Datasheet PCA8582F-2P, PCA8582F-2T, PCD8582D-2P, PCD8582D-2T, PCF8582E-2P Datasheet (Philips)

...
Page 1
INTEGRATED CIRCUITS
DATA SH EET
PCX8582X-2 Family
Product specification Supersedes data of February 1992 File under Integrated Circuits, IC12
Philips Semiconductors
2
C-bus interface
December 1994
Page 2
Philips Semiconductors Product specification
QUICK REFERENCE DATA
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DD
supply voltage 2.5 6.0 V
I
DDR
supply current READ f
SCL
= 100 kHz VDD= 3 V 60 µA VDD= 6 V 200 µA
I
DDW
supply current ERASE/WRITE f
SCL
= 100 kHz VDD= 3 V 0.6 mA VDD= 6 V 2.0 mA
I
DDSB
supply current STANDBY VDD= 3 V 3.5 µA
VDD= 6 V 10 µA
256 x 8-bit CMOS EEPROMS with I
FEATURES
Low power CMOS – maximum active current 2.0 mA – maximum standby current 10 µA (at 6.0 V),
Non-volatile storage of 2-Kbits organized as 256 × 8-bits
Single supply with full operation down to 2.5 V
On-chip voltage multiplier
Serial input/output I2C-bus
Write operations
– byte write mode – 8-byte page write mode
Read operations – sequential read – random read
Internal timer for writing (no external components)
Power-on reset
High reliability by using a redundant storage code
Endurance
– >500 k E/W-cycles at T
40 years non-volatile data retention time (typ.)
Pin and address compatible to
– PCX8570, PCF8571, PCF8572 and PCF8581 – PCX8494X-2, PCX8598X-2 -Family.
2
C-bus interface
typical 4 µA
(minimizes total write time per byte)
= 22 °C
amb
PCX8582X-2 Family
DESCRIPTION
The PCX8582X-2 is a 2-Kbit (256 × 8-bit) floating gate electrically erasable programmable read only memory (EEPROM). By using an internal redundant storage code it is fault tolerant to single bit errors. This feature dramatically increases reliability compared to conventional EEPROM memories.
Power consumption is low due to the full CMOS technology used. The programming voltage is generated on-chip, using a voltage multiplier.
As data bytes are received and transmitted via the serial I2C-bus, a package using eight pins is sufficient. Up to eight PCX8582X-2 devices may be connected to the I2C-bus. Chip select is accomplished by three address inputs (A0, A1, A2).
Timing of the ERASE/WRITE cycle is carried out internally, thus no external components are required. Pin 7 (PTC) must be connected to either V
There is an option of using an external clock for timing the length of an ERASE/WRITE cycle.
or left open-circuit.
DD
December 1994 2
Page 3
Philips Semiconductors Product specification
256 x 8-bit CMOS EEPROMS
2
with I
ORDERING INFORMATION
PCF8582C-2P DIP8 plastic dual in-line package; PCD8582D-2P 25 +70 3.0 6.0 PCF8582E-2P 40 +85 4.5 5.5 PCA8582F-2P 40 +125 4.5 5.5 PCF8582C-2T SO8 plastic small outline PCD8582D-2T 25 +70 3.0 6.0 PCF8582E-2T 40 +85 4.5 5.5 PCA8582F-2T 40 +125 4.5 5.5
DEVICE SELECTION Table 1 Device selection code
SELECTION DEVICE CODE CHIP ENABLE R/
Bit b71 b6 b5 b4 b3 b2 b1 b0 Device 1 0 1 0 A2 A1 A0 R/W
Note
1. The MSB b7 is sent first.
C-bus interface
TYPE
NUMBER
PACKAGE TEMPERATURE (°C) SUPPLY (V)
NAME DESCRIPTION VERSION MIN. MAX. MIN. MAX.
SOT97-1 40 +85 2.5 6.0
8 leads (300 mil)
SOT96-1 40 +85 2.5 6.0 package; 8 leads; body width 3.9 mm
PCX8582X-2 Family
W
Table 2 Endurance and data retention guarantees
DEVICE ENDURANCE E/W CYCLES DATA RETENTION YEARS
PCF8582C-2; PCA8582F-2 500000
Note
1. At the time of publication of this data sheet the statistical history was not yet sufficient to guarantee 1000000000 E/W cycle performance for these types.
