator tables of Section 29.0 “Electrical
DS41609A-page 56Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
5.3Clock Switching
The system clock source can be switched between
external and internal clock sources via software using
the System Clock Select (SCS) bits of the OSCCON
register. The following clock sources can be selected
using the SCS bits:
• Default system oscillator determined by FOSC
bits in Configuration Words
• Secondary oscillator 32 kHz crystal
• Internal Oscillator Block (INTOSC)
5.3.1SYSTEM CLOCK SELECT (SCS)
BITS
The System Clock Select (SCS) bits of the OSCCON
register selects the system clock source that is used for
the CPU and peripherals.
• When the SCS bits of the OSCCON register = 00,
the system clock source is determined by value of
the FOSC<2:0> bits in the Configuration Words.
• When the SCS bits of the OSCCON register = 01,
the system clock source is the secondary
oscillator.
• When the SCS bits of the OSCCON register = 1x,
the system clock source is chosen by the internal
oscillator frequency selected by the IRCF<3:0>
bits of the OSCCON register. After a Reset, the
SCS bits of the OSCCON register are always
cleared.
Note:Any automatic clock switch, which may
occur from Two-Speed Start-up or
Fail-Safe Clock Monitor, does not update
the SCS bits of the OSCCON register. The
user can monitor the OSTS bit of the
OSCSTAT register to determine the current
system clock source.
5.3.3SECONDARY OSCILLATOR
The secondary oscillator is a separate crystal oscillator
associated with the Timer1 peripheral. It is optimized
for timekeeping operations with a 32.768 kHz crystal
connected between the SOSCO and SOSCI device
pins.
The secondary oscillator is enabled using the
T1OSCEN control bit in the T1CON register. See
Section 19.0 “Timer1 Module with Gate Control” for
more information about the Timer1 peripheral.
5.3.4SECONDARY OSCILLATOR READY
(SOSCR) BIT
The user must ensure that the secondary oscillator is
ready to be used before it is selected as a system clock
source. The Secondary Oscillator Ready (SOSCR) bit
of the OSCSTAT register indicates whether the
secondary oscillator is ready to be used. After the
SOSCR bit is set, the SCS bits can be configured to
select the secondary oscillator.
When switching between clock sources, a delay is
required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.
5.3.2OSCILLATOR START-UP TIME-OUT
STATUS (OSTS) BIT
The Oscillator Start-up Time-out Status (OSTS) bit of
the OSCSTAT register indicates whether the system
clock is running from the external clock source, as
defined by the FOSC<2:0> bits in the Configuration
Words, or from the internal clock source. In particular,
OSTS indicates that the Oscillator Start-up Timer
(OST) has timed out for LP, XT or HS modes. The OST
does not reflect the status of the secondary oscillator.
Two-Speed Start-up mode provides additional power
savings by minimizing the latency between external
oscillator start-up and code execution. In applications
that make heavy use of the Sleep mode, Two-Speed
Start-up will remove the external oscillator start-up
time from the time spent awake and can reduce the
overall power consumption of the device. This mode
allows the application to wake-up from Sleep, perform
a few instructions using the INTOSC internal oscillator
block as the clock source and go back to Sleep without
waiting for the external oscillator to become stable.
Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT, or HS modes.
The Oscillator Start-up Timer (OST) is enabled for
these modes and must count 1024 oscillations before
the oscillator can be used as the system clock source.
If the oscillator module is configured for any mode
other than LP, XT or HS mode, then Two-Speed
Start-up is disabled. This is because the external clock
oscillator does not require any stabilization time after
POR or an exit from Sleep.
If the OST count reaches 1024 before the device
enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the
external oscillator. However, the system may never
operate from the external oscillator if the time spent
awake is very short.
Note:Executing a SLEEP instruction will abort
the oscillator start-up time and will cause
the OSTS bit of the OSCSTAT register to
remain clear.
5.4.1TWO-SPEED START-UP MODE
CONFIGURATION
Two-Speed Start-up mode is configured by the
following settings:
• IESO (of the Configuration Words) = 1; Inter-
nal/External Switchover bit (Two-Speed Start-up
mode enabled).
• SCS (of the OSCCON register) = 00.
• FOSC<2:0> bits in the Configuration Words
configured for LP, XT or HS mode.
Two-Speed Start-up mode is entered after:
• Power-on Reset (POR) and, if enabled, after
Power-up Timer (PWRT) has expired, or
• Wake-up from Sleep.
TABLE 5-1:OSCILLATOR SWITCHING DELAYS
Switch FromSwitch ToFrequencyOscillator Delay
Sleep/POR
Sleep/POREC, RCDC – 20 MHz2 cycles
LFINTOSCEC, RCDC – 20 MHz1 cycle of each
Sleep/POR
Any clock sourceHFINTOSC31.25 kHz-16 MHz2 s (approx.)
Any clock sourceLFINTOSC31 kHz1 cycle of each
Any clock sourceSecondary Oscillator 32 kHz1024 Clock Cycles (OST)
DS41609A-page 58Preliminary 2011 Microchip Technology Inc.
LFINTOSC
HFINTOSC
Secondary Oscillator,
LP, XT, HS
31 kHz
31.25kHz-16MHz
32 kHz-20 MHz1024 Clock Cycles (OST)
Oscillator Warm-up Delay (T
WARM)
PIC16(L)F1508/9
011022 1023
PC + 1
TOSTT
INTOSC
OSC1
OSC2
Program Counter
System Clock
PC - N
PC
5.4.2TWO-SPEED START-UP
SEQUENCE
1. Wake-up from Power-on Reset or Sleep.
2.Instructions begin execution by the internal
oscillator at the frequency set in the IRCF<3:0>
bits of the OSCCON register.
3. OST enabled to count 1024 clock cycles.
4.OST timed out, wait for falling edge of the
internal oscillator.
5.OSTS is set.
6. System clock held low until the next falling edge
of new clock (LP, XT or HS mode).
7. System clock is switched to external clock
source.
FIGURE 5-8:TWO-SPEED START-UP
5.4.3CHECKING TWO-SPEED CLOCK
STATUS
Checking the state of the OSTS bit of the OSCSTAT
register will confirm if the microcontroller is running
from the external clock source, as defined by the
FOSC<2:0> bits in the Configuration Words, or the
internal oscillator.
The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating should the external oscillator fail.
The FSCM can detect oscillator failure any time after
the Oscillator Start-up Timer (OST) has expired. The
FSCM is enabled by setting the FCMEN bit in the
Configuration Words. The FSCM is applicable to all
external Oscillator modes (LP, XT, HS, EC, RC and
secondary oscillator).
FIGURE 5-9:FSCM BLOCK DIAGRAM
5.5.1FAIL-SAFE DETECTION
The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64. See Figure 5-9. Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire
half-cycle of the sample clock elapses before the
external clock goes low.
