Datasheet PI6C110EV Datasheet (PERICOM)

1
PS8410 08/11/99
REF/SEL2 1
V
DD3.3
2
XTAL_IN 3
XTAL_OUT 4
V
SS3.3
5
V
SS3.3
6 3V66 0 7 3V66 1 8 V
DD3.3
9 V
DD3.3
10
PCI 0 11 PCI 1 12 PCI 2 13
V
SS3.3
14
PCI 3 15 PCI 4 16
V
SS3.3
17
PCI 5 18 PCI 6 19 PCI 7 20
V
DD3.3
21
V
DDA
22
V
SSA
23
V
SS3.3
24
48MHz0 25 48MHz1 26
V
DD3.3
27
SEL0 28
V
SS2.5
APIC0 APIC1 V
DD2.5
CPU 0 V
DD2.5
CPU 1 CPU 2 V
SS2.5
56
V
SS3.3
55
SDRAM0
54
SDRAM1
53
V
DD3.3
52
SDRAM2
51
SDRAM3
50
V
SS3.3
49
SDRAM4
48
SDRAM5
47
V
DD3.3
46
SDRAM6
45
SDRAM7
44
V
SS3.3
43
DCLK
42
V
DD3.3
41 40 39 38 37 36 35 34
33
PWR_DWN# SCLK SDATA SEL1
32 31 30 29
56-Pin
(V56)
DCLK
REF OSC
REF
X
IN
X
OUT
48 MHz 0-1
3V66 0-1
PCI 0-7
SDRAM 0-7
CPU 0-2
PLL2
PLL1
2
2
APIC 0-1
2
3
8
8
Pin Configuration
234567890123456789012345678901212345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345678901
2
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
Block Diagram
Features
 3 of 2.5V 66/100/133 MHz CPU (CPU[0-2])  2 of 2.5V 33 MHz APIC (APIC[0-1])  9 of 3.3V 100/133 MHz SDRAM (SDRAM[0-7], DCLK)  8 of 3.3V 33 MHz PCI (PCI[0-7])  2 of 3.3V 66 MHz (3V66 [0-1])  2 of 3.3V 48 MHz (48MHz [0-1])  1 of 3.3V 14.3 MHz (REF)  Selectable CPU and SDRAM clocks (on power up only)  Power down function using PWR_DWN#  Spread Spectrum Enable/Disable by I2C I2C interface to turn off unused clocks  56 pin SSOP package (V)
Description
Pericom PI6C110E integrates a dual PLL clock generator, SDRAM buffer and I2C interface. The clock generator section comprised of an oscillator, 2 low jitter phased locked loop, skew control, and power down logic. The SDRAM buffers are high speed and low skew to handle data transfers in excess of 133 MHz.
When Spread Spectrum mode is enabled, all clock outputs are modulated except for REF and 48 MHz[0-1] outputs. These clocks are down spread linearly (triangular modulation) by +0%, 0.6%.
To minimize power consumption and EMI radiation some unused outputs can be turned off. Two wire I2C interface is used to enable/ disable Spread Spectrum mode, and to turned off PCI clocks, CPU clocks, and 48 MHz clocks.
For low power sleep mode, the entire device can be placed to power down mode. Driving the PWR_DWN# to low state disables the entire chip. In this state the crystal oscillator, and both PLLs are turned off. Furthermore, all outputs are deactivated to low state, all inputs are inactive except for PWR_DWN#.
All trademarks are of their respective companies.
