Datasheet PI6C2308A-1HL, PI6C2308A-1HLI, PI6C2308A-1HW, PI6C2308A-1HWI, PI6C2308A-1L Datasheet (PERICOM)

...
Page 1
1
PS8385C 08/03/00
Product Features
10 MHz to 140 MHz operating range
Zero input-output propagation delay, adjustable by
capacitive load on FBK input
Multiple configurations, see Available PI6C2308A
Configurations table
Multiple low skew outputs
- Output-output skew less than 200ps
- Device-device skew less than 500ps
- Two banks of four outputs, Hi-Z by two select inputs
Low Jitter, less than 200ps
3.3V operation
Available in industrial &commercial temperatures
Packages:
- Space-saving 16-pin, 150-mil SOIC (W)
- 16-pin TSSOP (L)
Functional Description
Providing two banks of four outputs, the PI6C2308A is a 3.3V zero­delay buffer designed to distribute clock signals in applications including PC, workstation, datacom, telecom, and high-performance systems. Each bank of four outputs can be controlled by the select inputs as shown in the Select Input Decoding Table.
The PI6C2308A provides 8 copies of a clock signal that has 150ps phase error compared to a reference clock. The skew between the output clock signals for PI6C2308A is less than 200ps. When there are no rising edges on the REF input, the PI6C2308A enters a power down state. In this mode, the PLL is off and all outputs are Hi-Z. This results in less than 12µA of current draw. The Select Input Decoding table shows additional examples when the PLL shuts down. The PI6C2308A configuration table shows all available devices.
The base part, PI6C2308A-1, provides output clocks in sync with a reference clock. With faster rise and fall times, the PI6C2308A-1H is the high-drive version of the PI6C2308A-1. Depending on which output drives the feedback pin, PI6C2308A-2 provides 2X and 1X clock signals on each output bank. The PI6C2308A-3 allows the user to obtain 4X and 2X frequencies on the outputs. The PI6C2308A-4 provides 2X clock signals on all outputs. PI6C2308A (-1, -2, -3, -4) allows bank B to be Hi-Z when all output clocks are not required.The PI6C2308A-6 allows bank B to switch from Reference clock to half of the frequency of Reference clock using the control inputs S1 and S2 if Bank A is connected to feedback FBK. In addition, using the control inputs S1 and S2, the PI6C2308A-6 allows bank A to switch from Reference clock to 2X the frequency of Reference clock if Bank B is connected to feedback FBK. For testing purposes, the select inputs connect the input clock directly to outputs.
Block Diagrams
Pin Configuration PI6C2308A (-1, -1H, -2, -3, -4, -6)
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901234567890123456789012123456789012
3.3V Zero-Delay Buffer
PI6C2308A
1 2 3
V
DD
4
GND 5
CLKA2
6
CLKB2 7
S18
CLKB1
FBK
CLKA3 V
DD
CLKB4 CLKB3
S2
16 15 14 13 12 11 10
9
REF
CLKA1
GND
CLKA4
16-Pin
W, L
PLL
MUX
REF
S2 S1
Select Input
Decoding
FBK CLKA1
CLKA2 CLKA3 CLKA4
CLKB2 CLKB3 CLKB4
CLKB1
PI6C2308A-6
MUX
÷2
÷2
PLL
MUX
Extra Divider (-3, -4)
Extra Divider (-2,-3)
REF
S2 S1
Select Input
Decoding
FBK CLKA1