5.5.3FAIL-SAFE CONDITION CLEARING
The Fail-Safe condition is cleared after a Reset,
executing a SLEEP instruction or changing the SCS bits
of the OSCCON register. When the SCS bits are
changed, the OST is restarted. While the OST is
running, the device continues to operate from the
INTOSC selected in OSCCON. When the OST times
out, the Fail-Safe condition is cleared and the device
will be operating from the external clock source. The
Fail-Safe condition must be cleared before the OSFIF
flag can be cleared.
5.5.4RESET OR WAKE-UP FROM SLEEP
The FSCM is designed to detect an oscillator failure
after the Oscillator Start-up Timer (OST) has expired.
The OST is used after waking up from Sleep and after
any type of Reset. The OST is not used with the EC or
RC Clock modes so that the FSCM will be active as
soon as the Reset or wake-up has completed. When
the FSCM is enabled, the Two-Speed Start-up is also
enabled. Therefore, the device will always be executing
code while the OST is operating.
Note:Due to the wide range of oscillator start-up
times, the Fail-Safe circuit is not active
during oscillator start-up (i.e., after exiting
Reset or Sleep). After an appropriate
amount of time, the user should check the
Status bits in the OSCSTAT register to
verify the oscillator start-up and that the
system clock switchover has successfully
completed.
5.5.2FAIL-SAFE OPERATION
When the external clock fails, the FSCM switches the
device clock to an internal clock source and sets the bit
flag OSFIF of the PIR2 register. Setting this flag will
generate an interrupt if the OSFIE bit of the PIE2
register is also set. The device firmware can then take
steps to mitigate the problems that may arise from a
failed clock. The system clock will continue to be
sourced from the internal clock source until the device
firmware successfully restarts the external oscillator
and switches back to external operation.
The internal clock source chosen by the FSCM is
determined by the IRCF<3:0> bits of the OSCCON
register. This allows the internal oscillator to be
configured before a failure occurs.
DS41609A-page 60Preliminary 2011 Microchip Technology Inc.
FIGURE 5-10:FSCM TIMING DIAGRAM
OSCFIF
System
Clock
Output
Sample Clock
Failure
Detected
Oscillator
Failure
Note:The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is cleared
bit 7Unimplemented: Read as ‘0’
bit 6-3IRCF<3:0>: Internal Oscillator Frequency Select bits
bit 2Unimplemented: Read as ‘0’
bit 1-0SCS<1:0>: System Clock Select bits
1x = Internal oscillator block
01 = Secondary oscillator
00 = Clock determined by FOSC<2:0> in Configuration Words.
SCS<1:0>
Note 1: Duplicate frequency derived from HFINTOSC.
DS41609A-page 62Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
REGISTER 5-2:OSCSTAT: OSCILLATOR STATUS REGISTER
R-1/qU-0R-q/qR-0/qU-0U-0R-0/qR-0/q
SOSCR
—
OSTSHFIOFR
——
bit 7bit 0
Legend:
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is clearedq = Conditional
bit 7SOSCR: Secondary Oscillator Ready bit
If T1OSCEN =
1:
1 = Secondary oscillator is ready
0 = Secondary oscillator is not ready
If T1OSCEN = 0:
1 = Timer1 clock source is always ready
bit 6Unimplemented: Read as ‘0’
bit 5OSTS: Oscillator Start-up Time-out Status bit
1 = Running from the clock defined by the FOSC<2:0> bits of the Configuration Words
0 = Running from an internal oscillator (FOSC<2:0> = 100)
bit 4HFIOFR: High-Frequency Internal Oscillator Ready bit
1 = HFINTOSC is ready
0 = HFINTOSC is not ready
bit 3-2Unimplemented: Read as ‘0’
bit 1LFIOFR: Low-Frequency Internal Oscillator Ready bit
1 = LFINTOSC is ready
0 = LFINTOSC is not ready
bit 0HFIOFS: High-Frequency Internal Oscillator Stable bit
1 = HFINTOSC 16 MHz Oscillator is stable and is driving the INTOSC
0 = HFINTOSC 16 MHz is not stable, the Start-up Oscillator is driving INTOSC
LFIOFRHFIOFS
TABLE 5-2:SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES
NameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0
OSCCON
OSCSTATSOSCR
PIE2OSFIE
PIR2
T1CON
Legend:— = unimplemented location, read as ‘
—IRCF<3:0>—SCS<1:0>62
—OSTSHFIOFR——LFIOFRHFIOFS63
C2IEC1IE—BCL1IENCO1IE——80
OSFIF
TMR1CS<1:0>T1CKPS<1:0>T1OSCENT1SYNC—TMR1ON
C2IFC1IF—
0’. Shaded cells are not used by clock sources.
BCL1IF
NCO1IF
—
—83
Register
on Page
175
TABLE 5-3:SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES
The POR circuit holds the device in Reset until VDD has
reached an acceptable level for minimum operation.
Slow rising V
performance may require greater than minimum V
The PWRT, BOR or MCLR
extend the start-up period until all device operation
conditions have been met.
6.1.1POWER-UP TIMER (PWRT)
The Power-up Timer provides a nominal 64 ms timeout on POR or Brown-out Reset.
The device is held in Reset as long as PWRT is active.
The PWRT delay allows additional time for the V
rise to an acceptable level. The Power-up Timer is
enabled by clearing the PWRTE bit in Configuration
Words.
The Power-up Timer starts after the release of the POR
and BOR.
For additional information, refer to Application Note
AN607, “Power-up Trouble Shooting” (DS00607).
DD, fast operating speeds or analog
DD.
features can be used to
DD to
6.2Brown-Out Reset (BOR)
The BOR circuit holds the device in Reset when VDD
reaches a selectable minimum level. Between the
POR and BOR, complete voltage range coverage for
execution protection can be implemented.
The Brown-out Reset module has four operating
modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:
• BOR is always on
• BOR is off when in Sleep
• BOR is controlled by software
• BOR is always off
Refer to Tab le 6 -1 for more information.
The Brown-out Reset voltage level is selectable by
configuring the BORV bit in Configuration Words.
DD noise rejection filter prevents the BOR from trig-
A V
gering on small events. If V
duration greater than parameter T
will reset. See Figure 6-2 for more information.
DD falls below VBOR for a
BORDC, the device
TABLE 6-1:BOR OPERATING MODES
BOREN<1:0>SBORENDevice ModeBOR Mode
11XXActiveWaits for BOR ready
10X
1
01
0XDisabledBegins immediately
00XXDisabled
Note 1: In these specific cases, “release of POR” and “wake-up from Sleep,” there is no delay in start-up. The BOR
ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR
circuit is forced on by the BOREN<1:0> bits.
AwakeActiveWaits for BOR ready
SleepDisabled
X
ActiveWaits for BOR ready
Instruction Execution upon:
Release of POR or Wake-up from Sleep
(1)
(BORRDY = 1)
(BORRDY = 1)
(1)
(BORRDY = 1)
(BORRDY = x)
6.2.1BOR IS ALWAYS ON
When the BOREN bits of Configuration Words are programmed to ‘11’, the BOR is always on. The device
start-up will be delayed until the BOR is ready and VDD
is higher than the BOR threshold.