December 1994 3
(1)
40
Page 4
Philips Semiconductors Product specification
handbook, full pagewidth
MBC794
TEST MODE DECODER
POWER - ON RESET
I C - BUS CONTROL LOGIC
2
SEQUENCER
ADDRESS
HIGH
REGISTER
BYTE
COUNTER
DIVIDER
( 128)
EE
CONTROL
TIMER
( 16)
EEPROM
ADDRESS
POINTER
BYTE
LATCH
(8 bytes)
SHIFT
REGISTER
ADDRESS
SWITCH
INPUT
FILTER
OSCILLATOR
8
4
3
n
7
PTC
PCX8582X-2
4
V
SS
A1
A2
A0
321
8
V
DD
6
5
SCL
SDA
Fig.1 Block diagram.
256 x 8-bit CMOS EEPROMS
2
with I
BLOCK DIAGRAM
C-bus interface
PCX8582X-2 Family
December 1994 4
Page 5
Philips Semiconductors Product specification
Fig.2 Pin configuration.
handbook, halfpage
1 2 3 4
8 7 6 5
A0 A1 A2
V
SS
SDA
SCL
PTC
V
DD
PCX8582X-2
MBC792
256 x 8-bit CMOS EEPROMS
2
with I
C-bus interface
PINNING
SYMBOL PIN DESCRIPTION
A0 1 address input 0 A1 2 address input 1 A2 3 address input 2 V
SS
4 negative supply voltage SDA 5 serial data input/output (I2C-bus) SCL 6 serial clock input (I2C-bus) PTC 7 programming time control output V
DD
8 positive supply voltage
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DD
V
I
I
I
I
O
T
stg
T
amb
supply voltage 0.3 +7.0 V voltage on any input pin |ZI| > 500 VSS− 0.8 VDD+ 0.8 V current on any input pin 1 mA output current 10 mA storage temperature −65 +150 °C operating ambient temperature
PCF8582C-2; PCF8582E-2 40 +85 °C PCD8582D-2 25 +70 °C PCA8582F-2 40 +125 °C
PCX8582X-2 Family
December 1994 5
Page 6
Philips Semiconductors Product specification
256 x 8-bit CMOS EEPROMS
2
with I
C-bus interface
CHARACTERISTICS
PCF8582C-2: VDD= 2.5 to 6.0 V; VSS= 0 V; T PCD8582D-2: V PCF8582E-2: V PCA8582F-2: V
= 3.0 to 6.0 V; VSS= 0 V; T
DD
= 4.5 to 5.5 V; VSS= 0 V; T
DD
= 4.5 to 5.5 V; VSS= 0 V; T
DD
= 40 to +85 °C; unless otherwise specified.
amb
= 25 to +70 °C; unless otherwise specified.
amb
= 40 to +85 °C; unless otherwise specified.
amb
= 40 to +125 °C; unless otherwise specified.
amb
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
Supplies
V
DD
supply voltage
PCF8582C-2 2.5 6.0 V PCD8582D-2 3.0 6.0 V PCF8582E-2; PCA8582F-2 4.5 5.5 V
I
DDR
supply current READ f
= 100 kHz
SCL
PCF8582C-2; PCD8582D-2 VDD= 3.0 V 60 µA
VDD= 6.0 V 200 µA
PCF8582E-2; PCA8582F-2 VDD= 5.5 V 200 µA
I
DDW
supply current ERASE/WRITE f
= 100 kHz
SCL
PCF8582C-2; PCD8582D-2 VDD= 3.0 V 0.6 mA
VDD= 6.0 V 2.0 mA
PCF8582E-2; PCA8582F-2 VDD= 5.5 V 2.0 mA
I
DDSB
supply current STANDBY f
= 100 kHz
SCL
PCF8582C-2; PCD8582D-2 VDD= 3.0 V 3.5 µA
VDD= 6.0 V 10 µA
PCF8582E-2; PCA8582F-2 VDD= 5.5 V 10 µA
PTC input (pin 7)
V
IL
V
IH
LOW level input voltage 0.8 0.1V HIGH level input voltage 0.9V
SCL input (pin 6)
V V I f C
IL
IH LI SCL
I
LOW level input voltage 0.8 0.3V HIGH level input voltage 0.7V input leakage current VI= VDDor V
SS
clock input frequency 0 100 kHz input capacitance VI= V
SS
SDA input/output (pin 5)
V
IL
V
IH
V
OL
I
LO
C
I
LOW level input voltage 0.8 0.3V HIGH level input voltage 0.7V LOW level output voltage IOL= 3 mA; V output leakage current VOH= V input capacitance VI= V
DD(min)
DD
SS
Data retention time
t
S
data retention time T
= 55 °C 10 years
amb
PCX8582X-2 Family
V
DD
VDD+ 0.8 V
DD
V
DD
VDD+ 0.8 V
DD
±1 µA
7 pF
V
DD
VDD+ 0.8 V
DD
0.4 V
1 µA
7 pF
December 1994 6
Page 7
Philips Semiconductors Product specification
256 x 8-bit CMOS EEPROMS
2
with I
C-bus interface
WRITE CYCLE LIMITS
Selection of the chip address is achieved by connecting the A0, A1 and A2 inputs to either VSS or VDD.
