Datasheet PCF8531U-2-F1 Datasheet (Philips)

Page 1
DATA SH EET
Product specification Supersedes data of 1999 Aug 10 File under Integrated Circuits, IC12
2000 Feb 11
INTEGRATED CIRCUITS
PCF8531
Page 2
2000 Feb 11 2
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
CONTENTS
1 FEATURES 2 APPLICATIONS 3 GENERAL DESCRIPTION 4 PACKAGES 5 ORDERING INFORMATION 6 BLOCK DIAGRAM 7 PINNING 8 FUNCTIONAL DESCRIPTION
8.1 Oscillator
8.2 Power-on reset
8.3 I2C-bus controller
8.4 Input filters
8.5 Display data RAM
8.6 Timing generator
8.7 Address counter
8.8 Display address counter
8.9 Command decoder
8.10 Bias voltage generator
8.11 V
LCD
generator
8.12 Reset
8.13 Power-down
8.14 Column driver outputs
8.15 Row driver outputs
8.16 LCD waveforms and DDRAM to data mapping
8.17 Addressing
8.18 Instructions
8.18.1 Reset
8.18.2 Function set
8.18.3 Set Y address
8.18.4 Set X address
8.18.5 Set multiplex rate
8.18.6 Display control (D, E and IM)
8.18.7 Set bias system
8.18.8 LCD bias voltage
8.18.9 Set VOP value:
8.18.10 Voltage multiplier control S[1:0]
8.18.11 Temperature compensation
9I
2
C-BUS INTERFACE
9.1 Characteristics of the I2C-bus
9.1.1 Bit transfer
9.1.2 START and STOP conditions
9.1.3 System configuration
9.1.4 Acknowledge
9.2 I2C-bus protocol
9.3 Command decoder 10 LIMITING VALUES 11 HANDLING 12 DC CHARACTERISTICS 13 AC CHARACTERISTICS 14 APPLICATION INFORMATION 15 BONDING PAD LOCATIONS 16 DEVICE PROTECTION DIAGRAM 17 TRAY INFORMATION 18 DEFINITIONS 19 LIFE SUPPORT APPLICATIONS 20 PURCHASE OF PHILIPS I2C COMPONENTS
Page 3
2000 Feb 11 3
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
1 FEATURES
Single-chip LCD controller/driver
34 row and 128 column outputs
Display data RAM 34 × 128 bits
128 icons (last row is used for icons)
Fast mode I2C-bus interface (400 kbit/s)
Software selectable multiplex rates: 1 : 17, 1 : 26
and1:34
Icon mode with Mux rate 1 : 2: – Featuring reduced current consumption while
displaying icons only.
On-chip: – Generation of V
LCD
(external supply also possible) – Selectable linear temperature compensation – Oscillator requires noexternal components (external
clock also possible) – Generation of intermediate LCD bias voltages – Power-on reset.
No external components required
Software selectable bias configuration
Logic supply voltage range V
DD1
to V
SS1
1.8 to 5.5 V
Supplyvoltage range for on-chipvoltagegenerator V
DD2
and V
DD3
to V
SS1
and V
SS2
2.5 to 4.5 V
Display supply voltage range V
LCD
to VSS: – Normal mode 4 to 9 V – Icon mode 3 to 9 V.
Low power consumption, suitable for battery operated systems
CMOS compatible inputs
Manufactured in silicon gate CMOS process.
2 APPLICATIONS
Telecommunication systems
Automotive information systems
Point-of-sale terminals
Instrumentation.
3 GENERAL DESCRIPTION
The PCF8531 is a low power CMOS LCD row/column driver, designed to drive dot matrix graphic displays at multiplex rates of 1 : 17, 1 : 26 and 1 : 34. Furthermore, it can drive up to 128 icons. All necessary functions for the display are provided in a single chip, including on-chip generation of V
LCD
and the LCD bias voltages, resulting in a minimum of external components and low power consumption. The PCF8531 is compatible with most microcontrollers and communicates via a two-line bidirectional bus (I2C-bus). All inputs are CMOS compatible.
Remark: The icon mode is used to save current. When only icons are displayed, a much lower operating voltage (V
LCD
) can be used and the switching frequency of the LCD outputs is reduced. In most applications it is possible to use VDD as V
LCD
.
4 PACKAGES
The PCF8531 is available as chip with bumps in tray.
5 ORDERING INFORMATION
TYPE
NUMBER
PACKAGE
NAME DESCRIPTION VERSION
PCF8531U/2 chip with bumps in tray
Page 4
2000 Feb 11 4
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
6 BLOCK DIAGRAM
handbook, full pagewidth
MGS465
DISPLAY DATA RAM
MATRIX DATA
RAM
DATA LATCHES
MATRIX
LATCHES
COLUMN
DRIVERS
C0 to C127
PCF8531
R0 to R33
ROW
DRIVERS
COMMAND
DECODER
ADDRESS COUNTER
DISPLAY ADDRESS COUNTER
TIMING
GENERATOR
OSCILLATOR
INTERNAL
RESET
POWER-ON RESET ENR
RES
OSC
I2C-BUS
CONTROL
INPUT
FILTERS
SA0
SCL
SDA
SDACK
V
LCDOUT
V
LCDSENSE
V
LCDIN
T4
T3
T2
T1
34
V
SS2
V
SS1
V
DD1
V
DD2
V
DD3
V
LCD
GENERATOR
BIAS
VOLTAGE
GENERATOR
128
Fig.1 Block diagram.
Page 5
2000 Feb 11 5
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
7 PINNING
SYMBOL PAD DESCRIPTION
1 to 14 dummy pads OSC 15 oscillator input; note 1 V
LCDSENSE
16 voltage multiplier regulation input (V
LCD
); note 2
V
LCDOUT
17 to 23 voltage multiplier output (V
LCD
); note 3
V
LCDIN
24 to 30 LCD supply voltage (V
LCD
); note 2 RES 31 external reset input (active LOW); note 4 V
DD3
32 to 34 supply voltage 3; note 5
V
DD2
35 to 42 supply voltage 2; note 5
V
DD1
43 to 49 supply voltage 1; note 5
SDA 50 and 51 serial data line input of the I
2
C-bus
SDACK 52 serial data acknowledge output; note 6
53 dummy pad
SA0 54 I
2
C-bus slave address input; bit 0 ENR 55 enable internal Power-on reset input; note 7 T4 56 test 4 input; note 8 V
SS2
57 to 63 ground 2; note 9
V
SS1
64 to 70 ground 1; note 9 T3 71 test 3 input; note 8 T1 72 test 1 input; note 8 SCL 73 and 74 serial clock line input of the I
2
C-bus
75 to 77 dummy pads T2 78 test 2 output; note 10
79 to 86 dummy pads R0 87 LCD row driver output R2 88 LCD row driver output R4 89 LCD row driver output R6 90 LCD row driver output R8 91 LCD row driver output R10 92 LCD row driver output R12 93 LCD row driver output R14 94 LCD row driver output R16 95 LCD row driver output R18 96 LCD row driver output R20 97 LCD row driver output R22 98 LCD row driver output R24 99 LCD row driver output R26 100 LCD row driver output R28 101 LCD row driver output R30 102 LCD row driver output R32 103 LCD row driver output
Page 6
2000 Feb 11 6
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
Notes
1. If the on-chip oscillator is used, this input must be connected to V
DD1
.
2. If the internal V
LCD
generation is used, V
LCDOUT
, V
LCDIN
and V
LCDSENSE
must be connected together.
3. If an external V
LCD
is used in the application, then pin V
LCDOUT
must be left open circuit, otherwise the chip will be
damaged.
4. If only the internal Power-on reset is used, this input must be connected to V
DD1
.