BOR protection is active during Sleep. The BOR does
not delay wake-up from Sleep.
6.2.2BOR IS OFF IN SLEEP
When the BOREN bits of Configuration Words are programmed to ‘10’, the BOR is on, except in Sleep. The
device start-up will be delayed until the BOR is ready
DD is higher than the BOR threshold.
and V
DS41609A-page 66Preliminary 2011 Microchip Technology Inc.
BOR protection is not active during Sleep. The device
wake-up will be delayed until the BOR is ready.
6.2.3BOR CONTROLLED BY SOFTWARE
When the BOREN bits of Configuration Words are
programmed to ‘01’, the BOR is controlled by the
SBOREN bit of the BORCON register. The device
start-up is not delayed by the BOR ready condition or
DD level.
the V
BOR protection begins as soon as the BOR circuit is
ready. The status of the BOR circuit is reflected in the
BORRDY bit of the BORCON register.
BOR protection is unchanged by Sleep.
FIGURE 6-2: BROWN-OUT SITUATIONS
TPWRT
(1)
VBOR
V
DD
Internal
Reset
VBOR
V
DD
Internal
Reset
TPWRT
(1)
< TPWRT
TPWRT
(1)
VBOR
V
DD
Internal
Reset
Note 1: TPWRT delay only if PWRTE bit is programmed to ‘0’.
PIC16(L)F1508/9
REGISTER 6-1:BORCON: BROWN-OUT RESET CONTROL REGISTER
R/W-1/uR/W-0/uU-0U-0U-0U-0U-0R-q/u
SBORENBORFS
bit 7bit 0
Legend:
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is clearedq = Value depends on condition
bit 7SBOREN: Software Brown-out Reset Enable bit
If BOREN <1:0> in Configuration Word
SBOREN is read/write, but has no effect on the BOR.
If BOREN <1:0> in Configuration Word
1 = BOR Enabled
0 = BOR Disabled
bit 6BORFS: Brown-out Reset Fast Start bit
If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)
BORFS is Read/Write, but has no effect.
If BOREN <1:0> =
1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
0 = Band gap operates normally, and may turn off
bit 5-1Unimplemented: Read as ‘0’
bit 0BORRDY: Brown-out Reset Circuit Ready Status bit
1 = The Brown-out Reset circuit is active
0 = The Brown-out Reset circuit is inactive
—————BORRDY
s 01:
s = 01:
(1)
10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
Note 1: BOREN<1:0> bits are located in Configuration Words.
The Low-Power Brown-Out Reset (LPBOR) is an
essential part of the Reset subsystem. Refer to
Figure 6-1 to see how the BOR interacts with other
modules.
The LPBOR is used to monitor the external V
When too low of a voltage is detected, the device is
held in Reset. When this occurs, a register bit (BOR) is
changed to indicate that a BOR Reset has occurred.
The same bit is set for both the BOR and the LPBOR.
Refer to Register 6-2.
DD pin.
6.3.1ENABLING LPBOR
The LPBOR is controlled by the LPBOR bit of
Configuration Words. When the device is erased, the
LPBOR module defaults to disabled.
6.3.1.1LPBOR Module Output
The output of the LPBOR module is a signal indicating
whether or not a Reset is to be asserted. This signal is
OR’d together with the Reset signal of the BOR module to provide the generic BOR
the PCON register and to the power control block.
signal which goes to
6.4MCLR
The MCLR is an optional external input that can reset
the device. The MCLR
MCLRE bit of Configuration Words and the LVP bit of
Configuration Words (Table 6-2).
TABLE 6-2:MCLR CONFIGURATION
MCLRELVPMCLR
00Disabled
10Enabled
x1Enabled
6.4.1MCLR ENABLED
When MCLR is enabled and the pin is held low, the
device is held in Reset. The MCLR
V
DD through an internal weak pull-up.
The device has a noise filter in the MCLR
The filter will detect and ignore small pulses.
Note:A Reset does not drive the MCLR
6.4.2MCLR DISABLED
When MCLR is disabled, the pin functions as a general
purpose input and the internal weak pull-up is under
software control. See Section 11.2 “PORTA Regis-
ters” for more information.
function is controlled by the
pin is connected to
Reset path.
pin low.
6.5Watchdog Timer (WDT) Reset
The Watchdog Timer generates a Reset if the firmware
does not issue a CLRWDT instruction within the time-out
period. The TO
changed to indicate the WDT Reset. See Section 9.0
“Watchdog Timer” for more information.
and PD bits in the STATUS register are
6.6RESET Instruction
A RESET instruction will cause a device Reset. The RI
bit in the PCON register will be set to ‘0’. See Ta b le 6 - 4
for default conditions after a RESET instruction has
occurred.
6.7Stack Overflow/Underflow Reset
The device can reset when the Stack Overflows or
Underflows. The STKOVF or STKUNF bits of the PCON
register indicate the Reset condition. These Resets are
enabled by setting the STVREN bit in Configuration
Words. See Section 3.4.2 “Overflow/Underflow
Reset” for more information.
6.8Programming Mode Exit
Upon exit of Programming mode, the device will
behave as if a POR had just occurred.
6.9Power-Up Timer
The Power-up Timer optionally delays device execution
after a BOR or POR event. This timer is typically used to
allow VDD to stabilize before allowing the device to start
running.
The Power-up Timer is controlled by the PWRTE
Configuration Words.
bit of
6.10Start-up Sequence
Upon the release of a POR or BOR, the following must
occur before the device will begin executing:
1. Power-up Timer runs to completion (if enabled).
2. M
CLR must be released (if enabled).
The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See
Section 5.0 “Oscillator Module (With Fail-Safe
Clock Monitor)” for more information.
The Power-up Timer runs independently of MCLR
Reset. If MCLR is kept low long enough, the Power-up
Timer will expire. Upon bringing MCLR
will begin execution immediately (see Figure 6-3). This
is useful for testing purposes or to synchronize more
than one device operating in parallel.
high, the device
DS41609A-page 68Preliminary 2011 Microchip Technology Inc.
Upon any Reset, multiple bits in the STATUS and
PCON registers are updated to indicate the cause of
the Reset. Tab le 6- 3 and Tab le 6 -4 show the Reset
conditions of these registers.