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT ERASE/WRITE cycle timing
t
E/W
ERASE/WRITE cycle time
internal oscillator 7 ms external clock 4 10 ms
Endurance
N
E/W
ERASE/WRITE cycle per byte
PCF8582C-2 T
PCD8582D-2 T
PCF8582E-2 T
PCA8582F-2 T
= 85 °C; t
amb
T
= 22 °C; t
amb
= 25 to +70 °C;
amb
t
= 4 to 10 ms
E/W
T
= 25 to +40 °C; t
amb
= 40 to +85 °C;
amb
t
= 4 to 10 ms
E/W
T
= 22 °C; t
amb
= 125 °C; t
amb
T
= 85 °C; t
amb
T
= 22 °C; t
amb
= 4 to 10 ms 100000 cycles
E/W
= 5 ms 500000 cycles
E/W
= 5 ms 100000 cycles
E/W
= 5 ms 100000 cycles
E/W
= 4 to 10 ms 50000 cycles
E/W
= 4 to 10 ms 100000 cycles
E/W
= 5 ms 500000 cycles
E/W
PCX8582X-2 Family
10000 cycles
10000 cycles
December 1994 7
Page 8
Philips Semiconductors Product specification
Fig.3 Slave address.
handbook, halfpage
MBC793
1 0 1 0 A2 A1 A0 R/W
256 x 8-bit CMOS EEPROMS
2
with I
I2C-BUS PROTOCOL
The I2C-bus is for 2-way, 2-line communication between different ICs or modules. The serial bus consists of two bidirectional lines: one for data signals (SDA), and one for clock signals (SCL).
Both the SDA and SCL lines must be connected to a positive supply voltage via a pull-up resistor.
The following protocol has been defined:
Data transfer may be initiated only when the bus is not busy.
During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as control signals.
The following bus conditions have been defined:
Bus not busy: both data and clock lines remain HIGH.
Start data transfer: a change in the state of the data
line, from HIGH-to-LOW, while the clock is HIGH, defines the start condition.
Stop data transfer: a change in the state of the data line, from LOW-to-HIGH, while the clock is HIGH, defines the stop condition.
Data valid: the state of the data line represents valid data when, after a start condition, the data line is stable for the duration of the HIGH period of the clock signal. There is one clock pulse per bit of data.
Each data transfer is initiated with a start condition and terminated with a stop condition; the number of the data bytes, transferred between the start and stop conditions is limited to seven bytes in the ERASE/WRITE mode and eight bytes in the PAGE ERASE/WRITE mode. Data transfer is unlimited in the READ mode. The information is transmitted in bytes and each receiver acknowledges with a ninth bit.
Within the I2C-bus specifications a low-speed mode (2 kHz clock rate) and a high speed mode (100 kHz clock rate) are defined.
The PCX8582X-2 operates in both modes. By definition a device that sends a signal is called a
‘transmitter’, and the device which receives the signal is called a ‘receive’. The device which controls the signal is called the ‘master’. The devices that are controlled by the master are called ‘slaves’.
C-bus interface
PCX8582X-2 Family
Each byte is followed by one acknowledge bit. This acknowledge bit is a HIGH level, put on the bus by the transmitter. The master generates an extra acknowledge related clock pulse. The slave receiver which is addressed is obliged to generate an acknowledge after the reception of each byte.
