Datasheet PC902 Datasheet (Sharp)

Page 1
PC902
PC902
AC Input Type OPIC Photocoupler
Features
1. Capable of forming an integration circuit in conjunction with an external capacitor
2. AC input
3. High sensitivity
(I
: MAX. 2mA
FHL
)
4. High isolation voltage between input and output
(V
: 5 000V
iso
)
rms
5. Standard dual-in-line package
6. Recognized by UL, file No. E64380
Applications
1. Programmable controllers
2. Telephone sets
3. AC line monitors
Outline Dimensions
± 0.5
1 NC 2 V 3 V 4 NC
1.2
IN1 IN2
± 0.3
5678
2.54
TYP.
0.5
± 0.3
0.85
PC902
1234
Primarys side mark (Sunken place
9.22
± 0.5
3.5
± 0.5
3.0
0.5
± 0.1
± 0.5
6.5
± 0.25
diagram
10k
Voltage regulator
1234
)
θ
5 V
AUX
6 GND 7 V
O
8 V
CC
(
Unit : mm
Internal connection
0.01µ F (
ExternalC
65
78
± 0.3
7.62
θ
= 0˚ to 13˚
± 0.1
0.26
)
)
Amp
θ
* “OPIC ” (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal­ processing circuit integrated onto a single chip.
Absolute Maximum Ratings
(
Ta= 25˚C
)
Parameter Symbol Rating Unit
Input
Forward current I
*1
Peak forward current I
F
FM
±20 mA
±1 A Power dissipation P 30 mW Supply voltage V
Output
Output voltage V Output current I Power dissipation P Total power dissipation
*2
Isolation voltage Operating temperature T Storage temperature T
*3
Soldering temperature T
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
CC
O
O
O
P
tot
V
iso
opr
stg
sol
15 V 15 V
16 mA 150 mW 170 mW
5 000
V
- 25 to + 85 ˚C
- 55 to + 125 ˚C 260 ˚C
rms
*1 Pulse width<=100 µs, Duty ratio : 0.001 *2 40 to 60%RH, AC for 1 minute *3 For 10 seconds
Page 2
PC902
Electro-optical Characteristics
Parameter
Input
Output
Transfer
charac-
teristics
Forward voltage V Terminal capacitance C
Operating supply voltage V Low level output voltage V High level output voltage V Low level supply current I High level supply current I AUX source current I AUX sink current I AUX terminal voltage 1 V AUX terminal voltage 2 V
“ HighLow” threshold
AUX voltage
“ LowHigh” threshold
AUX voltage
“ HighLow” threshold
input current 1
“ HighLow” threshold
input current 2 Isolation resistance R Floating capacitance C
“ HighLow ” propagation delay time
“ LowHigh ” propagation delay time
time
Response
*4
*5
Instantaneous common mode rejection voltage “ Output : High level ”
*5
PInstantaneous common mode rejection voltage “ Output : Low level ”
(
Ta= 0 to + 70˚C unless otherwise specified
Symbol Conditions MIN. TYP. MAX. Unit
IF= ± 20mA - - 1.5 V
F
= ± 0.1mA 0.55 0.95 - V
I
F
CC
OLIOL
OH
CCLIF
CCH
AUX1
AUX2
AUX1
AUX2
V
AUXHL
V
AUXLH
I
FHL1
I
FHL2
ISO
t
PHL
PLH
f
r
CM
CM
V
= 0, f= 1kHz
t
F
= 8.0mA, VCC= 5V, IF= ± 2mA
VCC= 5V, IF= 0 3.5 - - V
= ± 2mA, VCC= 5V - 1.7 4.0 mA VCC= 5V, IF= 0 - 1.5 3.5 mA Ta = 25˚C, IF= ± 2mA, VCC= 5V, V Ta = 25˚C, IF= 0, VCC= 5V, V
AUX
AUX
= 1.3V
= 1.3V Ta= 25˚C, IF= 0, VCC= 5V - - 0.2 V Ta= 25˚C, IF= ± 2mA, VCC=5V
Ta= 25˚C, IF= 0, VCC= 5V 2.05 - 2.55 V
Ta= 25˚C, IF= 0, VCC= 5V 0.75 - 1.10 V Ta= 25˚C, VCC= 5V, RL= 680
= 5V, RL= 680 0.1 - 2.0 mA
V
CC
Ta= 25˚C, VCC= 5V, RL= 680
= 5V, RL= 680 - 0.1 - - 2.0 mA
V
CC
Ta= 25˚C, DC500V, 40 to 60% RH Ta= 25˚C, V = 0, f= 1MHz - 0.6 5 pF
f
Ta= 25˚C
= ± 2mA, VCC=5V
I
F
= 0.01 µ F
C
AUX
= 680
R
L
Ta = 25˚C, IF= 0, VCM= 600V (peak
H
V
= 2V, RL= 680 , C
)
O(MIN.
