Datasheet PC929 Datasheet (Sharp)

Page 1
PC929
(
TÜV
VDE 0884) approved type is also available as an option.
PC929
Shortcircuit Protector Circuit Built-in Photocoupler Suitable for Inverter-Driving MOS-FET/IGBT
Features
1. Built-in IGBT shortcircuit protector circuit
2. Built-in direct drive circuit for IGBT drive (Peak output current ... I
3. High speed response (t
4. High isolation voltage (V
O1P, IO2P : MAX. 0.4A)
, t
: MAX. 0.5µs)
PLH
PHL
: 4000V
iso
)
rms
5. Half lead pin pitch (p=1.27 mm) package type
6. Recognized by UL, file NO. E64380
Application
1. IGBT control for inverter drive
Absolute Maximum Ratings
Parameter
*1
Forward current
Input
Reverse voltage V Supply voltage V O1 output current
*4
peak output current
O
1
O2 output current
*4
peak output current
O
2
Output
output voltage
O
1
*2
Power dissipation Overcurrent detecting voltage Overcurrent detecting current Error signal output voltage Error signal output current
*3
Total power dissipation
*5
Isolation voltage Operating temperature T Storage temperature T Soldering temperature T
*1, 2, 3 Decrease in the ambient temperature range of the Absolute Max. Rating : Shown in Figs 1 and 2. *4 Pulse width<=0.15µs, Duty ratio=0.01 *5 40 to 60% RH, AC for 1 minute, Ta=25˚C
(Ta=Topr unless otherwise specified)
Symbol
I
I V
V
V
Rating Unit
I
F
R
CC
I
O1
O1P
I
O2
O2P
O1
P
O
V
C VCC
I
C
FS VCC
I
FS
P
tot
iso
opr
stg
sol
20 mA
6 (Ta=25˚C) V
35 V
0.1 A
0.4 A
0.1 A
0.4 A 35 V
500 mW
30 mA
20 mA
550 mW
4 000 Vrms
-25to +80
-55to +125
260 (for 10 sec)
V
V
˚C ˚C ˚C
Outline Dimensions
1011121314
89
PC929
Primary side mark
* "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal processing circuit integrated onto a single chip.
1234567
9.22
14-
Internal connection diagram
1234567
Interface
Constant
voltage circuit
12-
1.27
1011121314
Amp.
89
IGBT protector
circuit
0.26
1.0 1.0
1 Cathode 2 Cathode 3 Anode 4NC 5NC 6NC 7NC
Terminals 4 to 7 : Shortcircuit in element
Operation truth table is shown on the next page.
7.62
10.0
8FS 9C 10 11 12 13 14
(Unit : mm)
GND O
2
O
1
V
CC
GND
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
Page 2
PC929
Electro-optical Characteristics (1)
(Ta=Topr unless otherwise specified)
Parameter Symbol Conditions MIN. TYP. MAX. Unit Forward voltage Reverse current I
Input
V V
Terminal capacitance C Operating supply voltage
O1 low level output voltage
O
high level output voltage
2
O
low level output voltage
2
Output
O leak current High level supply current I
Low level supply current I
*7
"LowHigh" threshold input current
V
V
V V
V
CCH
CCL
I
FLH
Isolation resistance R
"LowHigh" propagation delay time "HighLow" propagation delay time
t
PLH
t
PHL
Rise time t
Response time
Instantaneous common mode rejection voltage "Output : High level"
Transfer characteristics
Instantaneous common mode rejection voltage "Output : Low level"
*6 When measuring output and transfer characteristics, connect a bypass capacitor (0.01µ F or more) between V 13 and GND 14 near the device. *7 I represents forward current when output goes from "Low" to "High".