V
2
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
niPepyT.ytQS/PlobmySnoitpircseD
1O/I13.32LES/FER
sinipsihtpurewopgniruD.tuptuoecnereferzHM813.41yllamroN
.mhOK001/wnwoddellupyllanretnI.2tibkcolc,2LESsadelpmas
3I13.3NI_LATXtupnilatsyrczHM813.41
4O13.3TUO_LATXtuptuolatsyrczHM813.41
8,7O23.3]1-0[66V3zHM66
,51,31,21,11
02,91,81,61
O8 3.3]7-0[ICPstuptuoICP
62,52O13.3]1-0[zHM84tuptuozHM84
92,82I23.3]1-0[LESpulluplanretni,stupnitcelesycneuqerflevelLTTVL
03O/I13.3ATADSI
2
pulluplanretni,ATADSelbitapmocC
13I13.3KCOLCSI
2
pulluplanretni,KCOLCSelbitapmocC
23I13.3#NWDRWPwolevitca,tupnilortnocnwoDrewoPlevelLTTVL
,93,73,63,43
64,54,34,24,04
O9 3.3
,KLCD
]7-0[MARDS
.]2-0[LESnognidnepedzHM331/001.stuptuoKLCDdnaMARDS
Ihguorhtffodenrutebnac]7-0[MARDS
2
.KLCDtontub,C
25,05,94O35.2]2-0[UPC]2-0[LESnognidnepedzHM331/001/66.tuptuokcolCsuBtsoH
55,45O25.2]1-0[CIPAkcolcICPotsuonorhcnys,kcolcCIPAzHM33
,72,12,01,9,2
44,83,33
RWP83.3V
3.3DD
ylppuSrewoPV3.3
,42,71,41,6,5
74,14,53
DNG8A/NV
3.3SS
dnuorGV3.3
35,15RWP25.2V
5.2DD
ylppuSrewoPV5.2
65,84DNG2A/NV
5.2SS
dnuorGV5.2
22RWP13.3V
ADD
ylppuSrewoPeroCV3.3
32DNG1A/NV
ASS
dnuorGeroCV3.3
Pin Description Table
2LES1LES0LESnoitcnuF
X0 0 etatS-irT
X0 1 tseT
010 zHM001=MARDS,zHM66=UPC
011 zHM001=MARDS,zHM001=UPC
110 zHM331=MARDS,zHM331=UPC
111 zHM001=MARDS,zHM331=UPC
Frequency Select Function Table
3
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
Symbol Parameter Min. Max. Units Notes
V
IH3
3.3V Input High Voltage -0.5 4.6 V 1
V
IL3
3.3V Input Low Voltage -0.5 V
ESD prot. Input ESD protection 2000 V 2
DC Specifications
DC parameters must be sustainable under steady state (DC) conditions.
Notes:
1. Maximum VIH is not to exceed maximum VDD.
2. Human body model.
Symbol Parameter Min. Max. Units Notes
V
DDA
3.3V Core Supply Voltage -0.5 4.6 V
V
DD2.5
2.5V I/O Supply Voltage -0.5 3.6 V
V
DD3.3
3.3V I/O Supply Voltage -0.5 4.6 V
T
S
Storage Temperature -65 150 °C
Absolute Maximum DC Power Supply
Absolute Maximum DC I/O
Symbol Parameter Condition Min. Max. Units Notes
V
DDA
3.3V Core Supply Voltage 3.3V ±5% 3.135 3.465 V 2
V
DD3.3
3.3V I/O Supply Voltage 3.3V ±5% 3.135 3.465 V 2
V
DD2.5
2.5V I/O Supply Voltage 2.5V ±5% 2.375 2.625 V 2
V
IH3
3.3V Input High Voltage V
DDA
2.0 VDD+0.3 V 4
V
IL3
3.3V Input Low Voltage VSS-0.3 0.8 V 4
I
IL
Input Leakage Current 0 <VIN <V
DD3.3
-5 +5 µA 1,4
C
in
Input Pin Capacitance 5 pF
C
xtal
Xtal Pin Capacitance 13.5 22.5 pF 3
C
out
Output Pin Capacitance 6 pF
L
PIN
Pin Inductance 7 nH
T
A
Ambient Temperature No Airflow 0 70 °C
DC Operating Specification
Notes:
1. Input Leakage Current does not include inputs with Pull-Up or Pull-down resistors.
2. No power sequencing is implied or allowed to be required in the system.
3. As seen by the crystal. Device is intended to be used with a 17-20pF AT crystal.
4. All inputs referenced to 3.3V power supply.
4
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
Clock Output Buffer DC Characteristics
emaNreffuBV
CC
)V(egnaR)mhO(ecnadepmIepyTreffuB
CIPA,UPC526.2-573.254-5.311epyT
FER,zHM84
564.3-531.3
06-023epyT
MARDS42-014epyT
66V3,ICP55-215epyT
lobmySretemaraPnoitidnoC.niM.pyT.xaMstinU
I
NIMHO
tnerruCpU-lluP
V
TUO
=V0.172
Am
I
XAMHO
V
TUO
=V573.272
I
NIMLO
tnerruCnwoD-lluP
V
TUO
=V2.103
I
XAMLO
V
TUO
=V3.003
Type 1: CPU, APIC Clocks
lobmySretemaraPnoitidnoC.niM.pyT.xaMstinU
I
NIMHO
tnerruCpU-lluP
V
TUO
=V0.192
Am
I
XAMHO
V
TUO
=V531.332
I
NIMLO
tnerruCnwoD-lluP
V
TUO
=V59.192
I
XAMLO
V
TUO
=V4.072
Type 3: 48 MHz, REF Clocks
lobmySretemaraPnoitidnoC.niM.pyT.xaMstinU
I
NIMHO
tnerruCpU-lluP
V
TUO
V0.2=45
Am
I
XAMHO
V
TUO
V531.3=64
I
NIMLO
tnerruCnwoD-lluP
V
TUO
V0.1=45
I
XAMLO
V
TUO
V4.0=35
Type 4: SDRAM Clocks
lobmySretemaraPnoitidnoC.niM.pyT.xaMstinU
I
NIMHO
tnerruCpU-lluP
V
TUO
=V0.133
Am
I
XAMHO
V
TUO
=V531.333
I
NIMLO
tnerruCnwoD-lluP
V
TUO
=V59.103
I
XAMLO
V
TUO
=V4.083
Type 5: PCI, 3V66 Clocks
5
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
AC Timing Specifications
(see notes on next page)
lobmySretemaraP
zHM66zHM001zHM331
stinUsetoN
.niM.xaM.niM.xaM.niM.xaM
doirePTdoirepKLCUPC/tsoH0.515.510.015.015.70.8sn7,2
HGIHTemithgihKLCUPC/tsoH2.5A/N0.3A/N78.1A/Nsn3
WOLTemitwolKLCUPC/tsoH0.5A/N8.2A/N76.1A/Nsn4
etaRegdE)V5.2reffuB1epyT(etaRegdEgnisiR0.10.40.10.40.10.4sn/V
etaRegdE)V5.2reffuB1epyT(etaRegdEgnillaF0.10.40.10.40.10.4sn/V esiRTemitesirKLCUPC/tsoH4.06.14.06.14.06.1sn6,1 llaFTemitllafKLCUPC/tsoH4.06.14.06.14.06.1sn6,1
doirePT doirepKLCzHM33CIPA 0.03 A/N 0.03 A/N 0.03 A/N sn 7,2
HGIHT emithgihKLCzHM33CIPA 0.21 A/N 0.21 A/N 0.21 A/N sn 3
WOLT emitwolKLCzHM33CIPA 0.21 A/N 0.21 A/N 0.21 A/N sn 4
etaRegdE )V5.2reffuB1epyT(etaRegdEgnisiR 0.1 0.4 0.1 0.4 0.1 0.4 sn/V
etaRegdE )V5.2reffuB1epyT(etaRegdEgnillaF 0.1 0.4 0.1 0.4 0.1 0.4 sn/V esiRT emitesirKLCzHM33CIPA 4.0 6.1 4.0 6.1 4.0 6.1 sn 6,1 llaFT emitllafKLCzHM33CIPA 4.0 6.1 4.0 6.1 4.0 6.1 sn 6,1
doirePTdoirepKLC66V30.510.610.510.610.510.61sn7,2
HGIHTemithgihKLC66V352.5A/N52.5A/N52.5A/Nsn3
WOLTemitwolKLC66V35.5A/N5.5A/N5.5A/Nsn4
etaRegdE)V3.3reffuB5epyT(etaRegdEgnisiR0.10.40.10.40.10.4sn/V