CLKA2 CLKA3 CLKA4
CLKB2 CLKB3 CLKB4
CLKB1
PI6C2308A (-1, -1H, -2, -3, -4)
÷2
Page 2
2
PS8385C 08/03/00
PI6C2308A
3.3V Zero Delay Buffer
2S1S]4-1[AKLC]4-1[BKLCecruoStuptuOnwodtuhSLLP
00 Z-iHZ-iHLLPY
01 nevirDZ-iHLLPN
10 nevirDnevirDecnerefeRY
11 nevirDnevirDLLPN
Select Input Decoding for PI6C2308A (-1, -1H, -2, -3, -4)
eciveDmorFkcabdeeFycneuqerFAknaBycneuqerFBknaB
1-A8032C6IPBknaBroAknaBecnerefeRecnerefeR
H1-A8032C6IPBknaBroAknaBecnerefeRecnerefeR
2-A8032C6IPAknaBecnerefeR2/ecnerefeR
2-A8032C6IPBknaBecnerefeRX2ecnerefeR
3-A8032C6IPAknaBecnerefeRX2ecnerefeR
3-A8032C6IPBknaBecnerefeRX4ecnerefeRX2
4-A8032C6IPBknaBroAknaBecnerefeRX2ecnerefeRX2
6-A8032C6IPAknaBecnerefeR2/ecnerefeRroecnerefeR
6-A8032C6IPBknaBecnerefeRX2roecnerefeRecnerefeR
Available PI6C2308A Configurations
2S1S]4-1[AKLC]4-1[BKLCecruoStuptuOnwodtuhSLLP
00 Z-iHZ-iHLLPY
01 ecnerefeR=nevirD
=nevirD
2/ecnerefeR
ecnerefeRY
10 LLP=nevirDLLP=nevirDLLPN
11 LLP=nevirD2/LLP=nevirDLLPN
Select Input Decoding for PI6C2308A-6
Page 3
3
PS8385C 08/03/00
PI6C2308A
3.3V Zero Delay Buffer
600
800
400
200
0
-200
-400
-600
-800
-900
-1000
-25 -20 -15 -10 -5
0 5 10 15 20 25
Output Load Difference: FBK Load - CLKA/CLKB Load (pF)
REF - Input to CLKA/CLKB Delay (ps)
PI6C2308A-1H
PI6C2308A-1,2,3,4,6
To close the feedback loop of the PI6C2308A, the FBK pin can be driven from any of the 8 available output pins. The output driving the FBK pin will be driving a total load of 7pF plus any additional load that it drives. The relative loading of this output (with respect to the remaining outputs) can adjust the input-output delay. This is shown in the graph above.
Zero Delay and Skew Control
REF. Input to CLKA/CLKB Delay vs. Difference in Loading between FBK pin and CLKA/CLKB pins
Maximum Ratings
Supply Voltage to Ground Potential ...................................................0.5V to +7.0V
DC Input Voltage (Except REF) .................................................. 0.5V to VDD +0.5V
DC Input Voltage REF ................................................................................ 0.5 to 7V
Storage Temperature ........................................................................ 65ºC to +150ºC
Maximum Soldering Temperature (10 seconds) ................................................ 260ºC
Junction Temperature ....................................................................................... 150ºC
Static Discharge Voltage
(per MIL-STD-883, Method 3015) .................................................................. >2000V
retemaraPnoitpircseD.niM.xaMstinU
V
DD
egatloVylppuS0.36.3V
T
A
)tneibmA(erutarepmeTgnitarepO007Cº
C
l
ecnaticapaCdaoL 03
Fp
C
ni
ecnaticapaCtupnI 7
Operating Conditions (over the operating range, T
A
= 0ºC to +70°C, VCC = 3.3V ±0.3V)
For applications requiring zero input-output delay, all outputs including the one providing feedback should be equally loaded. If input-output delay adjustments are required, use the above graph to calculate loading differences between the feedback output and remaining outputs.