5. V
DD1
is for the logic supply, V
DD2
, and V
DD3
are for the voltage multiplier. For split power supplies, V
DD2
and V
DD3
must be connected together. If only one supply voltage is available, V
DD1,VDD2
and V
DD3
must be connected
together.
6. Serial data acknowledge for the I2C-bus. By connecting SDACK to SDA externally, the SDA line becomes fully I2C-bus compatible. Having the acknowledge output separated from the serial data line is advantageous in Chip-On-Glass (COG) applications. In COG applications where the track resistance from the SDACK pad to the system SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the Indium Tin Oxide (ITO) track resistance. It is possible that the PCF8531 will not be able to create a valid logic 0 level during the acknowledge cycle. By splitting the SDA input from the SDACK output, the device could be used in a mode that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is necessary to minimize the track resistance from the SDACK pad to the system SDA line to guarantee a valid LOW level.
7. If ENR is connected to VSS, Power-on reset is disabled; to enable Power-on reset ENR should be connected to V
DD1
.
8. In the application, this input must be connected to VSS.
9. V
SS1
and V
SS2
must be connected together.
10. In the application, T2 must be left open circuit.
C0 to C127 104 to 231 LCD column driver outputs R33 232 LCD row driver output; icon row R31 233 LCD row driver output R29 234 LCD row driver output R27 235 LCD row driver output R25 236 LCD row driver output R23 237 LCD row driver output R21 238 LCD row driver output R19 239 LCD row driver output R17 240 LCD row driver output R15 241 LCD row driver output R13 242 LCD row driver output R11 243 LCD row driver output R9 244 LCD row driver output R7 245 LCD row driver output R5 246 LCD row driver output R3 247 LCD row driver output R1 248 LCD row driver output
SYMBOL PAD DESCRIPTION
Page 7
2000 Feb 11 7
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
8 FUNCTIONAL DESCRIPTION
8.1 Oscillator
The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC input must be connected to VDD. An external clock signal, if used, is connected to this input.
8.2 Power-on reset
The on-chip Power-on reset initializes the chip after Power-on or power failure.
8.3 I
2
C-bus controller
The I2C-bus controller receives and executes the commands. The PCF8531 acts as an I2C-bus slave receiver and therefore cannot control bus communication.
8.4 Input filters
To enhance noise immunity in electrically adverse environments, RC low-pass filters are provided on the SDA and SCL lines.
8.5 Display data RAM
The PCF8531 contains a 34 × 128 bits static RAM, which storesthe display data.The RAM is dividedinto 6 banks of 128 bytes (6 × 8 × 128 bits). Bank 6 is used for icon data. DuringRAM access, datais transferred tothe RAM viathe I2C-bus interface. There is a direct correspondence between the X address and column output number.
8.6 Timing generator
The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is notdisturbed by operations on the data buses.
8.7 Address counter
The address counter sets the addresses of the display data RAM for writing.
8.8 Display address counter
The display address counter generates the addresses for read out of the display data.
8.9 Command decoder
The command decoder identifies command words that arrive on the I2C-bus and determines the destination for the following data bytes.
8.10 Bias voltage generator
The bias voltage generator generates four buffered intermediate bias voltages. This block contains the generator for the reference voltages and the four buffers. This block can operate in two voltage ranges:
Normal mode; 4.0 to 9.0 V
Power save mode; 3.0 to 9.0 V.
8.11 V
LCD
generator
The V
LCD
voltage generator contains a configurable 2 to 5 times voltage multiplier; this is software programmable.
8.12 Reset
The PCF8531 has the possibility of two reset modes, internal Power-on reset or external reset (
RES). The reset mode is selected using the ENR signal. After a reset, the chip has the following state:
All row and column outputs are set to VSS (display off)
RAM data is undefined
Power-down mode.
8.13 Power-down
During power-down, allstatic currents are switched off (no internal oscillator, no timing and no LCD segment drive system), and all LCD outputs are internally connected to VSS. The I2C-bus function remains operational.
8.14 Column driver outputs
The LCD drive section includes 128 column outputs (C0 to C127) which should be connected directly to the LCD. The column output signals are generated in accordance with the multiplexed row signals and with the data in the display latch. When less than 128 columns are required, the unused column outputs should be left open circuit.
8.15 Row driver outputs
The LCD drive section includes 34 row outputs (R0 to R33), which should be connected directly to the LCD. The row output signals aregenerated in accordance with the selected LCD drive mode. If less than 34 rows or lower Mux rates are required, the unused outputs must be left open circuit. The row signals are interlaced i.e. the selection order is R0, R2, ..., R1, R3 etc.
Page 8
2000 Feb 11 8
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
8.16 LCD waveforms and DDRAM to data mapping
The LCD waveforms and the DDRAM to display data mapping are shown in Figs 2, 3 and 4.
MGS466
ROW 0 R0 (t)
ROW 2 R2 (t)
COL 0 C0 (t)
COL 1 C1 (t)
0 V
0 V
V3 V
SS
frame n frame n + 1
02468... 1 35 7... ... 33... 32 02468... 1 3 5 7... ... 33... 32
V
state1
(t)
V
state1
(t)
V
state2
(t)
V
LCD
V
2
V
3
V
4
V
5
V
SS
V
LCD
V
2
V
3
V
4
V
5
V
SS
V
LCD
V
2
V
3
V
4
V
5
V
SS
V
LCD
V
2
V
3
V
4
V
5
V
SS
V
LCD
V
LCD
V
2
V4 V
5
VSS V
5
V4 V
LCD
V3 V
2
V
LCD
0 V
0 V
V3 V
SS
V
state2
(t)
V
LCD
V
LCD
V
2
V4 V
5
V4 V
LCD
V3 V
2
VSS V
5
V
LCD
Fig.2 Typical LCD driver waveforms.
V
state1
(t) = C1(t) R0(t).
V
state2
(t) = C1(t) R2(t).
Page 9
2000 Feb 11 9
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
MGS467
ROW 0 to 32
ROW 33
COL 1 on/off
COL 2 off/on
COL 3 on/on
COL 4 off/off
frame n frame n + 1
V
LCD
V
2
V
3
V
4
V
5
V
SS
V
LCD
V
2
V
3
V
4
V
5
V
SS
V
LCD
V
2
V
3
V
4
V
5
V
SS
V
LCD
V
2
V
3
V
4
V
5
V
SS
V
LCD
V
2
V
3
V
4
V
5
V
SS
V
LCD
V
2
V
3
V
4
V
5
V
SS
only icons are driven
Fig.3 Icon mode; Mux 1 : 2 LCD waveforms.
Page 10
2000 Feb 11 10
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
top of LCD
MGS468
bank 0
bank 1
bank 2
bank 3
bank 4
R32
R24
R16
R8
R0
R33 (icon row)
bank 5
LCD
DDRAM
Fig.4 DDRAM to display mapping.
Page 11
2000 Feb 11 11
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
8.17 Addressing
Data is written in bytes into the RAM matrix of the PCF8531 as illustrated in Figs 5, 6 and 7. The display RAM has a matrix of 34 × 128 bits. The columns are addressedbytheaddress pointer. The address rangesare X 0 to X 127 (7FH) and Y 0 to Y 5 (5H). Addresses outside of these ranges are not allowed. In vertical addressing mode (V = 1), the Y address increments after each byte (see Fig.6). After the last Y address (Y = 4), Y wraps around to 0 and X increments to address thenext
column. In horizontal addressing mode (V = 0), the X addressincrements after each byte (seeFig.7).After the last X address (X = 127), X wraps around to 0 and Y increments to address the next row. After the very last address (X = 127 and Y = 4), the address pointers wrap around to address (X = 0 and Y = 0). It should be noted thatin bank 4 onlythe LSB (DB0)of the data willbe written into the RAM. The Y address 5 is reserved for icon data and is not affected by the addressing mode; it should be noted that in bank 5 only the 5th data bit (DB4) will be written into the RAM.
handbook, full pagewidth
MGS469
0
1
2
3
5
4
0 127X address
icon data
Y address
LSB
MSB
LSB
MSB
LSB
MSB
Fig.5 RAM format and addressing.
handbook, full pagewidth
MGS470
05 16 2 3 4 0 1 icon data
0 1 2 3 4 5
638 639
0 127X address
Y address
Fig.6 Sequence of writing data bytes into RAM with vertical addressing (V = 1).