etaRegdE)V3.3reffuB5epyT(etaRegdEgnillaF0.10.40.10.40.10.4sn/V esiRTemitesirKLC66V35.00.25.00.25.00.2sn6,1 llaFTemitllafKLC66V35.00.25.00.25.00.2sn6,1
doirePT doirepKLCCIPA&ICP 0.03 A/N 0.03 A/N 0.03 A/N sn 7,2
HGIHT emithgihKLCCIPA&ICP 0.21 A/N 0.21 A/N 0.21 A/N sn 3
WOLT emitwolKLCCIPA&ICP 0.21 A/N 0.21 A/N 0.21 A/N sn 4
etaRegdE )V3.3reffuB5epyT(etaRegdEgnisiR 0.1 0.4 0.1 0.4 0.1 0.4 sn/V
etaRegdE )V3.3reffuB5epyT(etaRegdEgnillaF 0.1 0.4 0.1 0.4 0.1 0.4 sn/V esiRT emitesirKLCCIPA&ICP 5.0 0.2 5.0 0.2 5.0 0.2 sn 6,1 llaFT emitllafKLCCIPA&ICP 5.0 0.2 5.0 0.2 5.0 0.2 sn 6,1
doirePTdoirepKLCMARDSA/NA/N5.015.015.70.8sn7,2
HGIHTemithgihKLCMARDSA/NA/N0.3A/N78.1A/Nsn3
WOLTemitwolKLCMARDSA/NA/N8.2A/N76.1A/Nsn4
etaRegdE)V3.3reffuB4epyT(etaRegdEgnisiRA/NA/N5.10.40.10.4sn/V
etaRegdE)V3.3reffuB4epyT(etaRegdEgnillaFA/NA/N5.10.40.10.4sn/V esiRTemitesirKLCMARDSA/NA/N4.06.14.06.1sn6,1 llaFTemitllafKLCMARDSA/NA/N4.06.14.06.1sn6,1
HZpt,LZpT )stuptuOllA(yaleDelbanEtuptuO 0.1 0.01 0.1 0.01 0.1 0.01 sn HZpt,ZLpT )stuptuOllA(yaleDelbasiDtuptuO 0.1 0.01 0.1 0.01 0.1 0.01 sn
elbatsT pu-rewopmorfnoitazilibatskcolcllA 3 3 3 sm 5
6
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
AC Timing Notes:
1.Output drivers must have monotonic rise/fall times through the specified VOL/VOH levels.
2.Period, jitter, offset and skew measured on rising edge @1.25V for 2.5V clocks and @ 1.5V for 3.3V clocks.
3. T
HIGH
is measured at 2.0V for 2.5V outputs, 2.4V for 3.3V outputs.
4. T
LOW
is measured at 0.4V for all outputs.
5.The time specified is measured from when the power supply achieves its nominal operating level (typical condition V
DD3.3V
= 3.3V) until the frequency output is stable and operating within specification.
6. T
RISE
and T
FALL
are measured as a transition through the threshold region
VOL = 0.4V and VOH = 2.0V (1mA) JEDEC Specification.
7.The average period over any 1µs period of time must be greater than the minimum specified period.
Pin-pin
Output Skew Cycle-Cycle Skew, jitter
Group MAX. Jitter Duty Cycle Nom V
DD
measure point
CPU 175ps 250ps 45/55 2.5V 1.25V SDRAM 250ps 250ps 45/55 3.3V 1.5V APIC 250ps 500ps 45/55 2.5V 1.25V 48 MHz N/A 500ps 45/55 3.3V 1.5V 3V66 175ps 500ps 45/55 3.3V 1.5V PCI 500ps 500ps 45/55 3.3V 1.5V REF N/A 1000ps 45/55 3.3V 1.5V
Group Skew And Jitter Limits
Clock Output Wave
TRISE
2.0
0.4
Tperiod
1.25
THIGH
TLOW
Duty Cycle
.5V Clocking
Interface
Output
Buffer
Test Point
Test Load
TFALL
TRISE
2.4
0.4
Tperiod
1.5
THIGH
TLOW
Duty Cycle
3.3V Clocking Interface
TFALL
2
Output
Output Waveform
Figure 1.