FLH
*8 FS=OPEN, V =0V
C
Fall time t
CM
CM
Ta= 25˚C, IF= 10mA - 1.6 1.75 V -
F1
Ta= 25˚C, IF= 0.2mA 1.2 1.5 - V -
F2
Ta= 25˚C, VR=5V - - 10 µA-
R
Ta= 25˚C, V= 0, f= 1kHz - 30 250 pF -
t
Ta= - 10 to 60˚C 15 - 30 V
CC
V
= 12V, V
O1L
O2H
O2L
O1L
CC1
I
= 0.1A, IF= 5mA
O1
V
CC=VO1
I
= 5mA
F
VCC=VO1= 24V, IO2= 0.1A, IF= 0mA Ta= 25˚C, VCC=VO1= 35V, IF= 0mA Ta= 25˚C, VCC=VO1= 24V, IF= 5mA VCC=VO1= 24V, IF= 5mA Ta= 25˚C, VCC=VO1= 24V, IF= 0mA VCC=VO1= 24V, IF= 0mA Ta= 25˚C, VCC=VO1= 24V VCC=VO1= 24V Ta= 25˚C, DC500V, 40 to60% RH
ISO
Ta= 25˚C, VCC=VO1= 24V RG=47Ω, CG= 3 000pF, IF= 5mA
r
f
Ta= 25˚C, VCC=VO1= 24V, IF= 5mA
H
L
= 600V(peak), V
V
CM
Ta= 25˚C, VCC=VO1= 24V, IF= 0mA
= 600V(peak), V
V
CM
- 15 - 24 V = - 12V
CC2
= 24V, IO2= - 0.1A
- 0.2 0.4 V
*8
20 22 - V
*8
- 1.2 2.0 V
*8
- - 500 µ A
*8
-1017mA
*8
- - 19 mA
*8
-1118mA
*8
- - 20 mA
*8
0.3 1.5 3.0 mA
*8
0.2 - 5.0 mA
*8
5x10101x10
11
- 0.3 0.5 µs
- 0.3 0.5 µs
- 0.2 0.5 µs
*8
- 0.2 0.5 µs
O2H
O2L
= 2.0V
= 2.0V
CC
- 1 500
*8
1 500
*8
--V/µs
--V/µs
Measuring
circuit
-
(1)
(2) (3)
(4)
(
)
6
(5)
--
(8)
(
)
7
Truth Table
Input
ON
OFF
Output FS OutputC Input/Output
O
2
Low level High level High level High level Low level Low level Low level Low level High level High level Low level High level
For protective operation
Page 3
PC929
Electro-optical Characteristics (2)
Parameter Symbol Conditions Unit
*9
*9
*9
*9 When measuring overcurrent, protective output and error signal output characteristics, connect a bypass capacitor (0.01µ F or more) between V 13 and GND 14 near the device. *10 V represents C-terminal voltage when O output goes from "High" to "Low".
*10
Overcurrent detecting voltage Overcurrent detecting voltage
detection
hysteresis width
Overcurrent
O2 "HighLow" delay time at protection from overcurrent
O2 fall time at protection from overcurrent
O2 output voltage at protection from overcurrent
Protective output
Low level error signal voltage
High level error signal current
Error signal "HighLow" delay time
Error signal output
Error signal output pulse width
CTH 2
V
CTH
V
CHIS
t
PCOHL
t
PCOtf
V
V
I
FSH
t
PCFHL
t
OE
FSL
T
= 25˚C, IF= 5mA
a
VCC=V01= 24V, RG=47
= 3 000pF, FS= OPEN
C
G
Ta= 25˚C V C C
= 24V, IF= 5mA
CC=V01
= 3 000pF, RG=47
G
= 1 000pF, RC=1k
P
FS= OPEN
T
= 25˚C, IF= 5mA, IFS= 10mA
a
VCC=VO1= 24V, RG=47Ω, CG= 3 000pF, C = OPEN
T
= 25˚C, IF= 5mA, VFS= 24V
a
V
= 24V, RG=47Ω, CG= 3 000pF,
CC=VO1
VC=0V Ta= 25˚C, RFS= 1.8k
V CG= 3 000pF, RG=47
FS
C
= 24V, IF= 5mA
CC=VO1
= 1 000pF, RC=1k
P
(Ta=Topr unless otherwise specified)
MIN. TYP. MAX.