Page 12
2000 Feb 11 12
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
handbook, full pagewidth
MGS471
012 128 129 130 256 257 258 384 385 386 512 513 514
0 1 icon data
0 1 2 3 4 5
127 255 383 511 639
0 127X address
Y address
Fig.7 Sequence of writing data bytes into RAM with horizontal addressing (V = 0).
8.18 Instructions
Only two PCF8531 registers, the Instruction Register (IR) and the Data Register (DR) can be directly controlled by the MPU. Before internal operation, control information is stored temporarily in these registers to allow interfacing to various types of MPUs which operate at different speeds or to allow interfacing to peripheral control ICs. The PCF8531 operation is controlled by the instructions given in Table 1. Details are explained in subsequent sections.
Instructions are of four types:
1. Those that define PCF8531 functions such as display configuration, etc.
2. Those that set internal RAM addresses
3. Those that perform data transfer with internal RAM
4. Others.
In normal use, category 3 instructions are used most frequently. Automatic incrementing by 1 of internal RAM addressesafter each data write reducestheMPU program load.
8.18.1 RESET After reset or internal Power-on reset (depending on
application), the LCD driver will be set to the following state:
Power-down mode (PD = 1)
Horizontal addressing (V = 0)
Display blank (D = 0; E = 0), no icon mode (IM = 0)
Address counter X[6:0] = 0; Y[2:0] = 0
Bias system BS[2:0] = 0
Multiplex rate M[1:0] = 0 (Mux rate 1 : 17)
Temperature control mode TC[2:0] = 0
HV-gen control, HVE = 0 the HV generator is switched
off, PRS = 0 and S[1:0] = 0
V
LCD
=0V
RAM data is undefined
Command page definition H[1:0] = 0.
Page 13
2000 Feb 11 13
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
8.18.2 FUNCTION SET
8.18.2.1 PD
When PD = 1, the Power-down mode of the LCD driver is active:
All LCD outputs at VSS (display off)
Power-on reset detection active, oscillator off
V
LCD
can be disconnected
I2C-bus is operational, commands can be executed
RAM contents not cleared; RAM data can be written
Register settings remain unchanged.
8.18.2.2 V
When V = 0 the horizontal addressing is selected. The data is written into the DDRAM as shown in Fig.7. When V = 1 the vertical addressing is selected. The data is written into the DDRAM as shown in Fig.6. Icon data is written independently of V when Y address is 5.
8.18.3 SET Y ADDRESS
Bits Y2,Y1and Y0 define the Y address vector of the display RAM.
Table 1 Yaddress
8.18.4 SET X ADDRESS The X address points to the columns. The range of X is
0 to 127 (7FH).
8.18.5 SET MULTIPLEX RATE M[1:0] selects the multiplex rate (see Table 8).
8.18.6 DISPLAY CONTROL (D, E AND IM) Bits D and E select the display mode (see Table 6). Bit IM
sets the display to icon mode.
8.18.7 SET BIAS SYSTEM Different multiplex rates require different bias settings.
These are programmed by BS[2:0], which sets the binary number n. The optimum value for n is given by
Supported values of n are given in Table 2. Table 3shows the intermediate bias voltages.
Y
2
Y
1
Y
0
BANK
0000 0011 0102 0113 1004 1 0 1 5 (icons)
n Mux rate 3=
Table 2 Programming the required bias system
BS[2] BS[1] BS[0] n BIAS SYSTEM COMMENT
0007
1
11
0016
1
10
0105
1
9
0114
1
8
1003
1
7
recommended for 1 : 34
1012
1
6
recommended for 1 : 26
1101
1
5
recommended for 1 : 17
1110
1
4
recommended for icon mode
Page 14
2000 Feb 11 14
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
8.18.8 LCD BIAS VOLTAGE
Table 3 Intermediate LCD bias voltages
8.18.9 S
ET VOPVALUE:
The operating voltage V
LCD
can be set by software.
The voltageat reference temperature[V
LCD
(T = T
cut
)]can
be calculated as: V
LCD
(T
cut
)=(a+VOP× b).
The generated voltage is dependent on the temperature, programmed Temperature Coefficient (TC) and the programmed voltage at reference temperature (T
cut
).
V
LCD=VLCD
(T
cut
) × [1+TC×(T T
cut
)].
The parameter values are given in Table 4. Two overlapping V
LCD
ranges can be selected via the command ‘HV-gen control’ (see Table 4 and Fig.8). The maximum voltage that can be generated depends on the V
DD2
and V
DD3
voltages and the display load current. For Mux 1 : 34,the optimum operatingvoltage of theliquid can be calculated as:
Where V
th
is the threshold voltage of the liquid crystal
material used. The practical value for VOP is determined by equating
V
off(rms)
with a defined LCD threshold voltage (Vth), typically when the LCD exhibits approximately 10% contrast.
As the programming range for the internally generated V
LCD
allows values abovethe maximum allowed V
LCD
, the user has to ensure, while setting the VOP register and selecting the temperature compensation, that the V
LCD
limit of maximum 9 V will never be exceeded under all conditions and including all tolerances.
SYMBOL
BIAS
VOLTAGES
EXAMPLE FOR
1
⁄7BIAS
V1 V
LCD
V
LCD
V2
6
⁄7× V
LCD
V3
5
⁄7× V
LCD
V4
2
⁄7× V
LCD
V5
1
⁄7× V
LCD
V6 V
SS
V
SS
n3+ n4+
------------ -
V
LCD
×
n2+ n4+
------------ -
V
LCD
×
2
n4+
------------ -
V
LCD
×
1
n4+
------------ -
V
LCD
×
V
LCD
134+
21
1
34
----------


×
---------------------------------------
V
th
× 5.30 Vth×==
Table 4 Parameter values for the HV generator programming
SYMBOL
VALUE
UNIT
PRS=0 PRS=1
T
cut
27 27 °C a 2.94 6.75 V b 0.03 0.03 V Programming range 2.94 to 6.75 6.75 to 10.56 V
Page 15
2000 Feb 11 15
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
handbook, full pagewidth
MGL935
00 01 02
a
V
LCD
03 04 05 06 . . . 7D 7E 7F 00 01 02 03 04 05 06 . . . 5F 6F 7F
b
LOW HIGH
Fig.8 VOP programming of PCF8531.
VOP[6:0] (programmed) [00H to 7FH] programme range LOW and HIGH.
8.18.10 VOLTAGE MULTIPLIER CONTROL S[1:0] The PCF8531 incorporates a software configurable
voltage multiplier. After reset (internal or external), the voltage multiplier is set to 2 × V
DD2
. The voltage multiplier factors are set via the command ‘HV-gen configuration’ (see Tables 4, 5 and 6).
8.18.11 TEMPERATURE COMPENSATION Due to the temperature dependency of the liquid crystal’s
viscosity, the LCD controlling voltage V
LCD
should usually be increased at lower temperatures to maintain optimum contrast. Figure 9 shows V
LCD
for high multiplex rates.
Linear temperature compensation is supported in the PCF8531. The temperature coefficient of V
LCD
can be selected from eight values by setting bits TC[2:0] (see Tables 4, 5 and 6).
handbook, halfpage
MGS473
T
V
LCD
0 °C
Fig.9 V
LCD
as a function of liquid crystal
temperature.