The master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.
The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse.
Set-up and hold times must be taken into account. A master receiver must signal an end of data to the slave transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master generation of the stop condition.
DEVICE ADDRESSING
Following a start condition the bus master must output the address of the slave it is accessing. The most significant four bits of the slave address are the device type identifier (see Fig.3). For the PCX8582X-2 this is fixed as 1010.
The next three significant bits address a particular device. A system could have up to eight PCX8582X-2 devices on the bus. The eight addresses are defined by the state of the A0, A1 and A2 inputs.
The last bit of the slave address defines the operation to be performed. When set to logic 1 a read operation is selected.
Address bits must be connected to either VDD or VSS.
December 1994 8
Page 9
Philips Semiconductors Product specification
256 x 8-bit CMOS EEPROMS
2
with I
WRITE OPERATIONS Byte/word write
For a write operation the PCX8582X-2 requires a second address field. This address field is a word address providing access to the 256 words of memory. Upon receipt of the word address the PCX8582X-2 responds with an acknowledge and awaits the next eight bits of data, again responding with an acknowledge. Word address is automatically incremented. The master can now terminate the transfer by generating a stop condition or transmit up to six more bytes of data and then terminate by generating a stop condition.
After this stop condition the ERASE/WRITE cycle starts and the bus is free for another transmission. Its duration is 7 ms (typ.) per byte.
During the ERASE/WRITE cycle the slave receiver does not send an acknowledge bit if addressed via the I
C-bus interface
2
C-bus.
PCX8582X-2 Family
PAGE WRITE
The PCX8582X-2 is capable of an eight-byte page write operation. It is initiated in the same manner as the byte write operation. The master can transmit eight data bytes within one transmission. After receipt of each byte the PCX8582X-2 will respond with an acknowledge. The typical ERASE/WRITE time in this mode is 9 × 7 ms = 63 ms.
After the receipt of each data byte the three low order bits of the word address are internally incremented. The high order five bits of the address remain unchanged. If the master transmits more than eight bytes prior to generating the stop condition, no acknowledge will be given on the ninth (and following) data bytes and the whole transmission will be ignored. As in the byte write operation, all inputs are disabled until completion of the internal write cycles.
December 1994 9
Page 10
Philips Semiconductors Product specification
Fig.4 Auto increment memory word address; two byte write.
S
0 A
SLAVE ADDRESS WORD ADDRESS
A ADATA P
acknowledge
from slave
acknowledge
from slave
acknowledge
from slave
acknowledge
from slave
ADATA
R/W
auto increment
word address
auto increment
word address
MBA701
Fig.5 Page write operation; eight byte.
handbook, full pagewidth
S 0 ASLAVE ADDRESS WORD ADDRESS A A
DATA N
acknowledge
from slave
acknowledge
from slave
acknowledge
from slave
R/W
auto increment
word address
acknowledge
from slave
A
DATA N + 1
auto increment
word address
MBA702
A
acknowledge
from slave
1DATA N + 7
auto increment
word address
last byte
256 x 8-bit CMOS EEPROMS
2
with I
C-bus interface
PCX8582X-2 Family
December 1994 10
Page 11
Philips Semiconductors Product specification
Fig.6 Master reads PCX8582X-2 slave after setting word address (WRITE word address; READ data).
handbook, full pagewidth
S 0 ASLAVE ADDRESS WORD ADDRESS A A
SLAVE ADDRESS
acknowledge
from slave
acknowledge
from slave
acknowledge
from slave
R/W
acknowledge
from master
A
DATA
auto increment
word address
MBA703 - 1
P
no acknowledge
from master
1DATA
auto increment
word address
last byte
R/W
S 1
n bytes
at this moment master transmitter becomes master receiver and EEPROM slave receiver becomes slave transmitter
Fig.7 Master reads PCX8582X-2 immediately after first byte (READ mode).
handbook, full pagewidth
S
1 A
SLAVE ADDRESS DATA
A 1DATA
acknowledge
from slave
acknowledge
from master
no acknowledge
from master
R/W
auto increment
word address
MBA704 - 1
auto increment
word address
n bytes last bytes
P
256 x 8-bit CMOS EEPROMS
2
with I
C-bus interface
READ OPERATIONS
Read operations are initiated in the same manner as write operations with the exception that the LSB of the slave address is set to logic 1. There are three basic read operations; current address read, random read and sequential read.