Page 4
4
PS8385C 08/03/00
PI6C2308A
3.3V Zero Delay Buffer
Electrical Characteristics for Commercial Temperature Device
retemaraPnoitpircseDsnoitidnoCtseT.niM.xaMstinU
V
LI
egatloVWOLtupnI
)4(
8.0
V
V
HI
egatloVHGIHtupnI
)4(
0.2
I
LI
tnerruCWOLtupnIV
NI
=V0 0.05
µA
I
HI
tnerruCHGIHtupnIV
NI
=V
DD
0.002
V
LO
egatloVWOLtuptuO
)5(
I
LO
)6,4,3,2,1(Am8=
I
LO
)H1-(Am21=
4.0
V
V
HO
egatloVHGIHtuptuO
)5(
I
HO
)6,4,3,2,1(Am8=
I
HO
)H1-(Am21=
4.2
I
DD
)edomDP(tnerruCylppuSnwoDrewoPzHM0=FER 0.21 µA
I
DD
tnerruCylppuS
,zHM66.66,stuptuodedaolnU
VtastupnitceleS
DD
DNGro
93
Am
I
DD
tnerruCylppuS
,zHM001,stuptuodedaolnU
VtastupnitceleS
DD
DNGro
45
niPlangiSnoitpircseD
1FER
)1(
tupnikcolcmurtcepsdaerpsswolla,tupnitnareloTV5,ycneuqerfecnerefertupnI
21AKLC
)2(
AknaB,tuptuokcolC
32AKLC
)2(
AknaB,tuptuokcolC
4V
DD
ylppusV3.3
5DNGdnuorG
61BKLC
)2(
BknaB,tuptuokcolC
72BKLC
)2(
BknaB,tuptuokcolC
82S
)3(
2tib,tupnitceleS
91S
)3(
1tib,tupnitceleS
013BKLC
)2(
BknaB,tuptuokcolC
114BKLC
)2(
BknaB,tuptuokcolC
21DNGdnuorG
31V
DD
ylppus,V3.3
413AKLC
)2(
AknaB,tuptuokcolC
514AKLC
)2(
AknaB,tuptuokcolC
61KBFtupnikcabdeefLLP
Pin Description
Page 5
5
PS8385C 08/03/00
PI6C2308A
3.3V Zero Delay Buffer
Notes:
1. Weak pull-down.
2. Weak pull-down on all outputs.
3. Weak pull-ups on these inputs.
4. REF and FBK inputs have a threshhold voltage of VDD/2.
5. For definition of t
1-8
, see Switching Waveforms on page 8.
sretemaraPemaNsnoitidnoCtseT.niM.pyT.xaMstinU
t
1
ycneuqerFtuptuOdaolFp03otFp5101041zHM
t
2
elcyCytuD
)4(
t=
2
÷ t
1
VtaderusaeM
DD
2/540555
%elcyCytuD
)4(
t=
2
÷ t
1
)H1-(F,V4.1taderusaeM
TUO
zHM54540555
elcyCytuD
)4(
t=
2
÷ t
1
)6-,4-,3-,2-,1-(V4.1taderusaeM040506
t
3
emiTesiR
)4(
Fp03@
V0.2dnaV8.0neewtebderusaeM
2.2
emiTesiR
)4(
Fp51@ 5.1
emiTllaF
)4(
)H1(Fp03@ 5.1
t
4
emiTllaF
)4(
Fp03@ 2.2
emiTesiR
)4(
Fp51@ 5.1
emiTllaF
)4(
)H1(Fp03@ 52.1
t
5
wekStuptuOottuptuO
)4(
noknabemas
)6,4,3,2,H1,1(
V,dedaolyllauqestuptuollA
DD
2/
002
sp
wekSBknaBtuptuOotAknaBtuptuO
)4(
)4,H1,1(
002
wekSBknaBtuptuOotAknaBtuptuO
)4(
)6,3,2(
004
t
6
egdEgnisiRKBFotegdEgnisiRFER,yaleD
)4(
VtaderusaeM
DD
2/0051±
t
7
wekSeciveDoteciveD
)4(
VtaderusaeM
DD
ehtno2/
secivedfosnipKBF
0005
t
8
etaRwelStuptuO
)4(
noV0.2dnaV8.0neewtebderusaeM
2#tiucriCtseTgnisuecivedH1-
1sn/V
t
J
rettiJelcyCotelcyC
)4(
)4,H1,1(
,zHM76.66taderusaeM
daolFp03,stuptuodedaol
002
sp
,zHM331taderusaeM
daolFp51,stuptuodedaol
001
rettiJelcyCotelcyC
)4(
)6,3,2(
,zHM76.66taderusaeM
daolFp03,stuptuodedaol
004
t
KCOL
emiTkcoLLLP
)4(
skcolcdilav,ylppusrewopelbatS
snipKBFdnaFERnodetneserp
0.1sm
Switching Characteristics
(5)
for Commercial Temperature Device
Page 6
6
PS8385C 08/03/00
PI6C2308A
3.3V Zero Delay Buffer
