Datasheet PC924 Datasheet (Sharp)

OPIC Photocoupler for IGBT
PC924
Lead forming type (I type) and taping reel type (P type) are also available. (PC924I/PC924P) ❈❈ TÜV
Features
1. Built-in direct drive circuit for IGBT drive (I
2. High speed response (t
3. Wide operating supply voltage range (V
4. High noise resistance type CM CM
5. High isolation voltage (V
1. IGBT drive for inverter control
(
VDE 0884) approved type is also available as an option.
: 0.4A
)
, t
PLH
: MAX. 2.0µs
PHL
)
: 5 000V
iso
)
rms
, I
O1P
O2P
: 15 to 30V at Ta = - 10 to 60˚C
CC
: MIN. - 1 500V/µs
H
: MIN. 1 500V/µs
L
)
Drive of Inverter
Outline Dimensions
± 0.25
2.54
5678
± 0.5
3.5
TYP.
0.5
PC924
123
± 0.5
9.66
0.5
± 0.5
3.4
4
0.85
1.2
± 0.5
6.5
Anode mark
* “OPIC ” (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal­ processing circuit integrated onto a single chip.
(
Unit : mm
Internal connection diagram
Tr
1
Interface
± 0.2
± 0.5
3.05
1234
7.62
0.26
θ = 0 to 13 ˚
1 Anode 2 Cathode 3 NC 4 NC
± 0.3
± 0.3
± 0.1
PC924
5678
θ
5 O 6 O 7 GND 8 V
CC
Tr
2
Amp.
1 2
)
Absolute Maximum Ratings
(
Unless specified, Ta = T
)
opr
Parameter Symbol Rating Unit
Input
Forward current I Reverse voltage V Supply voltage V
output current I
O
1
*1
O1 peak output current
Output
output current I
O
2
*1
O2 peak output current
output voltage V
O
1
Power dissipation P Total power dissipation P
*2
Isolation voltage Operating temperature T Storage temperature T
*3
Soldering temperature
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
F
R
CC
O1
I
O1P
O2
I
O2P
O1
O
tot
V
iso
opr
stg
T
sol
25
6
35
0.1
0.4
0.1
0.4 35
500 550
5 000
- 25 to + 80
- 55 to + 125 260
mA
V V A A A A
V mW mW
V
˚C ˚C ˚C
rms
*1 Pulse width<=0.15µs, Duty ratio : 0.01 *2 40 to 60%RH, AC for 1 minute, Ta= 25˚C *3 For 10 seconds
PC924
(
Ta= T
opr
*4
Parameter Symbol MIN. TYP. MAX. Unit Fig.
Ta =25˚C, I
V
Forward voltage
Input
Reverse current I Terminal capacitance C
Operating supply voltage V
O1 low level output voltage O2 high level output voltage
Output
O2 low level output voltage
leak current I
O
1
leak current I
O
2
High level supply current I
Low level supply current I
*5
“LowHigh” threshold
input current Isolation resistance R
“ LowHigh ” propagation delay time
Transfer
charac-
teristics
“ HighLow ” propagation delay time Rise time t
Response time
Fall time t
Instantaneous common mode rejection voltage “Output : High level”
Instantaneous common mode rejection voltage “Output : Low level”
*4 When measuring output and transfer characteristics, connect a by-pass capacitor (0.01µF or more) between V
and GND near the device.
CC
represents forward current when output goes from “ Low ” to “ High” .