PCX8582X-2 Family
December 1994 11
Page 12
Philips Semiconductors Product specification
handbook, full pagewidth
MBA705
t
BUF
HD;STA
t
SCL
SDA
P S
t
LOW
t
r
HD;DAT
t
SU;DAT
t
t
f
t
HIGH
S
HD;STA
t
SU;STA
t
SU;STO
t
P
Fig.8 Timing requirements for the I
2
C-bus.
256 x 8-bit CMOS EEPROMS
2
with I
I2C-BUS TIMING
C-bus interface
PCX8582X-2 Family
December 1994 12
Page 13
Philips Semiconductors Product specification
256 x 8-bit CMOS EEPROMS
2
with I
C-bus interface
I2C-BUS CHARACTERISTICS
All of the timing values are valid within the operating supply voltage and ambient temperature range and refer to VIL and VIH with an input voltage swing from VSS to VDD.
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
f
SCL
t
BUF
t
HD;STA
t
LOW
t
HIGH
t
SU;STA
t
HD;DAT
t
HD;DAT
t
SU;DAT
t
r
t
f
t
SU;STO
clock frequency 0 100 kHz time the bus must be free before new transmission can start 4.7 µs start condition hold time after which first clock pulse is generated 4.0 µs LOW level clock period 4.7 µs HIGH level clock period 4.0 µs set-up time for start condition repeated start 4.7 µs data hold time for bus compatible masters 5 µs data hold time for bus devices note 1 0 ns data set-up time 250 ns SDA and SCL rise time 1 µs SDA and SCL fall time 300 ns set-up time for stop condition 4.7 µs
Note
1. The hold time required (not greater than 300 ns) to bridge the undefined region of the falling edge of SCL must be
internally provided by a transmitter.
PCX8582X-2 Family
December 1994 13
Page 14
Philips Semiconductors Product specification
Fig.9 One byte ERASE/WRITE cycle.
handbook, full pagewidth
tdt
HIGH
f
t
r
t
LOW
t
STOP
1 2
257
PTC
SDA
SCL
MBA697
Fig.10 n byte ERASE/WRITE cycle (n = 2 to 7).
handbook, full pagewidth
tdt
HIGH
f
t
r
t
LOW
t
STOP
1 2PTC
SDA
SCL
MBA698
n x 256 + 1
Fig.11 Page mode.
handbook, full pagewidth
tdt
HIGH
f
t
r
t
LOW
t
STOP
1 2PTC
SDA
SCL
MBA699
1153
256 x 8-bit CMOS EEPROMS
2
with I
EXTERNAL CLOCK TIMING
C-bus interface
PCX8582X-2 Family
December 1994 14
Page 15
Philips Semiconductors Product specification
Fig.12 External clock.
(1) If an external clock is chosen, this information is latched internally by setting pin 7 (PTC) LOW
after transmission of the eighth bit of the word address (negative edge of SCL).
Thus the state of pin 7 may be previously undefined. Leaving pin 7 LOW causes a higher standby current. (2) 1-byte programming. (3) 2-byte programming. (4) One page (8 byte) programming.
handbook, full pagewidth
S
0 A A DATA A DATA A
P
SLAVE ADDRESS WORD ADDRESS
(1)
undefined
1 1 1
2 2 2
257 513
1153
clock (2) clock (3) clock (4)
d
t 0
negative edge
SCL 8-bit
undefined
LOW
HIGH
PTC
2
I C-bus
MBA700
256 x 8-bit CMOS EEPROMS
2
with I
C-bus interface
PCX8582X-2 Family
December 1994 15
Page 16
Philips Semiconductors Product specification
Fig.13 Plastic dual in-line package; 8 leads (300 mil) DIP8; SOT97-1.