Page 16
2000 Feb 11 16
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
Table 5 Instruction set
Note
1. R/
W is set in the slave address byte; Co and RS are set in the control byte.
INSTRUCTION
I
2
C-BUS
COMMAND
(1)
I2C-BUS COMMAND BYTE
DESCRIPTION
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
H1 and H0= don’t care (H independent command page)
NOP 0 000000000no operation Write data 1 0 D
7
D
6
D
5
D
4
D
3
D
2
D
1
D0write data to display RAM
Set default H[1:0] 0 0 0 0000001select H[1:0] = 0
H
1
= 0 and H0= 0 (function and RAM command page)
Instruction set 0 0 0 00010H1H0select command page Function set 0 0 0 0100PDV0power-down control;
entry mode
Set Yaddress of RAM
0 001000Y
2
Y
1
Y
0
set Yaddress of RAM; 0 Y 5
Set X address of RAM
001X
6
X
5
X
4
X
3
X
2
X
1
X
0
set X address part of RAM; 0 X 127
H1= 0 and H0= 1 (display setting command page)
Multiplex rate 0 0 0 00001M1M0select multiplex rate Display control 0 0 0 0001DIMEset display configuration Bias system 0 0 0 0010BS
2BS1
BS0set Bias System (BSx)
H1= 1 and H0= 0 (HV-gen command page)
HV-gen control 0 0 0 00001PRSHVEset V
LCD
programming
range
HV-gen configuration
0 0000010S1S0set voltage multiplication
factor
Temperature control 0 0 0 0100TC
2TC1
TC0set temperature
coefficient
Test modes 0 0 0 1 X XXXXXdo not use (reserved for
test)
V
LCD
control 0 0 1 V
OP6VOP5VOP4VOP3VOP2VOP1VOP0
set V
LCD
register
0 VOP≤ 127
Page 17
2000 Feb 11 17
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
Table 6 Explanations for symbols in Table 5
Note
1. The H-bits identify the command page (use set default H[1:0] command to set H[1:0] = 0.
BIT 0 1
PD chip is active chip is in Power-down mode V horizontal addressing vertical addressing IM normal mode; full display + icons icon mode; only icons are displayed H[1:0]
(1)
see Table 7 D and E see Table 7 HVE voltage multiplier disabled voltage multiplier enabled PRS V
LCD
programming range LOW V
LCD
programming range HIGH TC[2:0] see Table 7 S[1:0] see Table 7
Table 7 Description of bits H, D and E, TC and S Table 8 Multiplex rates
BITS VALUE DESCRIPTION
Command page (H)
H[1:0] 00 function and RAM command page
01 display setting command page 10 HV-gen command page
Display modes (D, E)
D and E 00 display blank
10 normal mode 01 all display segments 11 inverse video mode
Temperature coefficient (TC)
TC[2:0] 000 temperature coefficient 0
001 temperature coefficient 1 010 temperature coefficient 2 011 temperature coefficient 3 100 temperature coefficient 4 101 temperature coefficient 5 110 temperature coefficient 6 111 temperature coefficient 7
Voltage multiplier factor (S)
S[1:0] 00 2 × voltage multiplier
01 3 × voltage multiplier 10 4 × voltage multiplier 11 5 × voltage multiplier
MUX RATE M1 M0
1:17 0 0 1:26 1 0 1:34 0 1
Page 18
2000 Feb 11 18
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
9I2C-BUS INTERFACE
9.1 Characteristics of the I
2
C-bus
The I2C-bus is for bi-directional, two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.
9.1.1 B
IT TRANSFER
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal (see Fig.10).
9.1.2 START AND STOP CONDITIONS Bothdata and clock linesremain HIGH when thebus is not
busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH isdefined asthe STOP condition (P). The START and STOP conditions are illustrated in Fig.11.
9.1.3 SYSTEM CONFIGURATION The system configuration is illustrated in Fig.12
Transmitter: the device that sends the data to the bus
Receiver: the device that receives the data from the bus
Master: the device that initiates a transfer, generates
clock signals and terminates a transfer
Slave: the device addressed by a master
Multi-Master: more than one master can attempt to
control the bus at the same time without corrupting the message
Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
Synchronization: procedure to synchronize the clock signals of two or more devices.
9.1.4 A
CKNOWLEDGE
Acknowledge on the I2C-bus is illustrated in Fig.13. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by thetransmitter, during whichtime the mastergenerates an extra acknowledge related clock pulse. A slave receiver that is addressedmust generate an acknowledge after the reception of each byte.
Also, a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges mustpull-down the SDA line duringtheacknowledge clock pulse so that the SDA line is stable LOW during the HIGH periodof the acknowledge- relatedclock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an “end of data” to the transmitter by not generating an acknowledge on the last byte that has been clocked outof the slave. In this event, thetransmitter must leave the data line HIGH to enable the master to generate a STOP condition.
Fig.10 Bit transfer.
handbook, full pagewidth
MBC621
data line
stable;
data valid
change
of data
allowed
SDA
SCL
Page 19
2000 Feb 11 19
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
Fig.11 Definition of START and STOP conditions.
handbook, full pagewidth
MBC622
SDA
SCL
P
STOP condition
SDA
SCL
S
START condition
Fig.12 System configuration.
MGA807
SDA SCL
MASTER
TRANSMITTER/
RECEIVER
MASTER
TRANSMITTER
SLAVE
TRANSMITTER/
RECEIVER
SLAVE
RECEIVER
MASTER
TRANSMITTER/
RECEIVER
Fig.13 Acknowledge on the I2C-bus.
handbook, full pagewidth
MBC602
S
START
condition
9821
clock pulse for
acknowledgement
not acknowledge
acknowledge
DATA OUTPUT
BY TRANSMITTER
DATA OUTPUT
BY RECEIVER
SCL FROM
MASTER
Page 20
2000 Feb 11 20
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
9.2 I2C-bus protocol
This driver does not support ‘read’. The PCF8531 is a slave receiver. Therefore, it only responds when R/W=0 in the slave address byte.
Before any data is transmitted on the I2C-bus, the device that should respond is addressed first. Two 7-bit slave addresses (0111100 and 0111101) are reserved for the PCF8531. The least significant bit of the slave address is set by connecting the input SA0 to either logic 0 (VSS) or logic 1 (VDD).
The I2C-bus protocol is illustrated in Fig.14. The sequence is initiated with a START condition (S) from
the I2C-bus master, and is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, all others ignore the I2C-bus transfer. After acknowledgement, one or more command words follow, which define the status of the addressed slaves. A command word consists of a control byte, which defines Co and RS, plus a data byte (see Fig.14 and Table 1).
The last control byte is tagged with a cleared most significantbit,thecontinuation bit Co. The control anddata bytes are also acknowledged by all addressed slaves on the bus.
After the lastcontrol byte, dependingon the RS bitsetting, either a series of display data bytes or command data bytes may follow. If the RS bit was set to logic 1, these display bytes are stored in the display RAM atthe address specified by the data pointer.
The data pointer is automatically updated and the data is directed to the intended PCF8531 device. If the RS bit of the last control byte was set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands. The acknowledgementafter each byteis made onlyby the addressed PCF8531. At the end of the transmission, the I
2
C-bus master issues a STOP condition (P).
9.3 Command decoder
Pairs of bytes; information in the second byte, the first byte determines whether information is display or instruction data
Stream of information bytes after Co = 0; display or instruction data, depending on last RS (Register Selection).
