Page 1
Long Creepage Distance
PC905
Photocoupler with Built-in
Voltage Detection Circuit
)
❈ Lead forming type (I type) is also available. (PC905I
..
❈❈ TUV (DIN-VDE0884) approved type is also available as an option.
■ Features
1. Built-in voltage deviation detection circuit
2. Long creepage distance type
(Creepage distance : 8mm or more
)
3. Conforms to European Safety Standard
(Internal insulation distance : 0.5mm or
)
more
4. High collector-emitter voltage (V
CEO
: 70V
)
5. High isolation voltage between input and
output (V
: 5 000V
iso rms
)
6. Recognized by UL, file No. E64380
Approved by BSI(BS415 : No. 6990, BS7002 : No. 7567
Approved by SEMKO No. 963501101
Approved by DEMKO No. 392592
■ Applications
1. Switching power supplies
■ Outline Dimensions
)
1.2
0.85
± 0.5
± 0.5
3.5
± 0.3
± 0.3
8
6.5
6
PC905
1234
Anode mark
± 0.5
9.66
± 0.1
0.5
1 Anode
2 Cathode
3 GND
4 Reference
5 7
2.54
Internal
connection diagram
± 0.5
3.05
± 0.25
5 NC
6 Emitter
7 Collector
8 NC
8
1
234
7.62
± 0.1
0.26
10.16
PC905
(
Unit : mm
5 6 7
± 0.3
± 0.5
)
■ Absolute Maximum Ratings
Parameter
Anode current I
Input
Anode voltage V
Reference input current I
(
Ta= 25˚C
Symbol Rating Unit
A
A
REF
50 mA
30 V
10 mA
)
Power dissipation P 250 mW
Collector-emitter voltage V
Output
Emitter-collector voltage V
Collector current I
Collector power dissipation P
Total power dissipation P
*1
Isolation voltage V
Operating temperature T
Storage temperature T
*2
Soldering temperature T
*1 40 to 60%RH, AC for 1 minute
*2 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
CEO
ECO
C
C
tot
iso
opr
stg
sol
70 V
6V
50 mA
150 mW
350 mW
5 000
V
rms
- 25 to + 85 ˚C
- 40 to + 125 ˚C
260 ˚C
Page 2
PC905
■ Electro-optical Characteristics
Parameter Symbol Conditions MIN. TYP. MAX. Unit Fig.
Reference voltage V
Temperature change in
*3
reference voltage
Voltage variation ratio
in reference voltage
Input
Output Collector dark current I
Transfer
charac-
teristics
*3 V
REF
*4 I
REF
*5 CTR= IC/ IAx 100(%
Reference input current I
Temperature change in
*4
reference input current
Minimum drive current I
OFF-state anode current V
Anode-cathode forward
voltage
*5
Current transfer ratio CTR
Collector-emitter
saturation voltage
Isolation resistance R
Floating capacitance C
(
dev)=V
(
dev)=I
REF(MAX.
REF(MAX.
)
)
-I
)
-V
REF(MIN.
REF(MIN.
)
)
V
∆ V
I
REF
REF
REF
V
CE
REF
(
)
dev
/∆ V
REF
(
)
dev
MIN
I
OFF
V
F
CEO
(
)
sat
ISO
f
(
Ta= 25˚C unless otherwise specified.
VK=V
V
Ta= - 25 to + 85˚C
IA= 10mA, ∆ VA= 30V- V
A
, IA= 10mA 2.40 2.495 2.60 V 1
REF
, IA= 10mA,
K=VREF
REF
- 8 40 mV 1
- - 1.4 - 5 mV/V 2
IA= 10mA, R3= 10kΩ -21 0µ A3
= 10mA, R3= 10kΩ ,
I
A
Ta= - 25 to + 85˚C
VK=V
REF
= 30V, V
A
VK=V
REF
= GND
REF
, IA= 10mA - 1.2 1.4 V 1
VCE= 20V - 10
VK=V
, IA= 10mA, VCE=5V
REF
K=VREF
= 1mA
, IA= 20mA,
V
I
C
40 to 60%RH, DC500V
V= 0, f= 1MHz
- 0.4 3 µ A3
-12m A 1
- 0.1 2 µ A4
-9
-7
10
A5
40 - 320 % 6
- 0.1 0.2 V 6
5x10101x10
11
- Ω
- 0.6 1.0 pF -
)
-
■ Test Circuit
Fig. 1
I
A
A
V
K
V
CC
V
VK: Voltage between terminals and
: Voltage between terminals and
V
REF
Fig. 2
I
1
V
F
V
2
4
V
REF
3
23
34
7
6
A
1
R
V
1
CC
V
2
A
4
R
2
V
REF
3
7
6
Page 3
PC905
Fig. 4 Fig. 3
I
I
A
1
I
REF
A
2
V
CC
4
R
3
7
6
V
CC
OFF
A
V
1
7
2
A
6
4
3
Fig. 5 Fig. 6
I
CEO
1
2
4
3
Fig. 7 Anode Current vs. Ambient
Temperature
60
50
)
mA
40
(
A
30
7
A
V
CE
6
V
CC
Fig. 8 Input Power Dissipation vs.
Ambient Temperature
)
(
mW
3
I
A
1
I
C
7
A
V
2
V
K
4
V
REF
V
CE
6
3
300
250
200
150
20
Anode current I
10
0
- 25 100
0 2 55 07 5
Ambient temperature Ta (˚C
100
Input power dissipation P
50
85
)
0
- 25 100
0 2 55 07 5
Ambient temperature Ta (˚C
85
)
Page 4
PC905
Fig. 9 Collector Power Dissipation vs.