Ta = 25˚C, IF= ± 2mA, V
L
V
= 0.8V, RL= 680 , C
)
O(MAX.
AUX
= 600V (peak
CM
AUX
)
= 0.01 µ F
)
= 0.01 µ F
- 30 250 pF
4.5 - V
15
- 0.1 0.4 V
-2 -3 -5 µA
1.0 1.5 2.5 µ A
2.3 - 2.8 V
- 0.7 1.5 mA
- - 0.7 - 1.5 mA
5x101010
11
-
4.5 7.0 10 ms
6.5 10.5 15 mst
- 0.05 0.5 µ sFall time t
- 0.1 0.5 µ sRise time t
--V/µs
2 000
--V/µs
- 2 000
)
Page 3
4 Test Circuit for Response Time
2
V
IN
47
tr= tf= 0.01 µ s
Z
O
3
= 50
Amp.
Voltage regulator
8
10k
680
7
5
0.01µF
6
5V V
O
0.1µ F
PC902
V
IN
50%
TT
TT
t
t
PHL
V
O
PLH
(
Note) T>= 50ms
t
PHL
t
f
5 Test Circuit for Instantaneous Common Mode Rejection Voltage
- V
CM
Voltage regulator
8
10k
7
5
6
680 V
O
0.01µ F
Switch for infrared light
emitting diode
B
I
F
2
A
Amp.
3
+
50%
t
PLH
V
OH
90%
1.5V 10%
V
OL
t
r
5V
When the switch for infrared light
emitting diode sets to A,
CM
H
When the switch for infrared light
emitting diode sets to B,
CM
L
V
O(MIN.
= 2.0V
)
V
O(MAX.
= 0.8V
)
600V
5V
GND
V
OL
GND
Page 4
PC902
Fig. 1 Forward Current vs. Ambient
Temperature
60
50
)
40
mA
(
F
30
20
Forward current I
10
0
- 25 0 25 50 75 10085 Ambient temperature T
(˚C)
a
Fig. 3 Forward Current vs. Forward Voltage
500
200
)
100
mA
(
50
F
20 10
Forward Current I
T
= 75˚C
a
50˚C
- 25˚C
5
2 1
0.5 1.0 1.5 2.0 2.5 3.0 3.5
0
Forward voltage V
25˚C
F
0˚C
(V)
Fig. 2 Power Dissipation vs. Ambient
Temperature
200
P
170
)
150
mW
(
tot
, P
100
O
50
Power dissipation P
0
-25
tot
P
O
0 25507510085
Ambient temperature T
(˚C)
a
Fig. 4 Relative Threshold Input Current vs.
Ambient Temperature
1.6 VCC=5V
I
FHL1=IFHL2
T
= 25˚C
a
1.4
1.2
1.0
0.8
Relative threshold input current
0.6
0.4
=1
0 25 50 100-25 75
Ambient temperature T
(˚C)
a
Test Circuit For Threshold Input Current vs. Ambient Temperature
Forward
current I
F
2
3
I
, I
FHL1
high to low. I I
FHL2
represents forward current when output goes from
FHL2
is one flowing out of pin 2 .