The command decoder identifies command words that arrive on the I2C-bus. The most significant bit of a control byte is the continuation bit Co. If this bit is logic 1, it indicates that onlyone data byte (either command or RAM data)will follow. If thisbitis logic 0, it indicatesthat a series of data bytes (either command or RAM data) may follow. The DB6 bit of a control byte is the RAM data/command bit RS. When this bit is at logic 1, it indicates that another RAM data byte will be transferred next. If the bit is at logic 0, it indicates that another command byte will be transferred next.
handbook, full pagewidth
MGS474
S011110SA0 A
slave address
R/W
CoRSXXXXXX
control byte
Fig.14 Slave address and control byte.
Page 21
2000 Feb 11 21
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
handbook, full pagewidth
MGS475
S011110
S A
0
0A
acknowledge
from PCF8531
acknowledge
from PCF8531
acknowledge
from PCF8531
acknowledge
from PCF8531
acknowledge
from PCF8531
1
control byte
A data byte data byte
n 0 bytes
1 byte
slave address
MSB . . . . . . . . . . . LSB
2n 0 bytes
A
CoCo
0A AP
RS
R/W
control byte
RS
Fig.15 Master transmits to slave receiver; write mode.
10 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134); note 1.
Note
1. Parameters are valid over the operating temperature range unless otherwise specified. All voltages referenced to VSS unless otherwise noted.
11 HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is recommended to take normal precautions appropriate to handling MOS devices (see
“Handling MOS Devices”
).
SYMBOL PARAMETER MIN. MAX. UNIT
V
DD1
logic supply voltage 0.5 +5.5 V
V
DD2,VDD3
multiplier supply voltage 0.5 +4.5 V
I
DD
supply current 50 +50 mA
V
LCD
LCD supply voltage 0.5 +9.0 V
I
LCD
LCD supply current 50 +50 mA
I
SS
negative supply current 50 +50 mA
V
I/VO
input/output voltage (any input/output) 0.5 VDD+ 0.5 V
I
I
DC input current 10 +10 mA
I
O
DC output current 10 +10 mA
P
tot
total power dissipation per package 300 mW P/out power dissipation per output 30 mW T
stg
storage temperature 65 +150 °C T
j
junction temperature 150 °C
Page 22
2000 Feb 11 22
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
12 DC CHARACTERISTICS
V
DD1
= 1.8 (1.9) to 5.5 V; V
DD2
and V
DD3
= 2.5 to 4.5 V; V
SS1,2
=0V; V
DD1
to V
DD3
V
LCD
9.0 V;
T
amb
= 40 to +85 °C; unless otherwise specified.
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Supplies
V
LCD
LCD supply voltage note 1 4.0 9.0 V
icon mode; note 1 3.0 9.0 V
V
DD1
logic supply voltage 1.9 5.5 V
T
amb
≥−25 °C 1.8 5.5 V
V
DD2,VDD3
multiplier supply voltage LCD voltage internally
generated
2.5 4.5 V
I
DD
supply current Power-down mode; internal
V
LCD
210µA
normal mode; internal V
LCD
;
notes 2 and 3
170 350 µA
normal mode; external V
LCD
;
note 2
10 50 µA
I
LCD
LCD input current normal mode; external V
LCD
;
notes 2 and 4
25 100 µA
icon mode; external V
LCD
;
notes 2 and 5
15 70 µA
V
POR
Power-on reset level note 6 0.9 1.2 1.6 V
Logic
V
IL
LOW-level input voltage V
SS
0.3VDDV
V
IH
HIGH-level input voltage 0.7VDD− V
DD
V
I
OL
LOW-level output current (SDA) VOL= 0.4 V; VDD= 5 V 3.0 −−mA
I
LI
input leakage current VI=VDD or V
SS
1 +1 µA
Column and row outputs
R
o(col)
column output resistance C0 to C127
note 7 12 20 k
R
o(row)
row output resistance R0 to R33 note 7 12 20 k
V
bias(col)
bias tolerance C0 to C127 100 0 +100 mV
V
bias(row)
bias tolerance R0 to R33 100 0 +100 mV
Page 23
2000 Feb 11 23
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
Notes
1. As the programming range for the internally generated V
LCD
allows values above the maximum allowed V
LCD
, the
user has to ensure, while setting the VOPregister and selecting the temperature compensation, that the V
LCD
limit of
maximum 9 V will never be exceeded under all conditions and including all tolerances.
2. LCD outputs are open circuit, inputs at VDD or VSS; bus inactive.
3. V
DD1
to V
DD3
= 2.85 V; V
LCD
= 7.0 V; voltage multiplier = 3 × VDD; f
OSC
= 34 kHz.
4. V
DD1
to V
DD3
= 2.75 V; V
LCD
= 9.0 V; f
OSC
= 34 kHz.
5. V
DD1
to V
DD3
= 2.75 V; V
LCD
= 3.5 V; f
OSC
= 34 kHz.
6. Resets all logic when V
DD1<VPOR
.
7. I
LOAD
≤50 µA; outputs tested one at a time.
8. V
LCD
7.7 V.
V
LCD
generation
V
LCD(tol)
LCD voltage tolerance, internal V
LCD
TC1 to TC7; note 8 −−±3.9 %
TC0 LCD voltage temperature
coefficient 0
T
amb
= 20 to +70 °C 0 %/°C
TC1 LCD voltage temperature
coefficient 1
T
amb
= 20 to +70 °C −−0.026 %/°C
TC2 LCD voltage temperature
coefficient 2
T
amb
= 20 to +70 °C −−0.039 %/°C
TC3 LCD voltage temperature
coefficient 3
T
amb
= 20 to +70 °C −−0.052 %/°C
TC4 LCD voltage temperature
coefficient 4
T
amb
= 20 to +70 °C −−0.078 %/°C
TC5 LCD voltage temperature
coefficient 5
T
amb
= 20 to +70 °C −−0.13 %/°C
TC6 LCD voltage temperature
coefficient 6
T
amb
= 20 to +70 °C −−0.19 %/°C
TC7 LCD voltage temperature
coefficient 7
T
amb
= 20 to +70 °C −−0.26 %/°C
T
cut
cut point temperature 27 −°C
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Page 24
2000 Feb 11 24
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
13 AC CHARACTERISTICS
V
DD1
= 1.8 to 5.5 V; V
DD2
and V
DD3
= 2.5 to 4.5 V; V
SS1
and V
SS2
=0V; V
DD1
to V
DD3
V
LCD
9.0 V;
T
amb
= 40 to +85 °C; unless otherwise specified.
Notes
1. f
frame=fclk(ext)
/480; f
OSC
/480.
2. For t
W(RESL)
> 3 ns a reset may be generated.
3. All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to VILand VIH with an input voltage swing of VSS to VDD.
4. Cb= total capacitance of one bus line in pF.
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
f
frame
LCD frame frequency (internal clock) VDD= 3.0 V; note 1 40 66 135 Hz
f
OSC
oscillator frequency (not available at any pin) 20 34 65 kHz
f
clk(ext)
external clock frequency 20 65 kHz
t
W(RESL)
reset LOW pulse width note 2 300 −−ns
t
SU;RESL
reset LOW pulse set-up time after Power-on −−30 µs Serial-bus interface; note 3 f
SCL
SCL clock frequency 0 400 kHz t
SCLL
SCL clock LOW period 1.3 −−µs t
SCLH
SCL clock HIGH period 0.6 −−µs t
SU;DAT
data set-up time 100 −−ns t
HD;DAT
data hold time 0 0.9 µs t
r
SCL, SDA rise time note 4 20 + 0.1Cb− 300 ns t
f
SCL, SDA fall time note 4 20 + 0.1Cb− 300 ns C
b
capacitive load represented by each bus line −−400 pF t
SU;STA
set-up time for a repeated START condition 0.6 −−µs t
HD;STA
start condition hold time 0.6 −−µs t
SU;STO
set-up time for STOP condition 0.6 −−µs t
SW
tolerable spike width on bus −−50 ns t
BUF
bus free time between a STOP and START
condition
1.3 −−µs
handbook, full pagewidth
MGS476
t
W(RESL)
t
SU;RESL
V
IL
V
DD
RES
Fig.16 Reset timing.
