Datasheet PC917X, PC918X Datasheet (Sharp)

Page 1
PC917X/PC918X
PC917X/PC918X
High Speed, High CMR OPIC Photocoupler
Features
1. High speed response : TYP. 0.3µs at R (t = 1.9k
PHL,tPLH
L
)
2. High instantaneous common mode rejec-
tion voltage (CM : TYP. 1kV/µs
H
)
3. Standard dual-in-line package
4. Recognized by UL, file No. E64380
Applications
1. Computers, measuring instruments, con-
2. High speed line receivers high speed logic
3. Switing regulators
4. Signal transmission between circuits of
different potentials and impedances
Outline Dimensions
PC917X/ PC918X
Primary side mark (
Sunken place
*
* “OPIC ” (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal­ processing circuit integrated onto a single chip.
± 0.25
2.54
PC918
)
12 34
± 0.3
1.2
± 0.5
9.22
± 0.1
0.5
1 NC 2 Anode 3 Cathode 4 NC
The marking of PC917 is
PC917
has no base terminal. (7 : NC
± 0.2
0.8
5678
± 0.5
6.5
± 0.3
0.85
± 0.5
3.5
TYP.
± 0.5
3.7
0.5
(
Unit : mm
Internal connection
diagram
5678
1234
± 0.3
7.62
± 0.1
0.26
θ : 0 to 13 ˚
5 GND 6 V
O
7 V
B
8 V
CC
PC917
)
θ
)
Absoulte Maximum Ratings
(
Ta= 25˚C
)
Parameter Symbol Rating Unit
Input
Forward current I Reverse voltage V
F
R
Power dissipation P 45 Supply voltage V Output voltage V
*1
Output
Emitter-base voltage V Output current I Power dissipation P
*2
Isolation voltage Operating temperature - 55 to + 100 ˚C Storage temperature - 55 to + 125 ˚C
*3
Soldering temperature 260 ˚C
*1 Voltage between pin 5 and pin 7 (applies to PC918X *2 40 to 60%RH, AC for 1 minute *3 For 10 seconds
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
)
CC
O
EBO
O
O
V
iso
T
opr
T
stg
T
sol
25 mA
5V
mW
- 0.5 to + 15 V
- 0.5 to + 15 V 5V 8mA
100 mW
2 500
V
rms
Page 2
PC917X/PC918X
Electro-optical Characteristics
Parameter
Forward voltage
Input
Output
Transfer
charac-
teristics
Reverse current Terminal capacitance High level output current High level output current High level output current
(1) (2)
(3) Low level output voltage V Low level supply current I High level supply current High level supply current
(1)
(2) Current transfer ratio CTR
Isolation resistance R Floating capacitance C
*4
“ HighLow” propagation delay time
*4
“ LowHigh” propagation delay time
*5
Instantaneous common mode rejection
voltage “ Output : High level ”
*5
Instantaneous common mode rejection
voltage “ Output : Low level ”
(
Unless otherwise specified, Ta = 0 to + 70˚C
Symbol Conditions MIN. TYP. MAX. Unit
Ta= 25˚C, IF= 16mA - 1.7 1.95 V
V
F
Ta= 25˚C, VR=5V - - 10 µA
I
R
Ta= 25˚C, VF= 0, f= 1MH
C
t
)
I
Ta= 25˚C, IF= 0, VCC=VO= 5.5V
OH(1
)
Ta= 25˚C, IF= 0, VCC=VO= 15V
I
OH(2
)
IF= 0, VCC=VO= 15V - - 50 µ A
I
OH(3
IF= 16mA, IO= 2.4mA,
OL
CCLIF
I
CCH(1
I
CCH(2
ISO
f
t
PHL
t
PLH
CM
CM
= 4.5V
V
CC
= 16mA, VO= open, VCC= 15V
Ta= 25˚C, IF= 0, VO= open
)
= 15V
V
CC
)
IF= 0, VO= open, VCC= 15V - - 2 µA Ta= 25˚C, I
= 0.4V, VCC= 4.5V
V
O
= 16mA,
F
Ta= 25˚C, DC500V, 40 to 60%RH
Ta= 25˚C, V= 0, f = 1MH Ta= 25˚C, RL= 1.9k
= 16mA, VCC=5V
I
F
Ta= 25˚C, RL= 1.9k
= 16mA, VCC=5V
I
F
Ta= 25˚C, IF= 0, RL= 1.9k
H
V
= 10Vp-p, VCC=5V
CM
Ta= 25˚C, IF= 16mA, R
L
VCM= 10Vp-p, VCC=5V
= 1.9k
L
Z
Z
- 60 250
pF
- 3 500 nA
--1µA
- - 0.4 V
- 200 - µ A
- 0.02 1 µA
19 - - %
10
11
5x10
10
- 0.6 1
-
pF
- 0.3 0.8 µ s
- 0.3 1.2 µ s
1 000
--V/µs
- 1 000
--V/µs
)
*4 Test Circuit for Propagation Delay Time (PC918X
10µ s
Pulse oscillator
I
= 16mA
F
100
81 2 3 45
7
1.9k
6
0.01 µ F
C
5V
V
O
= 15pF
L
Pulse input
Pulse width
Duty
ratio1/10
monitor
I
F
)
I
F
0
V
O
t
PHL
*5 Test Circuit for Instantaneous Common Mode Rejection Voltage (PC918X
=
GL SW
V
I
F
16
I
F
mA
2
A
B
FF
3 45
+-
V
CM
81 7
1.9k
6
0.01µ F
5V
V
O
CM
CM
10V V
CM
10%
0V
H
V
O
= 0mA
I
F
L
V
O
= 16mA
I
F
90%
t
r
2V
0.8V
10%
t
f
1.5V
)
90%
1.5V
t
PLH
When the switch for infrared light emitting
5V
diode sets to A.