TABLE 6-3:RESET STATUS BITS AND THEIR SIGNIFICANCE
STKOVF STKUNF RWDT RMCLRRIPORBORTOPDCondition
00 1 1 10 x11Power-on Reset
00 1 1 10 x0xIllegal, TO
00 1 1 10 xx0Illegal, PD is set on POR
00 u 1 1u 011Brown-out Reset
uu 0 u uu u0uWDT Reset
uu u u uu u00WDT Wake-up from Sleep
uu u u uu u10Interrupt Wake-up from Sleep
uu u 0 uu uuuMCLR
uu u 0 uu u10MCLR
uuuu0uuuuRESET Instruction Executed
1u u u uu uuuStack Overflow Reset (STVREN = 1)
u1 u u uu uuuStack Underflow Reset (STVREN = 1)
is set on POR
Reset during normal operation
Reset during Sleep
(1)
(2)
STATUS
Register
---1 0uuuuu-- uuuu
PCON
Register
TABLE 6-4:RESET CONDITION FOR SPECIAL REGISTERS
Condition
Power-on Reset0000h---1 100000-- 110x
MCLR
Reset during normal operation0000h---u uuuuuu-- 0uuu
Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as ‘0’.
Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit (GIE) is set, the return address is
pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.
2: If a Status bit is not implemented, that bit will be read as ‘0’.
Program
Counter
DS41609A-page 70Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
6.12Power Control (PCON) Register
The Power Control (PCON) register contains flag bits
to differentiate between a:
HC = Bit is cleared by hardwareHS = Bit is set by hardware
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is clearedq = Value depends on condition
)
)
R
WDTRMCLRRIPORBOR
bit 7STKOVF: Stack Overflow Flag bit
1 = A Stack Overflow occurred
0 = A Stack Overflow has not occurred or cleared by firmware
bit 6STKUNF: Stack Underflow Flag bit
1 = A Stack Underflow occurred
0 = A Stack Underflow has not occurred or cleared by firmware
bit 5Unimplemented: Read as ‘0’
bit 4RWDT
bit 3RMCLR
bit 2RI: RESET Instruction Flag bit
bit 1POR
bit 0BOR
: Watchdog Timer Reset Flag bit
1 = A Watchdog Timer Reset has not occurred or set by firmware
0 = A Watchdog Timer Reset has occurred (cleared by hardware)
: MCLR Reset Flag bit
1 = A MCLR Reset has not occurred or set by firmware
0 = A MCLR
1 = A RESET instruction has not been executed or set by firmware
0 = A RESET instruction has been executed (cleared by hardware)
1 = No Power-on Reset occurred
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
1 = No Brown-out Reset occurred
0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset
Legend:— = unimplemented location, read as ‘0’. Shaded cells are not used by Resets.
13:8
7:0
13:8
7:0
————CLKOUTENBOREN<1:0>—
CPMCLREPWRTEWDTE<1:0>
——LV PDEBUGLPBORBORVSTVREN—
——————WRT<1:0>
FOSC<2:0>
Register
on Page
44
45
DS41609A-page 72Preliminary 2011 Microchip Technology Inc.
7.0INTERRUPTS
TMR0IF
TMR0IE
INTF
INTE
IOCIF
IOCIE
Interrupt
to CPU
Wake-up
(If in Sleep mode)
GIE
(TMR1IF) PIR1<0>
PIRn<7>
PIEn<7>
PEIE
Peripheral Interrupts
(TMR1IF) PIR1<0>
The interrupt feature allows certain events to preempt
normal program flow. Firmware is used to determine
the source of the interrupt and act accordingly. Some
interrupts can be configured to wake the MCU from
Sleep mode.
This chapter contains the following information for
Interrupts:
• Operation
• Interrupt Latency
• Interrupts During Sleep
•INT Pin
• Automatic Context Saving
Many peripherals produce interrupts. Refer to the
corresponding chapters for details.
A block diagram of the interrupt logic is shown in
Interrupts are disabled upon any device Reset. They
are enabled by setting the following bits:
• GIE bit of the INTCON register
• Interrupt Enable bit(s) for the specific interrupt
event(s)
• PEIE bit of the INTCON register (if the Interrupt
Enable bit of the interrupt event is contained in the
PIE1, PIE2 and PIE3 registers)
The INTCON, PIR1, PIR2 and PIR3 registers record
individual interrupts via interrupt flag bits. Interrupt flag
bits will be set, regardless of the status of the GIE, PEIE
and individual interrupt enable bits.
The following events happen when an interrupt event
occurs while the GIE bit is set:
• Current prefetched instruction is flushed
• GIE bit is cleared
• Current Program Counter (PC) is pushed onto the
stack
• Critical registers are automatically saved to the
Shadow registers (See “Section 7.5 “Automatic
Context Saving”.”)
• PC is loaded with the interrupt vector 0004h
The firmware within the Interrupt Service Routine (ISR)
should determine the source of the interrupt by polling
the interrupt flag bits. The interrupt flag bits must be
cleared before exiting the ISR to avoid repeated
interrupts. Because the GIE bit is cleared, any interrupt
that occurs while executing the ISR will be recorded
through its interrupt flag, but will not cause the
processor to redirect to the interrupt vector.
The RETFIE instruction exits the ISR by popping the
previous address from the stack, restoring the saved
context from the Shadow registers and setting the GIE
bit.
For additional information on a specific interrupt’s
operation, refer to its peripheral chapter.
7.2Interrupt Latency
Interrupt latency is defined as the time from when the
interrupt event occurs to the time code execution at the
interrupt vector begins. The latency for synchronous
interrupts is 3 or 4 instruction cycles. For asynchronous
interrupts, the latency is 3 to 5 instruction cycles,
depending on when the interrupt occurs. See Figure 7-2
and Figure 7.3 for more details.
Note 1: Individual interrupt flag bits are set,
regardless of the state of any other
enable bits.
2: All interrupts will be ignored while the GIE
bit is cleared. Any interrupt occurring
while the GIE bit is clear will be serviced
when the GIE bit is set again.
DS41609A-page 74Preliminary 2011 Microchip Technology Inc.
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.
3: For minimum width of INT pulse, refer to AC specifications in Section 29.0 “Electrical Specifications”.
4: INTF is enabled to be set any time during the Q4-Q1 cycles.
(1)
(2)
(3)
(4)
(1)
FIGURE 7-3:INT PIN INTERRUPT TIMING
DS41609A-page 76Preliminary 2011 Microchip Technology Inc.
7.3Interrupts During Sleep
Some interrupts can be used to wake from Sleep. To
wake from Sleep, the peripheral must be able to
operate without the system clock. The interrupt source
must have the appropriate Interrupt Enable bit(s) set
prior to entering Sleep.
On waking from Sleep, if the GIE bit is also set, the
processor will branch to the interrupt vector. Otherwise,
the processor will continue executing instructions after
the SLEEP instruction. The instruction directly after the
SLEEP instruction will always be executed before
branching to the ISR. Refer to Section 8.0 “Power-
Down Mode (Sleep)” for more details.
7.4INT Pin
The INT pin can be used to generate an asynchronous
edge-triggered interrupt. This interrupt is enabled by
setting the INTE bit of the INTCON register. The
INTEDG bit of the OPTION_REG register determines on
which edge the interrupt will occur. When the INTEDG
bit is set, the rising edge will cause the interrupt. When
the INTEDG bit is clear, the falling edge will cause the
interrupt. The INTF bit of the INTCON register will be set
when a valid edge appears on the INT pin. If the GIE and
INTE bits are also set, the processor will redirect
program execution to the interrupt vector.