Page 25
2000 Feb 11 25
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
Fig.17 I2C-bus timing diagram.
dbook, full pagewidth
SDA
MGA728
SDA
SCL
t
SU;STA
t
SU;STO
t
HD;STA
t
BUF
t
LOW
t
HD;DAT
t
HIGH
t
r
t
f
t
SU;DAT
handbook, halfpage
2345
400
200
100
300
MGS477
I
DD
(µA)
V
DD2
and V
DD3
(V)
4 V
V
LCD
= 9 V
7.5 V
Fig.18 IDD, internal V
LCD
generation.
V
DD1
= 2 V; 4 × voltage multiplier; T
amb
=27°C; TC = 0;
BS = 100; no V
LCD
load.
handbook, halfpage
246 10
400
200
100
300
MGS478
8
I
DD
(µA)
V
LCD
(V)
2× 5×
4× 3×
Fig.19 IDD for different multiplication factors.
V
DD1
= 1.8 V; V
DD2
and V
DD3
= 2.6 V; T
amb
=27°C;
f
OSC
= 34 kHz; no V
LCD
load.
Page 26
2000 Feb 11 26
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
handbook, halfpage
50 0 50 100
9
7
6
8
MGS479
TC0 TC1
TC6 TC7
V
LCD (V)
T (°C)
Fig.20 Temperature coefficient.
V
LCD
= 7.5 V; V
DD1
to V
DD3
= 2.7 V; T
amb
=27°C; no V
LCD
load.
handbook, halfpage
246 10
30
10
0
20
MGS480
8
I
(µA)
V
LCD
(V)
I
LCD
I
DD
Fig.21 IDD and I
LCD
with external V
LCD
.
V
DD1
= 1.8 V; V
DD2
and V
DD3
= 2.5 V; external V
LCD
;
T
amb
=27°C; TC = 0; BS = 100; no V
LCD
load.
handbook, halfpage
02040 80
30
10
0
20
MGS481
60
I
(µA)
f (kHz)
I
LCD
I
DD
Fig.22 IDD and I
LCD
dependent from frequency.
V
DD1
= 2.5 V; V
DD2
and V
DD3
= 2.5 V; external V
LCD
;
T
amb
=27°C; TC = 0; BS = 100; no V
LCD
load.
handbook, halfpage
3
86
82
84
80
78
3.2 4
MGS482
3.4 3.6 3.8
I
DD
(µA)
V
LCD
(V)
Fig.23 Internal V
LCD
, icon mode.
V
DD1
= 1.8 V; V
DD1
= 2.5 V; 2 × voltage multiplier;
T
amb
=27°C; TC = 0; BS = 111; no V
LCD
load.
Page 27
2000 Feb 11 27
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
14 APPLICATION INFORMATION Table 9 Programming example for PCF8531
STEP
SERIAL BUS BYTE
DISPLAY OPERATION
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1 0 1 1 1 1 0 SA0 0 start; slave address;
R/
W=0 2 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0 3 0 0 0 0 0 0 0 1 H[1:0] independent
command; select function and RAM command page
(H[1:0] = 00) 4 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0 5 0 0 1 0 0 0 1 0 functionand RAMcommand
page PD = 0 and V = 1 6 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0 7 0 0 0 0 1 0 0 1 functionand RAMcommand
page select display setting
command page H[1:0] = 01 8 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0 9 0 0 0 0 1 1 0 0 display setting command
page; set normal mode
(D = 1; IM = 0 and E = 0)
10 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0 11 0 0 0 0 0 1 0 1 select Mux rate 1 : 34 12 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0 13 0 0 0 0 0 0 0 1 H[2:0] independent
command; select function
and RAM command page
H[1:0] = 00
14 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0 15 0 0 0 0 1 0 1 0 functionandRAMcommand
page; select HV-gen
command page H[1:0] = 10
16 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0 17 0 0 0 0 1 0 1 1 HV-gen command page;
select voltage multiplication
factor 5 S[1:0] = 11
18 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0 19 0 0 1 0 0 0 1 0 HV-gen command page;
select temperature
coefficient 2 TC[2:0] = 010
20 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0
Page 28
2000 Feb 11 28
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
21 0 0 0 0 0 1 1 1 HV-gen command page;
select high V
LCD
programming range
(PRS = 1); voltage multiplier
off (HVE = 1)
22 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0 23 1 0 1 0 0 0 0 0 HV-gen command page; set
V
LCD
= 7.71 V;
VOP[6:0] = 0100000
24 0 1 0 0 0 0 0 0 control byte; Co = 0; RS = 1 25 0 0 0 1 1 1 1 1 data write; Yand X are
initialized to 0 by default, so
they are not set here
26 0 0 0 0 0 1 0 1 data write
27 0 0 0 0 0 1 1 1 data write
28 0 0 0 0 0 0 0 0 data write
29 0 0 0 1 1 1 1 1 data write
30 0 0 0 0 0 1 0 0 data write
STEP
SERIAL BUS BYTE
DISPLAY OPERATION
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
MGS405
MGS406
MGS407
MGS407
MGS409
MGS410
Page 29
2000 Feb 11 29
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
31 0 0 0 1 1 1 1 1 data write; last data and
stop transmission
32 0 1 1 1 1 0 SA0 0 repeated start; slave
address; R/
W=0
33 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0
34 0 0 0 0 0 0 0 1 H[1:0] independent
command; select function
and RAM command page
H[1:0] = 00
35 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0
36 0 0 0 0 1 0 0 1 functionandRAMcommand
page; select display setting
command page H[1:0] = 01
37 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0
38 0 0 0 0 0 0 0 1 H[1:0] independent
command; select function
and RAM command page
H[1:0] = 00
STEP
SERIAL BUS BYTE
DISPLAY OPERATION
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
MGS411
MGS411
MGS411
MGS411
MGS411
MGS411
MGS411
MGS411
Page 30
2000 Feb 11 30
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
The pinning of the PCF8531 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size: 34 × 128 pixels.
39 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0
40 0 0 0 0 1 1 0 1 display control; set inverse
video mode (D = 1; E = 1
and IM = 0)
41 1 0 0 0 0 0 0 0 control byte; Co = 1; RS = 0
42 1 0 0 0 0 0 0 0 set X address of RAM; set
address to ‘0000000’
43 0 1 0 0 0 0 0 0 control byte; Co = 0; RS = 1
44 0 0 0 0 0 0 0 0 data write
STEP
SERIAL BUS BYTE
DISPLAY OPERATION
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
MGS411
MGS412
MGS412
MGS412
MGS412
MGS414
Page 31
2000 Feb 11 31
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
handbook, full pagewidth
MGS483
HOST
MICROPROCESSOR/
MICROCONTROLLER
LCD PANEL
SDA
V
SS1,
V
SS2
V
SS
V
DD(I2C)
V
LCD
V
DD1
to V
DD3
V
SS1, VSS2
SCL
SDA
SCL
SA0
PCF8531
RES
SDACK
R
pu
R
pu
RES
ENR
128 column drivers
34 row drivers
Fig.24 Typical system configuration.
The host microprocessor/microcontroller and the PCF8531 are both connected to the I2C-bus. The SDA and SCL lines must be connected to the positive power supply via pull-up resistors. The internal oscillator requires no external components. The appropriate intermediate biasing voltage for the multiplexed LCD waveforms are generated on-chip. The only other connections required to complete the system are to the power supplies (VDD,VSSand V
LCD
) and suitable
capacitors for decoupling V
LCD
and VDD.