V
-
VCC-
6.0
VCC-
5.5
V
CC
6.5
123V
-410
µs
25-µs
--2V
- 0.2 0.4 V
- - 100 µ A(12
-15µs
20 35 - µs
CC
Test circuit
(9)
(13)
(10)
(11)
)
(14)
Fig. 1 Forward Current vs. Ambient
Temperature
60
50
40
(mA)
F
30
20
Forward current I
10
0
0 25 50 75 80 100 125-25
Ambient temperature Ta (˚C)
Fig. 2 Power Dissipation vs. Ambient
Temperature
600 550 500
400
300
200
100
Power dissipation Ptot, Po (mW)
0
0 25 50 75 80 100 125-25
Ambient temperature Ta (˚C)
Page 4
Test Circuit Diagram
PC929
(1)(
3
I
F
1
(
)(
3
3
I
F
1
(
)(
5
3
V
I
F
variable
1
(
)(
7
A
VCMwaveform
CM
, VO2waveform
H
SW at A, I
F
CM
, VO2waveform
L
SW at B, IF= 0mA
SW
B
= 5mA
3
1
PC929
2
PC929
2
PC929
2
PC929
2
+-
V
CM
13 12 11 10
14
9 8
13 12 11 10
14
9 8
13 12 11 10
14
9 8
13 12 11 10
14
9 8
V
O2L
V
V
O1L
V
V
O2L
V
O2
V
V
O2
V
I
O2H
O1
V
CC1
V
CC2
V
CC
I
O2
V
CC
V
CC
(Peak)
V
CM
GND
V
O2H
V
O2L
GND
)
2
3
I
F
1
)
4
3
I
F
1
)
6
3
I
F
1
)
8
3
1
V
V
IN
V
OUT
tr= tf= 0.01 µ s Pulse width : 5 µ s
IN
Duty ratio=50%
waveform
waveform
PC929
2
PC929
2
PC929
2
PC929
2
13 12 11 10
14
9 8
13 12 11 10
14
9 8
13 12 11 10
14
9 8
13 12 11 10
14
9 8
pLH
t
pHL
t
r
t
I
O2
V
CC
V
O2H
V
A
I
O1L
V
OUT
50%
t
f
I
R
A
CC
G
90% 50%
10%
V
CC
V
CC
V
CC
C
G
(
)(
9
3
V
I
F
1
PC929
2
13 12 11 10
14
9 8
V
R
OUT
V
CC
G
C
G
V
V
CTH
)
10
3
V
I
PC929
F
14
1
2
13 12 11 10
9 8
V
R
CC
G
R
C
V
OE
C
F
L
G
V
C
Page 5
Test Circuit Diagram
PC929
(11)
I
(13)
tr= tf= 0.01 µs Pulse width : 25µ s
V
IN
Duty ratio=25%
(12)
13
3
F
1
2
3
1
12 11
PC929 PC929
10
14
9 8
13 12 11
PC929 PC929
10
14
2
9 8
V V
FSLIFS
V
C
P
R
V
G
CC
C
G
V
OUT
R
G
V
CC
C
G
R
C
I
(14)
tr= tf= 0.01µ s Pulse width : 25µ s
V
IN
Duty ratio=25%
3
F
1
2
3
1
13 12 11 10
14
9 8
13 12 11 10
14
2
9 8
R
V
G
CC
C
G
V
I
FSH
A
FS
R
C
R
G
V
CC
C
G
R
FS
V
I
F
(Input current)
V
O2
(O2 output voltage)
C
(Detecting terminal)
FS
(Error signal output)
10%
t
pCFHL
t
pCOTF
90% 50% 10%
t
pCOHL
90%
50% 50%
OE
V
Error detecting threshold voltage (V
t
FS
CTH
)
Page 6
Operations of Shortcircuit Protector Circuit
Anode
Cathode
TTL, microcomputer, etc.
Light emitting diode
3
1
Photodiode
Constant voltage circuit
PC929
Amp.
Interface
IGBT protector circuit
GND
14
V
CC
13
O
1
12
O
2
11
R
G
C
9
FS
8
GND
10
Feedback to primary side
V
CC
IGBT
R
C
C
P
V
EE
1. Detection of increase in VCE (sat) of IGBT due to overcurrent by means of C-terminal 9 terminal)
2. Reduction of the IGBT gate voltage, and suppression of the collector current.
3. Simultaneous output of signals to indicate the shortcircuit condition (FS signal) from FS terminal to the microcomputer
4. Judgement and processing by the microcomputer
In the case of instantaneous shortcircuit, run continues. At fault, input to the photocoupler is cut off, and IGBT is turned OFF.
PC929
Precautions for Operation
1. It is recommended that a capacitor of about 1000pF is added between C-terminal and GND in order to prevent malfunction of C-terminal due to noise. In the case of capacitor added, rise of the detecting voltage is delayed. Thus, use together a resistance of about 1kset between Vcc and C-terminal. The C-terminal rise time varies with the time constant of CR added. Check sufficiently before use.
2.
The light-detecting element used for this product is provided with a parasitic diode between each terminal and GND. When a terminal happens to reach electric potential lower than GND potential even in a moment, malfunction or rupture may result. Design the circuit so that each terminal will be kept at electric potential lower than the GND potential at all times.
Loading...