*5 I
FLH
F1
Ta =25˚C, IF= 0.2mA - V -
V
F2
Ta =25˚C, V
R
Ta =25˚C, V= 0, f= 1kHz - 30 250 pF -
t
Ta = -10 to 60˚C 15 - 30 V
CC
V
V
O1L
I
O1
V
VCC=VO1= 24V, IO2= - 0.1A, IF= 10mA
O2H
V
VCC= 24V, IO2= 0.1A, IF=0
O2L
Ta= 25˚C, VCC=VO1= 35V, IF=0
O1L
Ta = 25˚C, VCC=VO2= 35V, IF= 10mA
O2L
Ta= 25˚C, VCC= 24V, IF= 10mA
CCH
VCC= 24V, IF= 10mA Ta= 25˚C, VCC= 24V, IF= 0 - 8 13 mA
CCL
V Ta= 25˚C, VCC= 24V mA
I
FLH
V Ta = 25˚C, DC= 500V, 40 to 60%RH
ISO
t
PLH
Ta= 25˚C, VCC= 24V, IF= 10mA
t
PHL
RC=47Ω, CG= 3,000pF
r
f
Ta= 25˚C, VCM= 600V(peak
CM
H
IF= 10mA, VCC= 24V, V Ta= 25˚C, VCM= 600V(peak
CM
L
IF= 0, VCC= 24V, V
Conditions
= 20mA
F
-V-
0.6
=4V
R
--10µA-
15 - 24 V
= 12V, V
CC1
= 0.1A, IF= 10mA
CC2
= - 12V
- 0.2 0.4 V 1
18 21 - V 2
- 1.2 2.0 V 3
- - 500 µA4
- - 500 µA5
- 6 10 mA
- - 14 mA
= 24V, IF= 0 - - 17 mA
CC
1.0
= 24V - mA
CC
0.6
5x101010
- µ s
- µ s
- 0.2 0.5 µ s
- 0.2 0.5 µ s
O2L
O2H
= 2.0V
)
= 2.0V
)
- - kV/ µs
- - kV/ µs
unless otherwise specified) Electro-optical Characteristics
1.2
0.9
4.0
11
1.0
1.0
-30
30
1.4
-
6
7.0
10.0
7
--
2.0
2.0 8
9
Truth Table
Input O2 Output Tr. 1 Tr. 2
ON High level ON OFF
OFF Low level OFF ON
Test Circuit
PC924
Fig. 1 Fig. 2
1
I
F
2
PC924
8
V
5
V
V
6
O1L
CC1
I
O1
V
CC2
7
Fig. 3 Fig. 4
PC924
PC924
PC924
8
5
6
7
V
V
O2L
V
CC
I
O2L
Fig. 6
8
5
6
I
A
O2L
V
CC
7
Fig. 8
8
5
V
6
V
CC
7
V
IN
t =t = 0.01µs
rf
Pulse width 5µ s Duty ratio 50 %
Fig. 5
Fig. 7
I
F
I
F
I
F
Variable
1
2
1
2
1
2
Fig. 9
PC924
+-
V
CM
8
5
V
6
V
7
CC
V
O2
1
SW
A
B
2
1
I
F
PC924
2
1
I
F
PC924
2
1
I
F
PC924
2
1
PC924
2
VIN wave form
V
wave form
OUT
8
5
I
O2
V
CC
6
V
V
7
8
5
6
O2H
A
I
O1L
V
CC
7
8
5
6
A
I
CC
V
CC
7
8
5
V
6
7
R
V
OUT
CC
G
C
G
50%
t
PLH
t
PHL
90% 50%
10%
t
r
t
f
V
wave form
CM
, VO2 wave form
CM
H
SW at A, I
CM
F
, VO2 wave form
L
SW at B, IF= 0mA
= 10mA
V
O2L
V
O2H
V
CM
(
Peak
GND
V
O2H
V
O2L
GND
)
PC924
Fig.10 Forward Current vs. Ambient
Temperature
50 ) mA
40
(
F
30
25
20 Forward current I
10
0
- 25 0 25 50 75 100 Ambient temperature T
80
(˚C)
a
Fig.12 Forward Current vs. Forward
Voltage
500
200
)
100
mA
(
50
F
20 10
Forward current I
Ta= 75˚C
0˚C
- 20˚C
(V)
F
25˚C
50˚C
5
2 1
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Forward voltage V
Fig.11 Power Dissipation vs. Ambient
Temperature
600
500
) mW
400
(
tot
300
200
100
Power dissipation Po, P
0
- 25 0 25 50 75 100 125 Ambient temperature T
P
tot
P
O
80
(˚C)
a
Fig.13 Relative Threshold Input Current vs.
Supply Voltage
1.2 Ta= 25˚C
1.1
1.0
0.9
0.8
Relative threshold input current
0.7
15 18 21 24 27 30
I
= 1 at
FLH
Supply voltage V
= 24V
V
CC
(V)
CC
Fig.14 Relative Threshold Input Current vs.