Page 32
2000 Feb 11 32
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
handbook, full pagewidth
MGS484
3
DISPLAY 34 × 128 PIXELS
V
DD1
to
V
DD3
I/O
V
SS1
V
SS2
C
ext
R
supply
R
I/O
V
LCD
PCF8531
12817 17
Fig.25 Chip-on-glass application.
The required minimum values for the external capacitors in an application with the PCF8531 are as follows:
C
ext
= 100 nF for V
LCD
and V
SS1
and V
SS2
, and C
ext
= 470 nF for V
DD1
to V
DD3
and V
SS1
and V
SS2
Higher capacitor values are recommended for ripple reduction
For COG applications, the recommended ITO track resistance is to be minimized for the I/O and supply connections.
Optimized values for these tracks are below 50 for the supply (R
supply
) and below 100 for the I/O connections
(R
I/O
).
To reduce the sensitivity of the reset to ESD/EMC disturbances for a chip-on-glass application, it is strongly recommended to implement a series input resistance in the reset line (recommended minimum value 8 k) on the glass (ITO). If the reset input is not used, it should be connected to V
DD1
using a short connection.
Page 33
2000 Feb 11 33
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
15 BONDING PAD LOCATIONS Table 10 Bonding pad locations
All x and y coordinates are referenced to the centre of the chip (dimensions in µm; see Fig.28).
SYMBOL PAD x y
dummy 1 +5973.6 821.7 dummy 2 +5969.5 +823.4 dummy 3 +5899.5 +823.4 dummy 4 +5829.5 +823.4 dummy 5 +5479.5 +823.4 dummy 6 +5409.5 +823.4 dummy 7 +5059.5 +823.4 dummy 8 +4989.5 +823.4 dummy 9 +4639.5 +823.4 dummy 10 +4569.5 +823.4 dummy 11 +4219.5 +823.4 dummy 12 +4149.5 +823.4 dummy 13 +3799.5 +823.4 dummy 14 +3729.5 +823.4 OSC 15 +3449.5 +823.4 V
LCDSENSE
16 +3169.5 +823.4
V
LCDOUT
17 +3099.5 +823.4
V
LCDOUT
18 +3029.5 +823.4
V
LCDOUT
19 +2959.5 +823.4
V
LCDOUT
20 +2889.5 +823.4
V
LCDOUT
21 +2819.5 +823.4
V
LCDOUT
22 +2749.5 +823.4
V
LCDOUT
23 +2679.5 +823.4
V
LCDIN
24 +2539.5 +823.4
V
LCDIN
25 +2469.5 +823.4
V
LCDIN
26 +2399.5 +823.4
V
LCDIN
27 +2329.5 +823.4
V
LCDIN
28 +2259.5 +823.4
V
LCDIN
29 +2189.5 +823.4
V
LCDIN
30 +2119.5 +823.4 RES 31 +1979.5 +823.4 V
DD3
32 +1699.5 +823.4 V
DD3
33 +1629.5 +823.4 V
DD3
34 +1559.5 +823.4 V
DD2
35 +1279.5 +823.4 V
DD2
36 +1209.5 +823.4 V
DD2
37 +1139.5 +823.4
V
DD2
38 +1069.5 +823.4
V
DD2
39 +999.5 +823.4
V
DD2
40 +929.5 +823.4
V
DD2
41 +859.5 +823.4
V
DD2
42 +789.5 +823.4
V
DD1
43 +649.5 +823.4
V
DD1
44 +579.5 +823.4
V
DD1
45 +509.5 +823.4
V
DD1
46 +439.5 +823.4
V
DD1
47 +369.5 +823.4
V
DD1
48 +299.5 +823.4
V
DD1
49 +229.5 +823.4 SDA 50 +19.5 +823.4 SDA 51 50.5 +823.4 SDACK 52 400.5 +823.4 dummy 53 750.5 +823.4 SA0 54 820.5 +823.4 ENR 55 1100.5 +823.4 T4 56 1380.5 +823.4 V
SS2
57 1660.5 +823.4 V
SS2
58 1730.5 +823.4 V
SS2
59 1800.5 +823.4 V
SS2
60 1870.5 +823.4 V
SS2
61 1940.5 +823.4 V
SS2
62 2010.5 +823.4 V
SS2
63 2080.5 +823.4 V
SS1
64 2220.5 +823.4 V
SS1
65 2290.5 +823.4 V
SS1
66 2360.5 +823.4 V
SS1
67 2430.5 +823.4 V
SS1
68 2500.5 +823.4 V
SS1
69 2570.5 +823.4 V
SS1
70 2640.5 +823.4 T3 71 2780.5 +823.4 T1 72 3060.5 +823.4 SCL 73 3410.5 +823.4 SCL 74 3480.5 +823.4 dummy 75 3830.5 +823.4 dummy 76 4180.5 +823.4 dummy 77 4530.5 +823.4 T2 78 4600.5 +823.4
SYMBOL PAD x y
Page 34
2000 Feb 11 34
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
dummy 79 4880.5 +823.4 dummy 80 4950.5 +823.4 dummy 81 5230.5 +823.4 dummy 82 5300.5 +823.4 dummy 83 5650.5 +823.4 dummy 84 5720.5 +823.4 dummy 85 5930.5 +823.4 dummy 86 5926.4 821.7 R0 87 5786.4 821.7 R2 88 5716.4 821.7 R4 89 5646.4 821.7 R6 90 5576.4 821.7 R8 91 5506.4 821.7 R10 92 5436.4 821.7 R12 93 5366.4 821.7 R14 94 5296.4 821.7 R16 95 5226.4 821.7 R18 96 5156.4 821.7 R20 97 5086.4 821.7 R22 98 5016.4 821.7 R24 99 4946.4 821.7 R26 100 4876.4 821.7 R28 101 4806.4 821.7 R30 102 4736.4 821.7 R32 103 4666.4 821.7 C0 104 4526.4 821.7 C1 105 4456.4 821.7 C2 106 4386.4 821.7 C3 107 4316.4 821.7 C4 108 4246.4 821.7 C5 109 4176.4 821.7 C6 110 4106.4 821.7 C7 111 4036.4 821.7 C8 112 3966.4 821.7 C9 113 3896.4 821.7 C10 114 3826.4 821.7 C11 115 3756.4 821.7 C12 116 3686.4 821.7 C13 117 3616.4 821.7 C14 118 3546.4 821.7 C15 119 3476.4 821.7
SYMBOL PAD x y
C16 120 3406.4 821.7 C17 121 3336.4 821.7 C18 122 3266.4 821.7 C19 123 3196.4 821.7 C20 124 3126.4 821.7 C21 125 3056.4 821.7 C22 126 2986.4 821.7 C23 127 2916.4 821.7 C24 128 2846.4 821.7 C25 129 2776.4 821.7 C26 130 2706.4 821.7 C27 131 2636.4 821.7 C28 132 2566.4 821.7 C29 133 2496.4 821.7 C30 134 2426.4 821.7 C31 135 2356.4 821.7 C32 136 2216.4 821.7 C33 137 2146.4 821.7 C34 138 2076.4 821.7 C35 139 2006.4 821.7 C36 140 1936.4 821.7 C37 141 1866.4 821.7 C38 142 1796.4 821.7 C39 143 1726.4 821.7 C40 144 1656.4 821.7 C41 145 1586.4 821.7 C42 146 1516.4 821.7 C43 147 1446.4 821.7 C44 148 1376.4 821.7 C45 149 1306.4 821.7 C46 150 1236.4 821.7 C47 151 1166.4 821.7 C48 152 1096.4 821.7 C49 153 1026.4 821.7 C50 154 956.4 821.7 C51 155 886.4 821.7 C52 156 816.4 821.7 C53 157 746.4 821.7 C54 158 676.4 821.7 C55 159 606.4 821.7 C56 160 536.4 821.7
SYMBOL PAD x y
Page 35
2000 Feb 11 35
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
