Datasheet PC9D17 Datasheet (Sharp)

PC9D17
Lead forming type (I type) and taping reel type (P type) are also available. (PC9D17I/PC9D17P)
Features
2. High speed response (t
, t
PHL
: TYP. 0.3µs at R
PLH L
= 1.9k
3. High instantaneous common mode rejection voltage CM
: TYP. 1kV/µs
H
4. Standard dual-in-line package
5. Recognized by UL, file No. E64380
Applications
1. Electronic calculators, measuring instruments
2. Digital audio equipment
3. High speed receivers
4. Switching regulators
)
High Speed, High Common Mode Rejection, 2-channel OPIC Photocoupler
Outline Dimensions
2.54
Primary side mark (
)
Sunken place
± 0.3
1.2
± 0.25
PC9D17
12 34
9.22
± 0.1
0.5
0.8
5678
0.85
± 0.5
± 0.5
3.0
± 0.2
± 0.5
6.5
± 0.3
± 0.5
3.5
TYP.
0.5
(
Internal connection
diagram
1234
± 0.3
7.62
± 0.1
0.26
θ : 0 to 13 ˚
PC9D17
Unit : mm
5678
θ
)
Absoulte Maximum Ratings
Parameter
*1
Forward current
Input
Output
*1 Each channel *2 40 to 60%RH, AC for 1 minute *3 For 10 seconds
*1
Reverse voltage
*1
Power dissipation Supply voltage
*1
Output voltage
*1
Output current
*1
Power dissipation
*2
Isolation voltage Operating temperature Storage temperature
*3
Soldering temperature
1 4 Anode 2 3 Cathode 5 GND
* “OPIC ” (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal­ processing circuit integrated onto a single chip.
(
Ta= 25˚C
)
Symbol Rating Unit
I
F
V
R
25 mA
5V
P45mW
V
V
I
P V T
T T
- 0.5 to + 15 V
CC
- 0.5 to + 15 V
O
O
O
iso
- 55 to + 100 ˚C
opr
- 55 to + 125 ˚C
stg
sol
8mA
35 mW
2 500
V
rms
260 ˚C
6 V 7 V 8 V
02 01 CC
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
PC9D17
Electro-optical Characteristics
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Forward voltage V
Input
Reverse current I Terminal capacitance C
) ) )
I I I
OH(1
OH(2
OH(3
Output
High level output current (1 High level output current (2 High level output current (3 Low level output voltage V Low level supply current I High level supply current (1 High level supply current (2
) )
I
CCH(1
I
CCH(2
Current transfer ratio CTR Isolation resistance R Floating capacitance C
Transfer
charac-
teristics
“HighLow ”
propagation delay time
“LowHigh ”
propagation delay time Instantaneous common mode rejection
voltage “ High level output ” Instantaneous common mode rejection
voltage “ Low level output ”
t
t
CM
CM
Recommended Operating Conditions
Parameter Symbol MIN. TYP. MAX. Unit Forward current Supply voltage V Operating temperature T
I
F
CC
opr
- - 16 mA
-5-V
0 - 70 ˚C
(
Unless otherwise specified, Ta = 0 to + 70˚C
Ta= 25˚C, IF= 16mA - 1.7 1.95 V
F
Ta= 25˚C, VR=5V - - 10 µA
R
Ta= 25˚C, VF= 0, f= 1MH
t
)
Ta= 25˚C, IF= 0, VCC=VO= 5.5V
)
Ta= 25˚C, IF= 0, VCC=VO= 15V
)
IF= 0, VCC=VO= 15V - - 50 µ A
= 16mA, IO= 2.4mA, VCC= 4.5V
OLIF
= 16mA, VO= open, VCC= 15V
CCLIF
)
Ta = 25˚C, IF= 0, VO= open VCC= 15V
)
IF= 0, VO= open, VCC= 15V - 2 µA Ta = 25˚C, IF= 16mA, VO= 0.4V, VCC= 4.5V Ta = 25˚C, DC500V, 40 to 60% RH
ISO
Ta= 25˚C, V= 0, f = 1MH
f
Ta= 25˚C, RL= 1.9k
PHL
PLH
= 16mA, VCC=5V
I
F
Ta= 25˚C, RL= 1.9k
= 16mA, VCC=5V
I
F
Ta= 25˚C, IF= 0, RL= 1.9k
H
VCM= 10Vp-p, VCC=5V Ta = 25˚C, IF= 16mA, RL= 19k
L
VCM= 10Vp-p, VCC=5V
Z
- 60 250 pF
Z
- 500 nA
-
--1µA
- - 0.4 V
- 400 - µ A
- 0.02 1 µA
19 - - %
5x101010
11
- 0.6 - pF
Fig. 1
- 0.3 0.8 µ s
Fig. 1
- 0.3 0.8 µ s
Fig. 2
--V/µs
1 000
Fig. 2
- 1 000
--V/µs
All typical values: at Ta= 25˚C
)
-
Fig. 1 Test Circuit for Propagation Delay Time
Pulse input Pulse width
10 µ s
I
1/10
100
F
2 3 45
81 7
R
0.01 µ F
L
6
Duty ratio
I
monitor
F
C
V
CC
V
O
= 15pF
L
I
F
0
V
O
1.5V
t
PHL
t
PLH
1.5V
5V
V
OL
Fig. 2 Test Circuit for Instantaneous Common Mode Rejection Voltage
PC9D17
I
F
2 3 45
V
FF
V
CM
+-
Fig. 3 Forward Current vs.