Ambient Temperature
1.6 V
= 24V
CC
1.4
1.2
1.0
0.8
Relative threshold input current
0.6
- 25 0 25 50 75 100
I
= 1 at Ta= 25˚C
FLH
Ambient temperature T
(˚C)
a
Fig.15 O1 Low Level Output Voltage vs.
Output Current
O
1
0.4 V
= 12V
CC1
= - 12V
V
CC2
)
0.2
V
(
O1L
low level output voltage V
1
O
= 25˚C
T
a
= 10mA
I
F
0.1
0.05
0.02
0.01
0.005
0.01 0.02 0.05 0.1 0.2 0.5 O1 output current I
O1
(A)
1
PC924
Fig.16 O
Low Level Output Voltage vs. Fig.17 O2 High Level Output Voltage
1
Ambient Temperature vs. Supply Voltage
0.5
) V
(
0.4
O1L
V V I
F
= 12V
CC1
= - 12V
CC2
= 10mA
) V
(
O2H
30
27
24
0.3
= 0.1A
I
0.2
O1
21
18
low level output voltage V
0.1
1
O
0
- 25 0 25 50 75 100 Ambient temperature Ta (˚C
Fig.18 O
High Level Output Voltage vs.
2
Ambient Temperature
24
) V
23
(
O2H
Nearly = 0A
I
O2
22
21
- 0.1A
20
)
VCC= 24V
I
= 10mA
F
high level output voltage V
15
2
O
12
15 18 21 24 27 30
Supply voltage V
Fig.19 O
Low Level Output Voltage vs.
2
Output Current
O
2
4
=6V
V
CC
T
= 25˚C
O2L
a
2
1
) V
(
0.5
0.2
T
= 25˚C
a
= 10mA
I
F
)
(V
CC
high level output voltage V
19
2
O
18
- 25 0 25 50 75 100 Ambient temperature T
Fig.20 O
Low Level Output Voltage vs.
2
Ambient Temperature
1.5
) V
(
1.4
O2L
1.3
I
= 0.1A
1.2
low level output voltage V
1.1
2
O
1.0
- 25 0 25 50 75 100
O2
Ambient temperature T
a
V
a
(˚C
I
F
(˚C
CC
=0
)
= 24V
)
low level output voltage V
0.1
2
O
0.05
0.01 0.02 0.05 0.1 0.2 0.5 O2 output current IO2 (A
)
Fig.21 High Level Supply Current vs.
Supply Voltage
12
)
10
mA
(
CCH
8
6
4
High level supply current I
2
15 18 21 24 27 30
Supply voltage V
T
= - 25˚C
a
)
(V
CC
1
25˚C
80˚C
PC924
Fig.22 Low Level Supply Current vs.
Supply Voltage
14
)
12
mA
(
CCL
10
8
T
a
= - 25˚C
25˚C
80˚C
6
Low level supply current I
4
15 18 21 24 27 30
Supply voltage VCC (V
)
Fig.24 Propagation Delay Time vs.
Ambient Temperature
2.5
) µ s
(
2.0
PLH
, t
1.5
PHL
1.0
0.5
Propagation delay time t
0
- 25 0 25 50 75 100 Ambient temperature T
VCC= 24V
=47
R
G
C
= 3 000pF
G
I
= 10mA
F
)
(˚C
a
Fig.23 Propagation Delay Time vs.
Forward Current
2.5
) µ s
(
2.0
PLH
, t
1.5
PHL
t
PLH
1.0
0.5
Propagation delay time t
0
0 5 10 15 20 25
Forward current I
t
PLH
t
PHL
t
PHL
Ta= 70˚C
F
V R
C
25˚C
(mA
= 24V
CC
=47
G
= 3 000pF
G
T
a
)
= 75˚C
25˚C
- 25˚C
- 25˚C
Application Circuit (IGBT Drive for Inverter
V
PC924
O
1
O
GND
CC
+
2
+
Anode
Cathode
TTL, Microcomputer etc.
Please refer to the chapter “Precautions for Use ”
)
V
=
CC1
V
CC2
12V
12V
IGBT
=
UVW
(+)
Power supply
(-)
Loading...