7
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
Vol = 0. 4V
Vih = 1.7V
1.25V
Vil = 0.7V
Voh = 2.0V
Measu remen t Points F o r Comp on ent Output
Measurement Poin ts Fo r System Level Inputs
V
DD
2.5
Vss
Vo l = 0.4V
Vih = 2.0V
1.5V
Vil = 0.8V
Voh = 2.4V
Measurement Points For Component Output
Measurement Points fo r System Level Inputs
V
DD
2.5
Vss
2.5 Volt Mea su re P oints
3.3 Volt Mea sure Po ints
Figure 2. Component Versus System Measure Points
Note: Only offset specifications listed above are guaranteed/tested. The specification is treated as ANY output within first specified bank to ANY output of the second specified bank. Pin-pin skew is implied within offset specification, jitter is not. Previous offset specifications such as CPU to PCI offset are no longer required.
Group to Group Skew Tolerance
puorG
66UPC66UPC001UPC001UPC331UPC331UPC
tesffOecnareloTtesffOecnareloTtesffOecnareloT
001MARDSotUPCsn5.2sp005sn0.5sp005sn0.0sp005
331MARDSotUPCA/NA/NA/NA/Nsn0.5sp005
66V3otUPCsn0.5sp005sn0.5sp005sn0.0sp005
66V3ot001MARDSsn0.0sp005sn0.0sp005sn0.0sp005
66V3ot331MARDSA/NA/NA/NA/Nsn0.0sp005
ICPot66V3sn5.3~5.1sp005sn5.3~5.1sp005sn5.3~5.1sp005
CIPAotICPsn0.0sn0.1sn0.0sn0.1sn0.0sn0.1
TOD&zHM84cnysAA/NcnysAA/NcnysAA/N
8
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
Group Offset Measurement Clarification
0.0ns 10.0ns 20.0ns 30.0ns
7.5ns
7.5ns
5.0ns 5.0ns
0.0ns
0.0ns
0.0ns
0.0ns
7.5ns0.0ns
3.75ns
1.5~3.5ns
0.0ns
15ns 22.5ns
CPU66
SDRAM100
3V66
CPU100
SDRAM100
3V66
CPU133
SDRAM100
3V66
CPU133
SDRAM133
3V66
3V66
PCI
APIC
9
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
Truth Table
Notes:
1. Required for board level bed of nails testing.
2. Normal mode of operation.
3. TCLK is a test clock over driven on the XTAL_IN input during test mode.
4. Required for DC output impedance verification.
5. Range of reference frequency allowed is min = 14.316 MHz, nominal = 14.31818 MHz, max = 14.32 MHz.
6. Frequency accuracy of 48 MHz is ±167PPM to match 48 MHz default.
2LES1LES0LESUPCMARDS66V3ICPzHM84FERCIPAsetoN
X00 Z-iHZ-iHZ-iHZ-iHZ-iHZ-iHZ-iH1
X01 2/KLCT2/KLCT3/KLCT6/KLCT2/KLCTKLCT6/KLCT4,3
010 zHM66zHM001zHM66zHM33zHM84zHM813.41zHM33
6,5,2
011 zHM001zHM001zHM66zHM33zHM84zHM813.41zHM33
110 zHM331zHM331zHM66zHM33zHM84zHM813.41zHM33
111 zHM331zHM001zHM66zHM33zHM84zHM813.41zHM33
Clock Enable Configuration
Notes:
1. LOW means outputs held static LOW.
2. ON means active.
3. PWR_DWN# pulled LOW, impacts all outputs including REF and 48 MHz outputs.
#NWD_RWPUPCMARDSCIPA66V3ICP
,FER
ZHM84
csOsOCV
0WOLWOLWOLWOLWOLWOLFFOFFO
1NONONONONONONONO
System Clock Design Considerations
PI6C110E supports 4 operational modes. It varies the FSB (Front Side Bus) and SDRAM clock frequencies. FSB selection is 66 MHz, 100 MHz or 133 MHz. SDRAM frequency is either 100 MHz or 133 MHz. The supported modes are:
SEL[2:0] Mode CPU SDRAM 3V66 APIC/PCI
0 1 0 Mode 0 66 100 66 33 0 1 1 Mode 1 100 100 66 33 default 1 1 0 Mode 2 133 133 66 33 1 1 1 Mode 3 133 100 66 33
The clock select pins, SEL[2:0] have the appropriate 100K (±20K) internal pull up and pull down to allow the system defaults to 100 MHz CPU clock and 100 MHz SDRAM clock without external strapping resistor. SEL2 in pulled down, SEL1 and SEL0 is pulled up to indicate 0 1 1.