retemaraPnoitpircseD.niM.xaMstinU
V
DD
egatloVylppuS0.36.3V
T
A
)erutarepmeTtneibmA(erutarepmeTgnitarepO0458Cº
C
L
zHM001woleb,ecnaticapaCdaoL 03
FpzHM331otzHM001morf,ecnaticapaCdaoL 51
C
NI
ecnaticapaCtupnI 7
Operating Conditions for Industrial Temperature Devices
retemaraPnoitpircseDsnoitidnoCtseT.niM.xaMstinU
V
LI
egatloVWOLtupnI 8.0
V
V
HI
egatloVHGIHtupnI 0.2
I
LI
tnerruCWOLtupnIV
NI
V0=0.05
µA
I
HI
tnerruCHGIHtupnIV
NI
V=
DD
0.001
V
LO
egatloVWOLtuptuO
)4(
I
LO
)6,4,3,2,1(Am8=
I
LO
)H1(Am21=
4.0 V
V
HO
egatloVHGIHtuptuO
)4(
I
HO
)6,4,3,2,1(Am8=
I
HO
)H1(Am21=
4.2
I
DD
)edomDP(tnerruCylppuSnwoDrewoPzHM0=FER0.52 µA
I
DD
tnerruCylppuS
,zHM001,stuptuodedaolnU
VtastupnitceleS
DD
DNGro
0.54
Am
)H1(0.07
,zHM66,stuptuodedaolnU
H1tpecxe,FER
0.53
,zHM33,stuptuodedaolnU
H1tpecxe,FER
0.02
Electrical Characteristics for Industrial Temperature Devices
Page 7
7
PS8385C 08/03/00
PI6C2308A
3.3V Zero Delay Buffer
retemaraPemaNsnoitidnoCtseT.niM.pyT.xaMstinU
t
1
ycneuqerFtuptuO
secivedllA,daolFp03
01
001
zHM,daolFp02H1ecived041
,daolFp516,4,3,2,1secived041
t
2
elcyCytuD
)4(
t=2t÷
1
4,3,2,1(6,)
F,V4.1taderusaeM
TUO
daolFp03zHM66.66<
0.04
0.05
0.06
%
F,V4.1taderusaeM
TUO
daolFp03zHM331<
F,V4.1taderusaeM
TUO
daolFp03zHM54<0.540.55
elcyCytuD
)4(
t=2t÷
1
),H1(
F,V4.1taderusaeM
TUO
daolFp03zHM6.66<0.540.55
F,V4.1taderusaeM
TUO
daolFp51zHM331<
0.04
0.06
F,V4.1taderusaeM
TUO
daolFp03zHM54<0.54
0.55
t
3
emiTesiR
)4(
4,3,2,1(6,)
daolFp03,V0.2dnaV8.0neewtebderusaeM2.2
sn
daolFp51,V0.2dnaV8.0neewtebderusaeM
05.1
emiTesiR
)4(
)H1( daolFp03,V0.2dnaV8.0neewtebderusaeM
t
4
emiTllaF
)4(
)4,3,2,1(
daolFp03,V0.2dnaV8.0neewtebderusaeM05.2
daolFp51,V0.2dnaV8.0neewtebderusaeM05.1
emiTllaF
)4(
)H1( daolFp03,V0.2dnaV8.0neewtebderusaeM52.1
t
5
4,3,2,1(knaBemasnowekStuptuOottuptuO6,)
)4(
dedaolyllauqestuptuollA
002
sp
)4,H1,1(wekSBknaBtuptuOotAknaBtuptuO
)6,3,2(wekSBknaBtuptuOotAknaBtuptuO 004
t
6
egdEgnisiRKBFotegdEgnisiRFER,yaleD
)4(
VtaderusaeM
DD
2/0051±
t
7
wekSeciveDoteciveD
)4(
VtaderusaeM
DD
fosnipKBFehtno,zHM2/
secived
005
t
8
etaRwelStuptuO
)4(
noV0.2&V8.0neewtebderusaeM
.2#tiucriCtseTgnisuecived5,H1
1sn/V
t
J
rettiJelcyCotelcyC
)4(
)4,H1,1(,
,stuptuodedaol,zHM76.66taderusaeM
daoLFp03
002
sp
,stuptuodedaol,zHM331taderusaeM
daoLFp51
001
rettiJelcyCotelcyC
)4(
3,2(,6,)
,stuptuodedaol,zHM76.66taderusaeM
daolFp03
004
t
KCOL
emiTkcoLLLP
)4(
nodetneserpskcolcdilav,ylppusrewopelbatS
snipKBFdnaFER
0.1sm
Switching Characteristics for Industrial Temperature Devices
(5)
Notes:
1. Weak pull-down.
2. Weak pull-down on all outputs.
3. Weak pull-ups on these inputs.
4. REF and FBK inputs have a threshhold voltage of VDD/2.
5. For definition of t
1-8
, see Switching Waveforms on page 8.