C57 161 466.4 821.7 C58 162 396.4 821.7 C59 163 326.4 821.7 C60 164 256.4 821.7 C61 165 186.4 821.7 C62 166 116.4 821.7 C63 167 46.4 821.7 C64 168 +93.6 821.7 C65 169 +163.6 821.7 C66 170 +233.6 821.7 C67 171 +303.6 821.7 C68 172 +373.6 821.7 C69 173 +443.6 821.7 C70 174 +513.6 821.7 C71 175 +583.6 821.7 C72 176 +653.6 821.7 C73 177 +723.6 821.7 C74 178 +793.6 821.7 C75 179 +863.6 821.7 C76 180 +933.6 821.7 C77 181 +1003.6 821.7 C78 182 +1073.6 821.7 C79 183 +1143.6 821.7 C80 184 +1213.6 821.7 C81 185 +1283.6 821.7 C82 186 +1353.6 821.7 C83 187 +1423.6 821.7 C84 188 +1493.6 821.7 C85 189 +1563.6 821.7 C86 190 +1633.6 821.7 C87 191 +1703.6 821.7 C88 192 +1773.6 821.7 C89 193 +1843.6 821.7 C90 194 +1913.6 821.7 C91 195 +1983.6 821.7 C92 196 +2053.6 821.7 C93 197 +2123.6 821.7 C94 198 +2193.6 821.7 C95 199 +2263.6 821.7 C96 200 +2403.6 821.7 C97 201 +2473.6 821.7
SYMBOL PAD x y
C98 202 +2543.6 821.7 C99 203 +2613.6 821.7 C100 204 +2683.6 821.7 C101 205 +2753.6 821.7 C102 206 +2823.6 821.7 C103 207 +2893.6 821.7 C104 208 +2963.6 821.7 C105 209 +3033.6 821.7 C106 210 +3103.6 821.7 C107 211 +3173.6 821.7 C108 212 +3243.6 821.7 C109 213 +3313.6 821.7 C110 214 +3383.6 821.7 C111 215 +3453.6 821.7 C112 216 +3523.6 821.7 C113 217 +3593.6 821.7 C114 218 +3663.6 821.7 C115 219 +3733.6 821.7 C116 220 +3803.6 821.7 C117 221 +3873.6 821.7 C118 222 +3943.6 821.7 C119 223 +4013.6 821.7 C120 224 +4083.6 821.7 C121 225 +4153.6 821.7 C122 226 +4223.6 821.7 C123 227 +4293.6 821.7 C124 228 +4363.6 821.7 C125 229 +4433.6 821.7 C126 230 +4503.6 821.7 C127 231 +4573.6 821.7 R33 232 +4713.6 821.7 R31 233 +4783.6 821.7 R29 234 +4853.6 821.7 R27 235 +4923.6 821.7 R25 236 +4993.6 821.7 R23 237 +5063.6 821.7 R21 238 +5133.6 821.7 R19 239 +5203.6 821.7 R17 240 +5343.6 821.7 R15 241 +5413.6 821.7 R13 242 +5483.6 821.7
SYMBOL PAD x y
Page 36
2000 Feb 11 36
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
Table 11 Bonding pads
Table 12 Alignment marks
R11 243 +5553.6 821.7 R9 244 +5623.6 821.7 R7 245 +5693.6 821.7 R5 246 +5763.6 821.7 R3 247 +5833.6 821.7 R1 248 +5903.6 821.7
PAD SIZE UNIT
Pad pitch min. 70 µm Pad size; Al 62 × 100 µm Bump dimensions 50 × 90 × 17.5 (±5) µm Waferthickness (excluding
bumps)
381 µm
MARKS x y
C1 5402.0 +823.1 C2 +5292.4 +823.4 F +5890.3 +401.9 Circle 1 5543.0 +798.4 Circle 2 +5637.4 +798.4
SYMBOL PAD x y
handbook, halfpage
MGS487
x
y
12.23 mm
pitch
1.96 mm
PCF8531
Fig.26 Bonding pads.
handbook, full pagewidth
MGS490
x center
C
y
center
100 µm
x center
circle
y
center
100
µm
100
µm
100
µm
x center
F
y
center
80 µm
Fig.27 Shapes of recognition pattern.
Page 37
2000 Feb 11 37
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages toberotatedcorrectly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
handbook, full pagewidth
MGS486
pad1
T2
T1
T3
SCL
SDA
OSC
RES
V
SS1VSS2
V
LCDINVLCDOUT
V
LCDSENSE
V
DD1VDD2VDD3
ENR
SA0
SDACK
PC8531-1
T4
x
y
0,0
C63
...
...
C127
...
C64
...
C31
...
C32
...
R32
...C0...
R0
...
C96
C95
...
R33
...
R1
...
Fig.28 Bonding pad location.
The positioning of the bonding pads is not to scale.
Page 38
2000 Feb 11 38
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
16 DEVICE PROTECTION DIAGRAM
For all diagrams: the maximum forward current is 5 mA and the maximum reverse voltage is 5 V.
handbook, full pagewidth
MGS485
V
DD1
V
DD1
V
SS1
V
SS2
V
SS1
SCL, SDA, SDACK
V
SS1
V
LCDIN
V
SS1
V
SS1
V
DD1
OSC, SA0, T3, T1, T4, RES, ENR
V
SS1
V
DD1
T2
PADS 43 to 49
PADS 35 to 42
PADS 57 to 63
V
DD3
V
SS1
PADS 32 to 34
V
LCDOUT
V
SS1
PADS 17 to 23
V
LCDIN
(SUPPLY),
V
LCDSENSE
V
SS1
PADS 16, 24 to 30
PADS 87 to 248
PADS 73, 74, 50, 51, 52
PADS 15, 54, 71, 72, 56, 31, 55
PAD 78
PADS 64 to 70
PADS 57 to 63
V
DD2
V
SS1
V
SS2
Fig.29 Device protection diagrams.
Page 39
2000 Feb 11 39
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
17 TRAY INFORMATION
handbook, full pagewidth
MGS488
D
C
A
x
y
F
E
B
Fig.30 Tray details.
The dimensions are given in Table 13.
Table 13 Dimensions
handbook, halfpage
MGS489
PC8531-1
Fig.31 Tray alignment.
The orientation of the IC in a pocket is indicated by the position of the IC type name on the die surface with respect to the chamfer on the upper left corner of the tray. Refer to the bonding pad location diagram for the orientating and position of the type name on the die surface.
DIM. DESCRIPTION VALUE
A pocket pitch; x direction 13.72 mm
B pocket pitch; y direction 4.17 mm C pocket width; x direction 12.34 mm D pocket width; y direction 2.05 mm
E tray width; x direction 50.8 mm
F tray width; y direction 50.8 mm
x number of pockets in x direction 3
y number of pockets in y direction 10
Page 40
2000 Feb 11 40
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
18 DEFINITIONS
19 LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
20 PURCHASE OF PHILIPS I
2
C COMPONENTS
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Purchase of Philips I
2
C components conveys a license under the Philips’ I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
Page 41
2000 Feb 11 41
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
NOTES
Page 42
2000 Feb 11 42
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
NOTES
Page 43
2000 Feb 11 43
Philips Semiconductors Product specification
34 × 128 pixel matrix driver PCF8531
NOTES
Page 44
© Philips Electronics N.V. SCA All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Internet: http://www.semiconductors.philips.com
2000
69
Philips Semiconductors – a w orldwide compan y
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Argentina: see South America Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PTPhilips Development Corporation,SemiconductorsDivision, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 3341 299, Fax.+381 11 3342 553
Printed in The Netherlands 465006/03/pp44 Date of release: 2000 Feb 11 Document order number: 9397 750 06616
Loading...