The APIC clock is a 33 MHz, the same frequency and phase as the PCI clocks, except it is powered by 2.5V supply. APIC and PCI clocks are always in phase with the other clocks. In Mode 0, CPU and 3V66 are inverted. In Mode 1 and Mode 3, CPU and SDRAM clocks are inverted.
System Debug and Timing Margin Analysis
To support system debug and to measure/test margin analysis, the internal PI6C110E oscillator circuits allows the input crystal frequency to be driven with parallel resonant crystal with frequency range of 10 MHz to 20 MHz in laboratory environment. The alternative is to put the device in TEST mode, SEL2 = dont care, SEL1 = 1 and SEL0 = 0. Then drive a clock signal to XTAL_IN (pin 3) from a signal generator and float XTAL_OUT (pin 4).
10
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
Power Management
Notes:
1. Clock on/off latency is defined in the number of rising edges of free running PCI clock between the clock disable goes low/high to the first valid clock comes out of the device.
2. Power up latency is when PWRDWN# goes inactive (high) to when the first valid clocks are driven from the device.
The power down selection is used to put the part into a very low power state without turning off the power to the part. PWRDWN# is an asynchronous active low input. This signal is synchronized internal to the device prior to powering down the clock synthesizer. PWRDWN# is an asynchronous function for powering up the system. Internal clocks are not running after the device is put in power down. When PWRDWN# is active low all clocks are driven
langiSetatSlangiS
ycnetaL
skcolCICPfosegdegnisirfo.oN
#NWDRWP)noitarepolamron(1sm3
)nwodrewop(0woleBmargaiDgnimiTeeS
Power Management
Maximum Current
noitidnoC
,noitpmusnocylppus5.2.xaM
,sdaolpacteercsid.xaM
V
5.2DD
V526.2=
V=stupnicitatsllA
3.3DD
Vro
SS
,noitpmusnocylppus3.3.xaM
,sdaolpacteercsid.xaM
V
3.3DD
,V564.3=
V=stupnicitatsllA
3.3DD
Vro
SS
edoMnwoDrewoP
)0=)#NWDRWP(
Aµ001Aµ002
zHM001=MARDS,zHM66=UPC
010=]2-0[LES
Am07Am082
zHM001=MARDS,zHM001=UPC
110=]0-2[LES
Am001Am082
zHM331=MARDS,zHM331=UPC
011=]0-2[LES
DBTDBT
zHM001=MARDS,zHM331=UPC
111=]0-2[LES
DBTDBT
to a low value and held prior to turning off the VCOs and the crystal. The power -up latency needs to be less than 3ms. The REF and 48 MHz clocks are expected to be stopped in the LOW state as soon as possible. Due to the state of the internal logic, stopping and holding the REF clock outputs in the LOW state may require more than one clock cycle to complete.
11
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
PWRDWN# Timing Diagram
Notes:
1. Once the PWRDWN# signal is sampled LOW for two consecutive rising edges of CPU clock, clocks of interest should be held LOW on the next high to low transition.
2. PWRDWN# is an asynchronous input and metastable conditions could exist. This signal is synchronized inside the part.
3. The shaded sections on the SDRAM, REF, and 48 MHz clocks indicate dont care states.
4. Diagrams shown with respect to 100 MHz. Similar operation when CPU is 66/133 MHz.
VCO Internal
CPU
3V66
PCI 33 MHz
APIC 33MHz
PWRDWN#
SDRAM
REF 14.318 MHz
48 MHz
25ns 50ns 75ns
Center
0ns
12
Minimum and Maximum Lumped Capacitive Loads
kcolC
.niM
daoL
.xaM
daoL
stinUsetoN
UPC0102
Fp
sdaol2elbissop,daolecived1
ICP0103stnemeriuqer1.2ICPteemtsuM
MARDS0203sceps331CP/001CP
66V30103sdaol2elbissop,daolecived1
zHM840102,daolecived1
FER0102,daolecived1
CIPA0102,daolecived1
12
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
Note: The acknowledgment bit is returned by the slave/receiver (the clock driver).