PIC16(L)F1508/9
7.5Automatic Context Saving
Upon entering an interrupt, the return PC address is
saved on the stack. Additionally, the following registers
are automatically saved in the Shadow registers:
• W register
• STATUS register (except for TO
• BSR register
• FSR registers
• PCLATH register
Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to
these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding Shadow register should be modified and the
value will be restored when exiting the ISR. The
Shadow registers are available in Bank 31 and are
readable and writable. Depending on the user’s application, other registers may also need to be saved.
The INTCON register is a readable and writable
register, that contains the various enable and flag bits
for TMR0 register overflow, interrupt-on-change and
external INT pin interrupts.
Note:Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Interrupt Enable bit, GIE, of the INTCON
register. User software should ensure the
appropriate interrupt flag bits are clear
prior to enabling an interrupt.
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is cleared
bit 7GIE: Global Interrupt Enable bit
1 = Enables all active interrupts
0 = Disables all interrupts
bit 6PEIE: Peripheral Interrupt Enable bit
1 = Enables all active peripheral interrupts
0 = Disables all peripheral interrupts
bit 5TMR0IE: Timer0 Overflow Interrupt Enable bit
1 = Enables the Timer0 interrupt
0 = Disables the Timer0 interrupt
bit 4INTE: INT External Interrupt Enable bit
1 = Enables the INT external interrupt
0 = Disables the INT external interrupt
bit 3IOCIE: Interrupt-on-Change Enable bit
1 = Enables the interrupt-on-change
0 = Disables the interrupt-on-change
bit 2TMR0IF: Timer0 Overflow Interrupt Flag bit
1 = TMR0 register has overflowed
0 = TMR0 register did not overflow
bit 1INTF: INT External Interrupt Flag bit
1 = The INT external interrupt occurred
0 = The INT external interrupt did not occur
bit 0IOCIF: Interrupt-on-Change Interrupt Flag bit
1 = When at least one of the interrupt-on-change pins changed state
0 = None of the interrupt-on-change pins have changed state
(1)
(1)
Note 1: The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCBF register
have been cleared by software.
DS41609A-page 78Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
7.6.2PIE1 REGISTER
The PIE1 register contains the interrupt enable bits, as
shown in Register 7-2.
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is cleared
bit 7TMR1GIE: Timer1 Gate Interrupt Enable bit
1 = Enables the Timer1 gate acquisition interrupt
0 = Disables the Timer1 gate acquisition interrupt
bit 6ADIE: A/D Converter (ADC) Interrupt Enable bit
1 = Enables the ADC interrupt
0 = Disables the ADC interrupt
bit 5RCIE: USART Receive Interrupt Enable bit
1 = Enables the USART receive interrupt
0 = Disables the USART receive interrupt
bit 4TXIE: USART Transmit Interrupt Enable bit
1 = Enables the USART transmit interrupt
0 = Disables the USART transmit interrupt
bit 3SSP1IE: Synchronous Serial Port (MSSP) Interrupt Enable bit
1 = Enables the MSSP interrupt
0 = Disables the MSSP interrupt
bit 2Unimplemented: Read as ‘0’
bit 1TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the Timer2 to PR2 match interrupt
0 = Disables the Timer2 to PR2 match interrupt
bit 0TMR1IE: Timer1 Overflow Interrupt Enable bit
1 = Enables the Timer1 overflow interrupt
0 = Disables the Timer1 overflow interrupt
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is cleared
bit 7OSFIE: Oscillator Fail Interrupt Enable bit
1 = Enables the Oscillator Fail interrupt
0 = Disables the Oscillator Fail interrupt
bit 6C2IE: Comparator C2 Interrupt Enable bit
1 = Enables the Comparator C2 interrupt
0 = Disables the Comparator C2 interrupt
bit 5C1IE: Comparator C1 Interrupt Enable bit
1 = Enables the Comparator C1 interrupt
0 = Disables the Comparator C1 interrupt
bit 4Unimplemented: Read as ‘0’
bit 3BCL1IE: MSSP Bus Collision Interrupt Enable bit
1 = Enables the MSSP Bus Collision Interrupt
0 = Disables the MSSP Bus Collision Interrupt
bit 2NCO1IE: Numerically Controlled Oscillator Interrupt Enable bit
1 = Enables the NCO interrupt
0 = Disables the NCO interrupt
bit 1-0Unimplemented: Read as ‘0’
Note:Bit PEIE of the INTCON register must be
set to enable any peripheral interrupt.
DS41609A-page 80Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
7.6.4PIE3 REGISTER
The PIE3 register contains the interrupt enable bits, as
shown in Register 7-4.
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is cleared
bit 7-4Unimplemented: Read as ‘0’
bit 3CLC4IE: Configurable Logic Block 4 Interrupt Enable bit
1 = Enables the CLC 4 interrupt
0 = Disables the CLC 4 interrupt
bit 2CLC3IE: Configurable Logic Block 3 Interrupt Enable bit
1 = Enables the CLC 3 interrupt
0 = Disables the CLC 3 interrupt
bit 1CLC2IE: Configurable Logic Block 2 Interrupt Enable bit
1 = Enables the CLC 2 interrupt
0 = Disables the CLC 2 interrupt
bit 0CLC1IE: Configurable Logic Block 1 Interrupt Enable bit
1 = Enables the CLC 1 interrupt
0 = Disables the CLC 1 interrupt
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is cleared
Note:Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Interrupt Enable bit, GIE, of the INTCON
register. User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
bit 7TMR1GIF: Timer1 Gate Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 6ADIF: A/D Converter Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 5RCIF: USART Receive Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 4TXIF: USART Transmit Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 3SSP1IF: Synchronous Serial Port (MSSP) Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 2Unimplemented: Read as ‘0’
bit 1TMR2IF: Timer2 to PR2 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 0TMR1IF: Timer1 Overflow Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
DS41609A-page 82Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
7.6.6PIR2 REGISTER
The PIR2 register contains the interrupt flag bits, as
shown in Register 7-6.
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is cleared
Note:Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Interrupt Enable bit, GIE, of the INTCON
register. User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
bit 7OSFIF: Oscillator Fail Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 6C2IF: Numerically Controlled Oscillator Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 5C1IF: Numerically Controlled Oscillator Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 4Unimplemented: Read as ‘0’
bit 3BCL1IF: MSSP Bus Collision Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 2NCO1IF: Numerically Controlled Oscillator Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is cleared
Note:Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Enable bit, GIE, of the INTCON register.
User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
bit 7-4Unimplemented: Read as ‘0’
bit 3CLC4IF: Configurable Logic Block 4 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 2CLC3IF: Configurable Logic Block 3 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 1CLC2IF: Configurable Logic Block 2 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
bit 0CLC1IF: Configurable Logic Block 1 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending
DS41609A-page 84Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
TABLE 7-1:SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS
NameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0
INTCONGIE PEIETMR0IEINTEIOCIETMR0IFINTFIOCIF78
OPTION_REG
PIE1TMR1GIEADIERCIETXIESSP1IE
PIE2OSFIEC2IEC1IE
PIE3
PIR1TMR1GIFADIFRCIFTXIFSSP1IF
PIR2OSFIFC2IFC1IF
PIR3
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by interrupts.