When the switch for
V
O
infrared light emitting
diode sets to B.
5V
V
OL
Page 3
PC917X/PC918X
Fig. 1 Forward Current vs. Ambient
Temperature
30
25
)
20
mA
(
F
15
10
Forward current I
5
0
1251007550250-55
)
Ambient temperature T
(˚C
a
Fig. 3 Forward Current vs. Forward Voltage
100
)
10
mA
(
F
T
= 0˚C
1
Forward current I
0.1
a
25˚C 50˚C
70˚C
Fig. 2 Power Dissipation vs. Ambient
Temperature
120
P
O
)
(
mW
O
100
80
60
45 40
Power dissipation P, P
20
P
0
0 25 50 75 100 125
-40 Ambient temperature Ta (˚C
)
Fig. 4 Output Current vs. Output Voltage
20
VCC=5V
18
T
a
16
)
14
mA
(
12
O
10
8 6
Output current I
4
= 25˚C
Dotted line shows
pulse characteristics
I
= 25mA
F
20mA
15mA
10mA
5mA
0.01
1.0
1.2 1.4 1.6 1.8 2.0 2.2 Forward voltage V
)
(V
F
Fig. 5 Relative Current Transfer Ratio vs.
Forward Current
150
)
%
(
100
50
Relative current transfer ratio
0
0.1
1 10 100
Forward current IF (mA
CTR= 100% at
I
= 16mA
F
V V T
)
CC
= 0.4V
O
= 25˚C
a
=5V
0
022
4 6 8 10 12 14 16 18 20
Output voltage VO (V
)
Fig. 6 Relative Current Transfer Ratio vs.
Ambient Temperature
110
)
100
%
(
90
80
70
Relative current transfer ratio
60
-60 -40 -20
0 20 40 60 80 100
Ambient temperature T
CTR= 100% at T
a
(˚C
I
F
V V
= 25˚C
a
= 16mA
= 0.4V
O
=5V
CC
)
Page 4
PC917X/PC918X
Fig. 7 Propagation Delay Time vs.
Ambient Temperature
800
)
ns
(
600
PLH
, t
PHL
400
200
Propagation delay time t
0
- 60 - 20 20 60 10080400-40
Ambient temperature T
t
PHL
t
PLH
(˚C)
a
Fig. 9 Frequency Response
0
-5
R
= 100
-10
) dB
(
-15
-20
Voltage gain Av
-25
L
220 470
1k
IF= 16mA
=5V
V
CC
RL= 1.9k
IF= 16mA
= 25˚C
T
a
Fig. 8 High Level Output Current vs.
Ambient Temperature
-5
10
-6
)
10
A
(
OH
-7
10
-8
10
-9
10
High level output current I
-10
10
-11
10
- 60 - 40 - 20 0 20 100806040
Ambient temperature T
V
CC=VO
(˚C)
a
Test Circuit for Frequency Response
(
P -P
AC
8
R
7
L
6 5
5V
AC Input
1 2
20k
3 4
560
100
1.6V DC
0.25V
=5V
PC918X
15V
V
O
)
-30
0.1 0.2 0.5 1 2 5 10 Frequency f (MHz
)
Precautions for Use
(1)
It is recommended that a by-pass capacitor of more than 0.01µF is added between V
GND near the device in order to stabilize power supply line.
(2)
Transistor of detector side in bipolar configuration is apt to be affected by static electricity for its minute design. When handling them, general counterplan against static electricity should be taken to avoid breakdown of devices or degradation of characteristics.
(3)
As for other general cautions, refer to the chapter “Precautions for Use ”.
CC
and
Loading...