I2C Considerations
1. Address Assignment: Any clock driver in this specification can use the single, 7 bit address shown below. All devices can use
the address if only one master clock driver is used in a design.
The following address was confirmed by Philips on 09/04/96.
A6 A5 A4 A3 A2 A1 A0 R/W# 1 1 0 1 0 0 1 0
Note:
The R/W# bit is used by the I2C controller as a data direction bit. A zero indicates a transmission (WRITE) to the clock device. A one indicates a request for data (READ) from the clock driver. Since the definition of the clock buffer only allows the controller to WRITE data; the R/W# bit of the address will always be seen as a zero.
2. Slave/Receiver: The clock driver is assumed to require only slave/receiver functionality.
3. Data Transfer Rate: 100 kbits/s (standard mode) is the base functionality.
4. Logic Levels: Assume all devices are based on a 3.3 Volt supply.
5. Data Byte Format: Byte format is 8-bits.
6. Data Protocol:
To simplify the clock I2C interface, the clock driver serial protocol was specified to use only block writes from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. Indexed bytes are not allowed.
The clock driver must meet this protocol which is more rigorous than previously stated I2C protocol. Treat the description from the viewpoint of controller. The controller writes to the clock driver and if possible would read from the clock driver.
The block write begins with a slave address and a write condition. After the command code the host (controller) issues a byte count which describes how many more bytes will follow in the message. If the host had 20 bytes to send, the first byte would
be the number 20 (14h), followed by the 20 bytes of data. The byte count may not be 0. A block write command is allowed to transfer a maximum of 32 data bytes.”
1 bit 7 bits 1 1 8 bits 1 Start bit Slave Address R/W Ack Command Code Ack Byte Count = N
Ack Data Byte 1 Ack Data Byte 2 Ack ... Data Byte N Ack Stop 1 bit 8 bits 1 8 bits 1 8 bits 1 1
13
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
Consider the command code and the byte count bytes required as the first two bytes of any transfer. The command code is software programmable via the controller, but will be specified as 0000 0000 in the clock specification. The byte count byte is the number of additional bytes required for the transfer, not counting the command code and byte count bytes. Additionally, the byte count byte is required to be a minimum of 1 byte and a maximum of 32 bytes to satisfy the above requirement. For example:
7. Clock Stretching: The clock device must not hold/stretch the SCLK or SDATA lines low for more than 10 mS. Clock stretching is
discouraged and should only be used as a last resort. Stretching the clock/data lines for longer than this time puts the device in an error/ time-out mode and may not be supported in all platforms. It is assumed that all data transfers can be completed as specified without the use of clock/data stretching.
8. General Call: It is assumed that the clock driver will not have to respond to the general call.
9. Electrical Characteristics: All electrical characteristics must meet the standard mode specifications found in section 15
of the I2C specification.
A) Pull-Up Resistors: There is a 100k internal resistor pull-ups on the SDATA and SCLK inputs. Assume that the board designer will use a single external pull-up resistor for each line and that these values are in the 5-6K Ohm range. Assume one I2C device per DIMM (serial presence detect), one I2C controller, one clock driver plus one/two more I2C devices on the platform for capacitive loading purposes.
B) Input Glitch Filters: Only fast mode I2C devices require input glitch filters to suppress bus noise. The clock driver is specified as a standard mode device and is not required to support this feature.
10. PWRDWN#: If a clock driver is placed in Power down mode, the SDATA and SCLK inputs are Tri-Stated and the device must retain
all programming information.