Dimensions in mm.
handbook, full pagewidth
8.25
7.80
0.38 max
10.0
8.3
7.62
MSA252 - 1
6.48
6.20
1.73 max
5
8
41
1.15 max
0.53 max
0.254 M
3.2
max
4.2
max
3.60
3.05
9.8
9.2
2.54 (3x)
0.51 min
seating plane
256 x 8-bit CMOS EEPROMS
2
with I
PACKAGE OUTLINES
C-bus interface
PCX8582X-2 Family
December 1994 16
Page 17
Philips Semiconductors Product specification
Fig.14 Plastic small outline package; 8 leads; body width 3.9 mm (SO8; SOT96-1).
Dimensions in mm.
handbook, full pagewidth
pin 1 index
0.7
0.3
0.49
0.36
1.27
0.25 M (8x)
1
4
5
0.1 SS
5.0
4.8
4.0
3.8
6.2
5.8
A
8
MBC180 - 1
0.25
0.19
0.7
0.6
1.75
1.35
1.45
1.25
detail A
1.0
0.5
0.25
0.10
0 to 8
o
256 x 8-bit CMOS EEPROMS
2
with I
C-bus interface
PCX8582X-2 Family
December 1994 17
Page 18
Philips Semiconductors Product specification
256 x 8-bit CMOS EEPROMS
2
with I
SOLDERING Plastic dual in-line packages
B
Y DIP OR WAVE
The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 s. The total contact time of successive solder waves must not exceed 5 s.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.
REPAIRING SOLDERED JOINTS Apply a low-voltage soldering iron below the seating plane
(or not more than 2 mm above it). If its temperature is below 300 °C, it must not be in contact for more than 10 s; if between 300 and 400 °C, for not more than 5 s.
Plastic small-outline packages
BY WAVE During placement and before soldering, the component
must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.
Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C.
A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.
C-bus interface
PCX8582X-2 Family
Y SOLDER PASTE REFLOW
B Reflow soldering requires the solder paste (a suspension
of fine solder particles, flux and binding agent) to be applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.
Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C.
R
EPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING
IRON OR PULSE
Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.)
For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.
-HEATED SOLDER TOOL)
December 1994 18
Page 19
Philips Semiconductors Product specification
256 x 8-bit CMOS EEPROMS
2
with I
DEFINITIONS
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
PURCHASE OF PHILIPS I
C-bus interface
2
C COMPONENTS
PCX8582X-2 Family
2
Purchase of Philips I components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
December 1994 19
C components conveys a license under the Philips’ I2C patent to use the
Page 20
Philips Semiconductors – a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40 783 749, Fax. (31)40 788 399
Brazil: Rua do Rocio 220 - 5
CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970). Tel. (011)821-2333, Fax. (011)829-1849
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:
Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (9)0-50261, Fax. (9)0-520971
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: P.O. Box 10 63 23, 20043 HAMBURG,
Tel. (040)3296-0, Fax. (040)3296 213.
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
Hong Kong: PHILIPS HONG KONG Ltd., 6/F Philips Ind. Bldg.,
24-28 Kung Yip St., KWAI CHUNG, N.T., Tel. (852)424 5121, Fax. (852)428 6729
India: Philips INDIA Ltd, Shivsagar Estate, A Block ,
Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01)640 000, Fax. (01)640 200
Italy: PHILIPS SEMICONDUCTORS S.r.l.,
Piazza IV Novembre 3, 20124 MILANO, Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. (03)3740 5028, Fax. (03)3740 0580
Korea: (Republic of) Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,
Tel. 9-5(800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB
Tel. (040)783749, Fax. (040)788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022)74 8000, Fax. (022)74 8341
th
floor, Suite 51,
Pakistan: Philips Electrical Industries of Pakistan Ltd.,
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546.
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474
Portugal: PHILIPS PORTUGUESA, S.A.,
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)4163160/4163333, Fax. (01)4163174/4163366.
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd.,
195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494.
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01)488 2211, Fax. (01)481 77 30
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (662)398-0141, Fax. (662)398-3319.
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. (0212)279 2770, Fax. (0212)269 3094
United Kingdom: Philips Semiconductors LTD.,
276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. (081)730-5000, Fax. (081)754-8421
United States:811 East Arques Avenue, SUNNYVALE,
CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (02)70-4044, Fax. (02)92 0601
For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BE-p, P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825
SCD36 © Philips Electronics N.V. 1994
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
493061/1500/02/pp20 Date of release: December 1994 Document order number: 9397 743 70011
Philips Semiconductors
Loading...