Page 8
8
PS8385C 08/03/00
PI6C2308A
3.3V Zero Delay Buffer
V
DD
C
LOAD
V
DD
GND GND
CLK out
OUTPUTS
0.1mF
0.1mF
Test Circuit for all parameters except t
8
V
DD
10pF
V
DD
GND GND
CLK out
OUTPUTS
0.1mF
0.1mF
Test Circuit for t
8
,
Output slew rate on -1H device
1k
W
1k
W
Switching Waveforms
Test Circuit #2Test Circuit #1
t
2
t
1
1.4V 1.4V 1.4V
t
4
t
3
0.8V
2.0V
0.8V
2.0V
OUTPUT
0V
3.3V
1.4V
t
5
OUTPUT
1.4V
OUTPUT
VDD/2
t
6
INPUT
VDD/2
FBK
VDD/2
t
7
FBK Device 1
VDD/2
FBK Device 2
Duty Cycle Timing
All Outputs Rise/Fall Time
Output-Output Skew
Input-Output Propagation Delay
Device-Device Skew
Page 9
9
PS8385C 08/03/00
PI6C2308A
3.3V Zero Delay Buffer
Package Diagrams
16-Pin SOIC (W)
Note: Controlling dimensions in millimeters. Ref: JEDEC MS - 012 AC
SEATING PLANE
.050 BSC
1
16
0-8˚
.149 .157
X.XX X.XX
DENOTES DIMENSIONS IN MILLIMETERS
3.78
3.99
.386 .393
9.80
10.00
1.27
.053 .068
1.35
1.75
.2284 .2440
5.80
6.20
.0040 .0098
0.10
0.25
.013 .020
.0155 .0260
0.330
0.508
0.393
0.660
.0075 .0098
0.25
0.50
.0099 .0196
x 45˚
0.19
0.25
.016 .050
0.41
1.27
REF
.193 .201
.047 max.
.002 .006
SEATING PLANE
.0256
BSC
.018 .030
.004 .008
.252 BSC
1
16
.169 .177
X.XX X.XX
DENOTES CONTROLLING DIMENSIONS IN MILLIMETERS
0.05
0.15
6.4
0.45
0.75
0.09
0.20
4.3
4.5
1.20
4.9
5.1
0.65
0.19
0.30
.007 .012
16-Pin TSSOP (L)
Page 10
10
PS8385C 08/03/00
PI6C2308A
3.3V Zero Delay Buffer
Pericom Semiconductor Corporation
2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com
edoCgniredrOemaNegakcaPepyTegakcaPegnaRgnitarepO
W1-A8032C6IP
61WCIOSlim-051nip-61
laicremmoC
WH1-A8032C6IP
W2-A8032C6IP
W3-A8032C6IP
W4-A8032C6IP
W6-A8032C6IP
L1-A8032C6IP
61LPOSSTnip-61
LH1-A8032C6IP
-A8032C6IPL2
A8032C6IPL3
A8032C6IP4L
-A8032C6IP6L
Ordering Information (Commercial Temperature Device)
edoCgniredrOemaNegakcaPepyTegakcaPegnaRgnitarepO
IW1-A8032C6IP
61WCIOSlim-051nip-61
lairtsudnI
IWH1-A8032C6IP
IW2-A8032C6IP
IW3-A8032C6IP
IW4-A8032C6IP
IW6-A8032C6IP
IL1-A8032C6IP
61LPOSSTnip-61
ILH1-A8032C6IP
A8032C6IPIL2-
-A8032C6IPIL3
-A8032C6IPIL4
-A8032C6IPIL6I
Ordering Information (Industria l Temperature Device)
Loading...