For specific I2C information consult the Philips I2C Peripherals Data Handbook ICI2 (1996)
A transfer is considered valid after the acknowledge bit corresponding to the byte count is read by the controller. The serial controller interface can be simplified by discarding the information in both the command code and the byte count bytes and simply reading all the bytes that are sent to the clock driver after being addressed by the controller. It is expected that the controller will not provide more bytes than the clock driver can handle.
etybtnuocetyBsetoN
BSMBSL
00000000.etybenotsaeltaevahtsuM.dewollatoN
00001000)cepsni0etybyltnerruc(retsigertcelesycneuqerfdnalanoitcnufrofataD
00000100)1etybneht,0etyb(atadfosetybowttsrifsdaeR
00001100)redroni2,1,0etyb(atadfosetybeerhttsrifsdaeR
00000010)redroni3,2,1,0etyb(atadfosetybruoftsrifsdaeR
00001010)redroni4,3,2,1,0etyb(atadfosetybeviftsrifsdaeR
00000110)redroni5,4,3,2,1,0etyb(atadfosetybxistsrifsdaeR
00001110)redroni6,5,4,3,2,1,0etyb(atadfosetybnevestsrifsdaeR 0100000023=detroppustnuocetyb.xaM
14
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
Byte 0 : Control Register (1 = Enable, 0 = Disable)
Byte 1: Control Register (1 = Enable, 0 = Disable)
Byte 2: Control Register (1 = Enable, 0 = Disable)
PI6C110E Conditions
At power up all SDRAM outputs are enabled and active. The SDATA and SCLK inputs have internal pull-up resistors with values above 100K Ohms as well for complete platform flexibility.
PI6C110E Serial Configuration Map A) The serial bits will be read by the clock driver in the following order:
Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0 Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0
Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0 B) All unused register bits (reserved and N/A) are designed as don't care. The controller will force all of these bits to a 0 level. C) All reserved bits should be programmed to a logic level  0.
Note:
1. Default is for ALL clocks to be enabled and all reserved bits should be programmed to a logic level 0. Spread spectrum modulation should power up disabled (Byte 0 bit 3 = 0).
Note: Inactive means outputs are held LOW and are disabled from switching. These outputs are designed to be configured at power-on and are not expected to be configured during the normal modes of operation.
tiB#niPemaNnoitpircseDniP
7tiB '0'otevirDdevreseR
)evitcanI/evitcA(
6tiB '0'otevirDdevreseR 5tiB '0'otevirDdevreseR 4tiB '0'otevirDdevreseR
3tiB
murtcepSdaerpS
)ffO=0/nO=1( 2tiB621BSU 1tiB520BSU 0tiB942UPC
tiB#niPemaNnoitpircseDniP
7tiB637MARDS
)evitcanI/evitcA(
6tiB736MARDS 5tiB935MARDS 4tiB044MARDS 3tiB243MARDS 2tiB342MARDS 1tiB541MARDS 0tiB640MARDS
tiB#niPemaNnoitpircseDniP
7tiB027ICP
)evitcanI/evitcA(
6tiB916ICP 5tiB815ICP 4tiB614ICP 3tiB513ICP 2tiB312ICP 1tiB211ICP 0tiB '0'otevirDdevreseR
Byte 3 and Byte 4: Reserved Register (1 = Enable, 0 = Disable)
tiB#niPemaNnoitpircseDniP
7tiB '0'otevirDdevreseR
)evitcanI/evitcA(
6tiB '0'otevirDdevreseR 5tiB '0'otevirDdevreseR 4tiB '0'otevirDdevreseR 3tiB '0'otevirDdevreseR 2tiB '0'otevirDdevreseR 1tiB '0'otevirDdevreseR 0tiB '0'otevirDdevreseR
15
PS8410 08/11/99
PI6C110E
Clock Solution for 133 MHz
Celeron/Pentium II/III Processors
Ordering Information
N/PnoitpircseD
VE011C6IPegakcaPPOSSnip-65
Pericom Semiconductor Corporation
2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com
56 Pin SSOP Package Data
0.25
0.20
.025 BSC
0.635
.008
.008 .016
0-8˚
0.20
0.40
.110 2.79
.010
Gauge Plane
.291 .299
X.XX X.XX
DENOTES DIMENSIONS IN MILLIMETERS
7.39
7.59
.396 .416
10.06
10.56
.02 .04
0.51
1.01
.015 .025
0.381
0.635
.720 .730
18.29
18.54
.008 .0135
0.20
0.34
1
56
x 45˚
Nom.
Max
Loading...