DS41609A-page 86Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
8.0POWER-DOWN MODE (SLEEP)
The Power-Down mode is entered by executing a
SLEEP instruction.
Upon entering Sleep mode, the following conditions exist:
1. WDT will be cleared but keeps running, if
enabled for operation during Sleep.
bit of the STATUS register is cleared.
2.PD
3.TO
bit of the STATUS register is set.
4.CPU clock is disabled.
5. 31 kHz LFINTOSC is unaffected and peripherals
that operate from it may continue operation in
Sleep.
6. ADC is unaffected, if the dedicated FRC clock is
selected.
7. I/O ports maintain the status they had before
SLEEP was executed (driving high, low or highimpedance).
8.Resets other than WDT are not affected by
Sleep mode.
Refer to individual chapters for more details on
peripheral operation during Sleep.
To minimize current consumption, the following
conditions should be considered:
• I/O pins should not be floating
• External circuitry sinking current from I/O pins
• Internal circuitry sourcing current from I/O pins
• Current draw from pins with internal weak pull-ups
• Modules using 31 kHz LFINTOSC
• CWG, NCO and CLC modules using HFINTOSC
I/O pins that are high-impedance inputs should be
pulled to V
currents caused by floating inputs.
Examples of internal circuitry that might be sourcing
current include the FVR module. See Section 13.0
“Fixed Voltage Reference (FVR)” for more
information on this module.
DD or VSS externally to avoid switching
8.1Wake-up from Sleep
The device can wake-up from Sleep through one of the
following events:
1. External Reset input on MCLR
2.BOR Reset, if enabled
3.POR Reset
4. Watchdog Timer, if enabled
5. Any external interrupt
6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more
information)
The first three events will cause a device Reset. The
last three events are considered a continuation of program execution. To determine whether a device Reset
or wake-up event occurred, refer to Section 6.11
“Determining the Cause of a Reset”.
When the SLEEP instruction is being executed, the next
instruction (PC + 1) is prefetched. For the device to
wake-up through an interrupt event, the corresponding
interrupt enable bit must be enabled. Wake-up will
occur regardless of the state of the GIE bit. If the GIE
bit is disabled, the device continues execution at the
instruction after the SLEEP instruction. If the GIE bit is
enabled, the device executes the instruction after the
SLEEP instruction, the device will then call the Interrupt
Service Routine. In cases where the execution of the
instruction following SLEEP is not desirable, the user
should have a NOP after the SLEEP instruction.
The WDT is cleared when the device wakes up from
Sleep, regardless of the source of wake-up.
8.1.1WAKE-UP USING INTERRUPTS
When global interrupts are disabled (GIE cleared) and
any interrupt source has both its interrupt enable bit
and interrupt flag bit set, one of the following will occur:
• If the interrupt occurs before the execution of a
SLEEP instruction
- SLEEP instruction will execute as a NOP.
- WDT and WDT prescaler will not be cleared
bit of the STATUS register will not be set
-TO
-PD bit of the STATUS register will not be
cleared.
• If the interrupt occurs during or after the execu-
tion of a SLEEP instruction
2:CLKOUT is shown here for timing reference.
3:T1OSC; See Section 29.0 “Electrical Specifications”.
4:GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.
Even if the flag bits were checked before executing a
SLEEP instruction, it may be possible for flag bits to
become set before the SLEEP instruction completes. To
determine whether a SLEEP instruction executed, test
bit. If the PD bit is set, the SLEEP instruction
the PD
was executed as a NOP.
FIGURE 8-1:WAKE-UP FROM SLEEP THROUGH INTERRUPT
DS41609A-page 88Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
8.2Low-Power Sleep Mode
The PIC16F1508/9 device contains an internal Low
Dropout (LDO) voltage regulator, which allows the
device I/O pins to operate at voltages up to 5.5V while
the internal device logic operates at a lower voltage.
The LDO and its associated reference circuitry must
remain active when the device is in Sleep mode. The
PIC16F1508/9 allows the user to optimize the
operating current in Sleep, depending on the
application requirements.
A Low-Power Sleep mode can be selected by setting
the VREGPM bit of the VREGCON register. With this
bit set, the LDO and reference circuitry are placed in a
low-power state when the device is in Sleep.
8.2.1SLEEP CURRENT VS. WAKE-UP
TIME
In the default operating mode, the LDO and reference
circuitry remain in the normal configuration while in
Sleep. The device is able to exit Sleep mode quickly
since all circuits remain active. In Low-Power Sleep
mode, when waking up from Sleep, an extra delay time
is required for these circuits to return to the normal configuration and stabilize.
The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time.
The Normal mode is beneficial for applications that
need to wake from Sleep quickly and frequently.
8.2.2PERIPHERAL USAGE IN SLEEP
Some peripherals that can operate in Sleep mode will
not operate properly with the Low-Power Sleep mode
selected. The LDO will remain in the Normal Power
mode when those peripherals are enabled. The LowPower Sleep mode is intended for use with these
peripherals:
• Brown-Out Reset (BOR)
• Watchdog Timer (WDT)
• External interrupt pin/Interrupt-on-change pins
• Timer1 (with external clock source)
The Complementary Waveform Generator (CWG), the
Numerically Controlled Oscillator (NCO) and the Configurable Logic Cell (CLC) modules can utilize the
HFINTOSC oscillator as either a clock source or as an
input source. Under certain conditions, when the
HFINTOSC is selected for use with the CWG, NCO or
CLC modules, the HFINTOSC will remain active
during Sleep. This will have a direct effect on the
Sleep mode current.
Please refer to sections 24.5 “Operation During
Sleep”, 25.7 “Operation In Sleep” and 26.10 “Operation During Sleep” for more information.
Note:The PIC16LF1508/9 does not have a con-
figurable Low-Power Sleep mode.
PIC16LF1508/9 is an unregulated device
and is always in the lowest power state
when in Sleep, with no wake-up time penalty. This device has a lower maximum
REGISTER 8-1:VREGCON: VOLTAGE REGULATOR CONTROL REGISTER
U-0U-0U-0U-0U-0U-0R/W-0/0R/W-1/1
——————VREGPMReserved
bit 7bit 0
Legend:
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is cleared
bit 7-2Unimplemented: Read as ‘0’
bit 1VREGPM: Voltage Regulator Power Mode Selection bit
1 = Low-Power Sleep mode enabled in Sleep
Draws lowest current in Sleep, slower wake-up
0 = Normal Power mode enabled in Sleep
Draws higher current in Sleep, faster wake-up
bit 0Reserved: Read as ‘1’. Maintain this bit set.
(1)
Note 1: PIC16F1508/9 only.