Amp.
is a forward current flowing into pin 2 while
FHL1
Voltage regulator
8
10k
7
5
V
6
5V
Page 5
PC902
Fig. 5 Low Level Output Voltage vs.
Low Level Output Current
1.0
)
0.5 V
(
OL
VCC=5V T
= 25˚C
a
0.2
0.1
0.05
Low level output voltage V
0.02
0.01 1
2 5 10 1005020
Low level output current IOL (mA
)
Fig. 7 Supply Current vs. Supply Voltage
3
I
CCL
) mA
(
Supply current I
T
- 25˚C
2
CC
1
=
a
25˚C
I
CCL
85˚C
I
CCH
I
CCL
I
CCH
I
CCH
Fig. 6 Low Level Output Voltage vs.
Ambient Temperature
0.2 V
CC
) V
(
OL
=5V
0.15
ICC= 16mA
0.1 8mA
0.05
5mA
Low level output voltage V
0
- 25 25 50 100
0
Ambient temperature Ta (˚C
75
)
Fig. 8 AUX Current vs. Forward Current
4
2
) µ A
0
(
AUX
-2
-4
AUX current I
-6
AUX sink current
AUX source current I
AUX1
I
=5V
V
CC
V
= 1.3V
AUX
T
= 25˚C
a
AUX2
AUX source current
I
AUX1
0
5
10
Supply voltage VCC (V
Fig. 9 AUX Current vs. Ambient
Temperature
2
1
) µ A
0
(
AUX
-1
-2
AUX current I
-3
-4
-25
AUX sink current I
Ambient Temperature Ta (˚C
AUX2
IF= 0mA
AUX source current I
IF= ± 2mA
-8
-20 20 Forward current IF (mA
Test Circuit for AUX
I
F
2
Amp.
CC
=5V
V
AUX
= 1.3V
150
Forward current
)
V
3
151050-5-10-15
)
Voltage regulator
8
10k
7
I
AUX
I
5
5V
6
+ : Current flowed from 2 terminal
{
AUX1
- : Current flowed out to 2 terminal
1007550250
)
Page 6
PC902
Fig.10 AUX Terminal Voltage vs.
Ambient Temperature
4
) V
(
3
AUX
2
1
AUX terminal voltage V
0
-25 Ambient temperature Ta (˚C
V
AUX2
I
F
V
AUX1
Fig.12 Propagation Delay Time vs.
Forward Current
12
) ms
10
(
PLH
, t
PHL
Propagation delay time t
t
PLH
8
t
PHL
6
4
2
0
- 15 0 10 20-20 15
-5 5-2 2
-10 Forward current IF (mA
T V C R
= 25˚C
a CC
AUX
= 680
L
)
Fig.10 Threshold AUX Voltage vs.
Ambient Temperature
VCC=5V VCC=5V
= ± 2mA
IF= 0mA
1007550250
)
3
)
V
(
2
AUX LH
, V
1
AUX HL
Threshold AUX voltage
V
0
-25 Ambient temperature T
V
AUX HL
V
a
AUX LH
(˚C
)
Fig.13 Propagation Delay Time vs.
Ambient Temperature
t
PLH
t
PHL
=5V
= 0.01 µF
14
) ms
12
(
PLH
, t
10
PHL
8
6
4
Propagation delay time t
2
- 25 25 75 100500
V
= 5V, C
CC
R
L
Ambient temperature Ta (˚C
AUX
= 680 , IF= ± 2mA
t
PLH
t
PHL
= 0.01 µ F
)
1007550250
Test Circuit for Propagation Time
Pulse
CRT
Generator
100
Frequency
f<= 10Hz
Duty50%
2
3
Amp.
Voltage regulator
8
10k
7
5
6
Precautions for Use
(1)
It is recommended that a by-pass capacitor of more than 0.01 µ F is added between V
GND near the device in order to stabilize power supply line.
(2)
Handle this product the same as with other integrated circuits against static electricity.
(3)
As for other general cautions, please refer to the chapter “Precautions for Use ”
C
AUX
0.01
µ F
R
L
CRT
680
5V
CC
and
Loading...