Ambient Temperature
200
)
mW
(
150
C
100
Fig.10 Power Dissipation vs. Ambient
Temperature
600
500
)
mW
400
(
tot
350
300
200
50
Power dissipation P
Collector power dissipation P
0
-25 85
0 125
25 50 75 100
Ambient temperature Ta (˚C
)
Fig.11 Relative Current Transfer Ratio vs.
Ambient Temperature
150
)
%
(
100
50
Relative current transfer ratio
0
-30
0 20 40 60 80 100
Ambient temperature Ta (˚C
V
K=VREF
IA= 10mA
V
=5V
CE
)
100
0
0 25 50 75 100 85
-25
Ambient temperature Ta (˚C
Fig.12 Collector Dark Current vs.
Ambient Temperature
-5
10
5
-6
10
5
)
A
(
-7
10
CEO
5
-8
10
5
-9
10
5
-10
Collector dark current I
10
5
-11
10
-20
20
0
40 60 80
Ambient temperature T
(˚C
a
)
VCE= 20V
)
Fig.13-a Anode Current vs. Reference Fig.13-b Anode Current vs. Reference
Voltage
V
K=VREF
Ta= 25˚C
50
)
mA
40
(
A
30
Voltage
1 200
VK=V
Ta= 25˚C
1 000
)
µ A
800
(
A
600
REF
100
20
Anode current I
10
0
03
12
Reference voltage V
REF
(V
)
400
Anode current I
200
0
03
12
Reference voltage V
REF
(V
)
Page 5
PC905
Fig.14 OFF-state Anode Current vs.
Ambient Temperature
)
10
µ A
(
OFF
5
OFF-state anode current I
0
- 30 100 0 2 04 06 08 0
Ambient temperature Ta (˚C
VA= 30V
V
REF
Fig.16 Reference Input Current vs.
Ambient Temperature
3
)
µ A
(
REF
2
IA= 10mA
= GND
)
Fig.15 Reference Voltage vs.
Ambient Temperature
VK=V
REF
I
= 10mA
A
2.60
)
V
(
REF
2.50
Reference voltage V
2.40
- 30 100 0 2 04 06 08 0
Ambient temperature Ta (˚C
V
= 2.60V
REF
2.495V
2.40V
)
Fig.17 Reference Voltage Change vs.
Anode Voltage
0
)
(
mV
REF
-10
I
= 10mA
A
Ta= 25˚C
1
Reference input current I
0
- 25 100
0 2 55 07 5
Ambient temperature Ta (˚C
)
Fig.18-a Voltage Gain (1) vs. Frequency
100
80
)
dB
(
60
V1
A
)
1
(
40
20
Voltage gain
0
-20
0.1
1 10 100
Frequency f(kHz
I
= 2mA
F
= 25˚C
T
a
)
1 000
-20
Reference voltage change ∆ V
-30
0
5 1 01 52 02 53 03 5
Anode voltage VA (V
)
Test Circuit for Voltage Gain (1) vs.
Frequency
620Ω
10kΩ
V
A
10µ F
V1
10kΩ f
= 20 log
in
V
o
V
in
V
o
Page 6
PC905
Fig.18-b Voltage Gain (2) vs. Frequency
10
0
)
dB
(
-10
V2
A
)
2
-20
(
-30
Voltage gain
IA= 2mA
I
= 1.7mA
C
T
= 25˚C
a
= 10kΩ
R
L
100Ω
1kΩ
Test Circuit for Voltage Gain (2) vs.
Frequency
620Ω
10kΩ
10µ F
V
10
f
kΩ
-40
-50
0.1
Fig.19 Anode Current vs. Load Capacitance
50
40
)
mA
(
30
A
20
Anode current I
10
0
10
Fig.20 Collector-emitter Saturation Voltage
vs. Ambient Temperature
0.16
0.14
0.12
1 10 100 1 000
Frequency f (kHz
A•••V
K=VREF
B•••VA=5V
(
= 10mA
at I
A
= 10V
C•••V
A
(
= 10mA
at I
A
= 15V
D•••V
A
(
= 10mA
at I
A
Oscilating
area
)
)
)
Stable area
C
D
-3
-2
10
-1
10
Load capacitance C
L
)
(µF)
T
a
A BBA
Stable area
0
10
VK=V
IA= 20mA
I
= 1mA
C
= 25˚C
REF
Test Circuit for Anode Current vs.
Load Capacitance
C
L
Test circuit(A
C
10kΩ
L
Test circuit(B, C, D
10
Fig.21 Current Transfer Ratio vs.
Anode Current
V
K=VREF
100
VCE=5V
)
T
= 25˚C
%
(
a
80
0.10
0.08
0.06
)
V
(
0.04
)
sat
(
CE
0.02
V
Collector-emitter saturation voltage
0
-30
0 2 04 06 08 01 0 0
Ambient temperature T
(˚C)
a
60
40
Current transfer ratio CTR
20
0
-4
10
10
Anode Current I
■ Precautions for Use
Handle this product the same as with other integrated circuits against static electricity.
As for other general cautions, refer to the chapter “ Precautions for Use ”
●
I
A
R
L
V
o
in
150Ω
)
150Ω
)
-3
10
A (A)
-2
-1
10