TABLE 8-1:SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE
NameBit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0
INTCONGIEPEIETMR0IEINTEIOCIETMR0IFINTFIOCIF78
IOCAF
IOCAN
IOCAP
IOCBFIOCBF7IOCBF6IOCBF5IOCBF4
IOCBNIOCBN7IOCBN6IOCBN5IOCBN4
IOCBPIOCBP7IOCBP6IOCBP5IOCBP4
PIE1TMR1GIEADIERCIETXIESSP1IE
PIE2OSFIEC2IEC1IE
PIE3
PIR1TMR1GIFADIFRCIFTXIFSSP1IF
PIR2OSFIFC2IFC1IF
PIR3
STATUS
WDTCON
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used in Power-Down mode.
——IOCAF5IOCAF4IOCAF3IOCAF2IOCAF1IOCAF0127
——IOCAN5IOCAN4IOCAN3IOCAN2IOCAN1IOCAN0127
——IOCAP5IOCAP4IOCAP3IOCAP2IOCAP1IOCAP0127
————
————
————
—TMR2IETMR1IE79
—BCL1IENCO1IE——80
————CLC4IECLC4IECLC2IECLC1IE81
—TMR2IFTMR1IF82
—BCL1IFNCO1IF——83
————CLC4IFCLC3IFCLC2IFCLC1IF84
———TOPDZDCC21
——WDTPS<4:0>SWDTEN93
Register on
Page
128
128
128
DS41609A-page 90Preliminary 2011 Microchip Technology Inc.
9.0WATCHDOG TIMER
LFINTOSC
23-bit Programmable
Prescaler WDT
WDT Time-out
WDTPS<4:0>
SWDTEN
Sleep
WDTE<1:0> = 11
WDTE<1:0> = 01
WDTE<1:0> = 10
The Watchdog Timer is a system timer that generates
a Reset if the firmware does not issue a CLRWDT
instruction within the time-out period. The Watchdog
Timer is typically used to recover the system from
unexpected events.
The WDT has the following features:
• Independent clock source
• Multiple operating modes
- WDT is always on
- WDT is off when in Sleep
- WDT is controlled by software
- WDT is always off
• Configurable time-out period is from 1 ms to 256
The WDT derives its time base from the 31 kHz
LFINTOSC internal oscillator. Time intervals in this
chapter are based on a nominal interval of 1 ms. See
Section 29.0 “Electrical Specifications” for the
LFINTOSC tolerances.
9.2WDT Operating Modes
The Watchdog Timer module has four operating modes
controlled by the WDTE<1:0> bits in Configuration
Words. See Ta bl e 9 - 1 .
9.2.1WDT IS ALWAYS ON
When the WDTE bits of Configuration Words are set to
‘11’, the WDT is always on.
WDT protection is active during Sleep.
9.2.2WDT IS OFF IN SLEEP
When the WDTE bits of Configuration Words are set to
‘10’, the WDT is on, except in Sleep.
WDT protection is not active during Sleep.
9.2.3WDT CONTROLLED BY SOFTWARE
When the WDTE bits of Configuration Words are set to
‘01’, the WDT is controlled by the SWDTEN bit of the
WDTCON register.
WDT protection is unchanged by Sleep. See Table 9-1
for more details.
TABLE 9-1:WDT OPERATING MODES
WDTE<1:0>SWDTEN
11XXActive
10X
Device
Mode
AwakeActive
SleepDisabled
WDT
Mode
9.3Time-Out Period
The WDTPS bits of the WDTCON register set the
time-out period from 1 ms to 256 seconds (nominal).
After a Reset, the default time-out period is 2 seconds.
9.4Clearing the WDT
The WDT is cleared when any of the following conditions occur:
•Any Reset
• CLRWDT instruction is executed
• Device enters Sleep
• Device wakes up from Sleep
• Oscillator fail
• WDT is disabled
See Table 9-2 for more information.
9.5Operation During Sleep
When the device enters Sleep, the WDT is cleared. If
the WDT is enabled during Sleep, the WDT resumes
counting.
When the device exits Sleep, the WDT is cleared
again. The WDT remains clear until the OST, if
enabled, completes. See Section 5.0 “Oscillator
Module (With Fail-Safe Clock Monitor)” for more
information on the OST.
When a WDT time-out occurs while the device is in
Sleep, no Reset is generated. Instead, the device
wakes up and resumes operation. The TO
in the STATUS register are changed to indicate the
event. The RWDT
used. See Section 3.0 “Memory Organization” for
more information.
bit in the PCON register can also be
and PD bits
01
00XXDisabled
1
X
0Disabled
Active
TABLE 9-2:WDT CLEARING CONDITIONS
ConditionsWDT
WDTE<1:0> = 00
WDTE<1:0> = 01 and SWDTEN = 0
WDTE<1:0> = 10 and enter Sleep
CLRWDT Command
Oscillator Fail Detected
Exit Sleep + System Clock = INTOSC, EXTCLK
Change INTOSC divider (IRCF bits)Unaffected
DS41609A-page 92Preliminary 2011 Microchip Technology Inc.
Cleared
PIC16(L)F1508/9
9.6Watchdog Control Register
REGISTER 9-1:WDTCON: WATCHDOG TIMER CONTROL REGISTER
U-0U-0R/W-0/0R/W-1/1R/W-0/0R/W-1/1R/W-1/1R/W-0/0
——WDTPS<4:0>SWDTEN
bit 7bit 0
Legend:
R = Readable bitW = Writable bitU = Unimplemented bit, read as ‘0’
u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set‘0’ = Bit is cleared
bit 7-6Unimplemented: Read as ‘0’
bit 5-1WDTPS<4:0>: Watchdog Timer Period Select bits
Legend:— = unimplemented location, read as ‘0’. Shaded cells are not used by Watchdog Timer.
13:8
7:0
——
CPMCLREPWRTEWDTE<1:0>FOSC<2:0>
FCMENIESO
CLKOUTENBOREN<1:0>—
Register
on Page
62
71
21
93
Register
on Page
44
DS41609A-page 94Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
10.0FLASH PROGRAM MEMORY
CONTROL
The Flash program memory is readable and writable
during normal operation over the full V
Program memory is indirectly addressed using Special
Function Registers (SFRs). The SFRs used to access
program memory are:
•PMCON1
•PMCON2
•PMDATL
•PMDATH
• PMADRL
•PMADRH
When accessing the program memory, the
PMDATH:PMDATL register pair forms a 2-byte word
that holds the 14-bit data for read/write, and the
PMADRH:PMADRL register pair forms a 2-byte word
that holds the 15-bit address of the program memory
location being read.
The write time is controlled by an on-chip timer. The write/
erase voltages are generated by an on-chip charge
pump.
The Flash program memory can be protected in two
ways; by code protection (CP
and write protection (WRT<1:0> bits in Configuration
Words).