Ambient Temperature
30
25
)
20
mA
(
F
15
10
Forward current I
5
81 7
R
L
6
0.01µF
10V V
CM
CM
CM
10%
0V
H
V
O
= 0mA
I
F
L
V
O
= 16mA
I
F
V
CC
V
O
90%
t
r
0.8V
10%
90%
t
f
2V
5V
V
O
Fig. 4 Power Dissipation vs.
Ambient Temperature
60
50
) mW
(
40
30
20
power dissipation P,Po
10
P
P
O
0
1251007550250-55
Ambient temperature Ta (˚C
)
Fig. 5 Forward Current vs. Forward Voltage
100
10
)
mA
(
F
1
Forward current I
0.1
0.01
1.0
= 75˚C
T
a
50˚C
Forward voltage V
25˚C
0˚C
- 25˚C
1.5 (V)
F
2.0
0
1251007550250-55
Forward voltage VF (V
)
Fig. 6 Output Current vs. Output Voltage
(
Dotted line shows pulse characteristics
20
VCC=5V T
= 25˚C
a
) mA
(
O
10
Output current I
0
01020
Output voltage VO (V
IF= 25mA
20mA
15mA
10mA
5mA
)
)
PC9D17
Fig. 7 Relative Current Transfer Ratio vs.
Forward Current
150
=5V
V
CC
V
= 0.4V
T
O
= 25˚C
a
)
%
(
100
50
Relative current transfer ratio
0
0.1
CTR= 100% at
IF= 16mA
1 10 100
Forward current I
F
(mA)
Fig. 9 Propagation Delay Time vs.
Ambient Temperature
800
)
ns
(
600
PLH
, t
PHL
I
= 16mA
F
V
CC
R
L
=5V
= 1.9k
400
t
PLH
200
t
PHL
Propagation delay time t
0
- 60 - 20 20 60 10080400-40 Ambient temperature Ta (˚C
)
Fig.11 Output Voltage vs. Forward Current
6
5
)
V
4
(
O
3
2
Output current V
1
R
L
4.1k 10k
= 1.9k
V
=5V
CC
Ta= 25˚C
Fig. 8 Relative Current Transfer Ratio vs.
Ambient Temperature
150
)
%
(
= 16mA
I
F
V
O
V
CC
= 0.4V
=5V
100
50
Relative current transfer ratio
CTR= 100% at Ta= 25˚C
0
-30 0 20 40 60 80 100 Ambient temperature T
(˚C)
a
Fig.10 Propagation Delay Time vs.
Load Resistance
10
VCC=5V
= 16mA
I
F
= 25˚C
T
) µs
(
a
t
1
PLH
Propagation delay time
t
PHL
0.1 0
Load resistance R
10 100
(k)
L
Fig.12 High Level Output Current vs.
Ambient Temperature
-5
10
-6
)
10
A
(
OH
-7
10
-8
10
-9
10
High level output current I
-10
10
V
CC=VO
=5V
0
10
Forward current I
F
(mA)
200
-11
10
- 60 - 40 - 20 0 20 100806040
Ambient temperature T
(˚C)
a
Fig.13 Frequency Response
0
-5
= 100
R
)
-10
dB
(
-15
-20
Voltage gain Av
-25
-30
0.1 0.2 0.5 1 2 5 10
L
220 470
1k
Frequency f (MHz
)
IF= 16mA T
= 25˚C
a
Test Circuit for Frequency Response
5V
AC Input
560
20k
100
1 2 3 4
1.6V DC
0.25V
Precautions for Use
(1)
It is recommended that a by-pass capacitor of more than 0.01µF is added between V
GND near the device in order to stabilize power supply line.
(2)
Transistor of detector side in bipolar configuration is apt to be affected by static electricity for its minute design. When handling them, general counterplan against static electricity should be taken to avoid breakdown of devices or degradation of characteristics.
(3)
As for other general cautions, refer to the chapter “Precautions for Use”.
P -P
CC
AC
and
PC9D17
8 7 6 5
15V
R
L
V
O
Loading...