Code protection (CP
and writing, to the Flash program memory via external
device programmers. Code protection does not affect
the self-write and erase functionality. Code protection
can only be reset by a device programmer performing
a Bulk Erase to the device, clearing all Flash program
memory, Configuration bits and User IDs.
Write protection prohibits self-write and erase to a
portion or all of the Flash program memory as defined
by the bits WRT<1:0>. Write protection does not affect
a device programmers ability to read, write or erase the
device.
Note 1: Code protection of the entire Flash
program memory array is enabled by
clearing the CP
= 0)
bit in Configuration Words)
(1)
, disables access, reading
bit of Configuration Words.
10.1PMADRL and PMADRH Registers
The PMADRH:PMADRL register pair can address up
to a maximum of 32K words of program memory. When
selecting a program address value, the MSB of the
address is written to the PMADRH register and the LSB
is written to the PMADRL register.
10.1.1PMCON1 AND PMCON2
REGISTERS
PMCON1 is the control register for Flash program
memory accesses.
DD range.
Control bits RD and WR initiate read and write,
respectively. These bits cannot be cleared, only set, in
software. They are cleared by hardware at completion
of the read or write operation. The inability to clear the
WR bit in software prevents the accidental, premature
termination of a write operation.
The WREN bit, when set, will allow a write operation to
occur. On power-up, the WREN bit is clear. The
WRERR bit is set when a write operation is interrupted
by a Reset during normal operation. In these situations,
following Reset, the user can check the WRERR bit
and execute the appropriate error handling routine.
The PMCON2 register is a write-only register. Attempting
to read the PMCON2 register will return all ‘0’s.
To enable writes to the program memory, a specific
pattern (the unlock sequence), must be written to the
PMCON2 register. The required unlock sequence
prevents inadvertent writes to the program memory
write latches and Flash program memory.
10.2Flash Program Memory Overview
It is important to understand the Flash program memory
structure for erase and programming operations. Flash
program memory is arranged in rows. A row consists of
a fixed number of 14-bit program memory words. A row
is the minimum size that can be erased by user software.
After a row has been erased, the user can reprogram
all or a portion of this row. Data to be written into the
program memory row is written to 14-bit wide data write
latches. These write latches are not directly accessible
to the user, but may be loaded via sequential writes to
the PMDATH:PMDATL register pair.
Note:If the user wants to modify only a portion
of a previously programmed row, then the
contents of the entire row must be read
and saved in RAM prior to the erase.
Then, new data and retained data can be
written into the write latches to reprogram
the row of Flash program memory. However, any unprogrammed locations can be
written without first erasing the row. In this
case, it is not necessary to save and
rewrite the other previously programmed
locations.
See Table 10-1 for Erase Row size and the number of
write latches for Flash program memory.
3.Then, set control bit RD of the PMCON1 register.
Once the read control bit is set, the program memory
Flash controller will use the second instruction cycle to
read the data. This causes the second instruction
immediately following the “BSF PMCON1,RD” instruction
to be ignored. The data is available in the very next cycle,
in the PMDATH:PMDATL register pair; therefore, it can
be read as two bytes in the following instructions.
PMDATH:PMDATL register pair will hold this value until
another read or until it is written to by the user.
Note:The two instructions following a program
memory read are required to be NOPs.
This prevents the user from executing a
two-cycle instruction on the next
instruction after the RD bit is set.
FIGURE 10-1:FLASH PROGRAM
MEMORY READ
FLOWCHART
DS41609A-page 96Preliminary 2011 Microchip Technology Inc.
The unlock sequence is a mechanism that protects the
Flash program memory from unintended self-write programming or erasing. The sequence must be executed
and completed without interruption to successfully
complete any of the following operations:
•Row Erase
• Load program memory write latches
• Write of program memory write latches to pro-
gram memory
• Write of program memory write latches to User
IDs
The unlock sequence consists of the following steps:
1. Write 55h to PMCON2
2. Write AAh to PMCON2
3. Set the WR bit in PMCON1
4. NOP instruction
5. NOP instruction
Once the WR bit is set, the processor will always force
two NOP instructions. When an Erase Row or Program
Row operation is being performed, the processor will stall
internal operations (typical 2 ms), until the operation is
complete and then resume with the next instruction.
When the operation is loading the program memory write
latches, the processor will always force the two NOP
instructions and continue uninterrupted with the next
instruction.
Since the unlock sequence must not be interrupted,
global interrupts should be disabled prior to the unlock
sequence and re-enabled after the unlock sequence is
completed.
FIGURE 10-3:FLASH PROGRAM
MEMORY UNLOCK
SEQUENCE FLOWCHART
DS41609A-page 98Preliminary 2011 Microchip Technology Inc.
PIC16(L)F1508/9
Disable Interrupts
(GIE = 0)
Start
Erase Operation
Select
Program or Configuration Memory
(CFGS)
Select Row Address
(PMADRH:PMADRL)
Select Erase Operation
(FREE = 1)
Enable Write/Erase Operation
(WREN = 1)
Unlock Sequence
(FIGURE x-x)
Disable Write/Erase Operation
(WREN = 0)
Re-enable Interrupts
(GIE = 1)
End
Erase Operation
CPU stalls while
Erase operation completes
(2ms typical)
Figure 10-3
10.2.3ERASING FLASH PROGRAM
While executing code, program memory can only be
erased by rows. To erase a row:
1.Load the PMADRH:PMADRL register pair with
2. Clear the CFGS bit of the PMCON1 register.
3.Set the FREE and WREN bits of the PMCON1
4.Write 55h, then AAh, to PMCON2 (Flash
5.Set control bit WR of the PMCON1 register to
See Example 10-2.
After the “BSF PMCON1,WR” instruction, the processor
requires two cycles to set up the erase operation. The
user must place two NOP instructions immediately following the WR bit set instruction. The processor will
halt internal operations for the typical 2 ms erase time.
This is not Sleep mode as the clocks and peripherals
will continue to run. After the erase cycle, the processor
will resume operation with the third instruction after the
PMCON1 write instruction.
; This row erase routine assumes the following:
; 1. A valid address within the erase row is loaded in ADDRH:ADDRL
; 2. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)
BCFINTCON,GIE; Disable ints so required sequences will execute properly
BANKSELPMADRL
MOVFADDRL,W; Load lower 8 bits of erase address boundary
MOVWFPMADRL
MOVFADDRH,W; Load upper 6 bits of erase address boundary
MOVWFPMADRH
BCFPMCON1,CFGS ; Not configuration space
BSFPMCON1,FREE; Specify an erase operation
BSFPMCON1,WREN ; Enable writes
MOVLW55h ; Start of required sequence to initiate erase
MOVWFPMCON2 ; Write 55h
MOVLW 0AAh ;
MOVWFPMCON2 ; Write AAh
BSFPMCON1,WR ; Set WR bit to begin erase
NOP ; NOP instructions are forced as processor starts
NOP; row erase of program memory.
;
; The processor stalls until the erase process is complete
; after erase processor continues with 3rd instruction