Datasheet PC815, PC845, PC825, PC835 Datasheet (Sharp)

Page 1
High Sensitivity, High Density
PC815 Series
Lead forming type (I type) and taping reel type (P type) are also available. (PC815I/PC815P)
..
❈❈ TUV (VDE0884) approved type is also available as an option.
Features Applications
1. High current transfer ratio (CTR: MIN. 600% at I
= 1mA, VCE=2V
2. High isolation voltage between input and output (V
: 5 000V
iso
)
rms
3. Compact dual-in-line package PC815 : 1-channel type PC835 : 3-channel type
PC825 : 2-channel type PC845 : 4-channel type
4. Recognized by UL file No. E64380
Outline Dimensions
PC815
TYP.
0.5
PC835
2.54
12
Anode mark
1 23456
± 0.5
TYP.
0.5
3.5
± 0.5
3.0
2.54
Anode mark
4.58
± 0.5
3.5
± 0.5
3.0
± 0.25
11
PC815
± 0.2
0.9
± 0.3
1.2
14.74
± 0.1
0.5
± 0.25
34
PC815
21
0.9
1.2
± 0.5
± 0.1
0.5
10
987
PC815
± 0.5
± 0.2 ± 0.3
Internal connection diagram
± 0.5
6.5
± 0.5
2.7
θ = 0 to 13 ˚
± 0.5
PC815
6.5
± 0.2
2.7
43
12
7.62
0.26
θ
Internal connection
diagram
12
12 3456
θ = 0 to 13 ˚
)
1 Anode 2 Cathode 3 Emitter 4 Collector
± 0.3
± 0.1
θ
11
10
987
135 Anode 246 Cathode
11
7 9 Emitter 8 Collector
10
12
± 0.3
7.62
± 0.1
0.26
θ
θ
Mounting Type Photocoupler
1. System appliances, measuring instruments
2. Industrial robots
3. Copiers, automatic vending machines
4. Signal transmission between circuits of different potentials and impedances
PC825
TYP.
PC845
± 0.5
TYP.
0.5
± 0.5
0.5
Anode mark
3.5
3.0
± 0.25
2.54 87 65
Anode mark
PC815
PC815
1 234
± 0.2
0.9
± 0.3
1.2
± 0.5
9.66
± 0.5
3.5
± 0.5
3.0
2.54
1
± 0.1
0.5
Internal connection diagram
12 345678
± 0.25
PC815
± 0.5
111213
PC815
14
1516
PC815
2345678
± 0.2
0.9
± 0.3
1.2
19.82
± 0.1
0.5
± 0.5
6.5
± 0.5
2.7
111213141516
10
10
9
PC815
θ = 0 to 13 ˚
PC815 Serise
Internal connection
diagram
87 65
12 34
± 0.3
7.62
± 0.1
0.26
θ
9
1357 Anode 2468 Cathode
11
9 Emitter
10
12
± 0.5
6.5
± 0.5
2.7
(
Unit : mm
1 3 Anode 2 4 Cathode 5 7 Emitter 6 8 Collector
θ
15
13
14
16
Collector
± 0.3
7.62
± 0.1
0.26
θ
θ = 0 to 13 ˚
)
θ
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
Page 2
PC815 Series
Absolute Maximum Ratings
Parameter Symbol Rating Unit
Forward current I
*1
Input
Peak forward current I Reverse voltage V Power dissipation P 70 mW Collector-emitter voltage V
Output
Emitter-collector voltage V Collector current I Collector power dissipation P Total power dissipation P
*2
Isolation voltage V Operating temperature T Storage temperature T
*3
Soldering temperature T
*1 Pulse width<=100µs, Duty ratio : 0.001 *2 40 to 60%RH, AC for 1 minute *3 For 10 seconds
Electro-optical Characteristics
Parameter Symbol MIN. TYP. MAX. Unit
Forward voltage
Input
Output I
Transfer
charac-
teristics
Peak forward voltage Reverse current Terminal capacitance Collector dark current Current transfer ratio
Collector-emitter saturation voltage Isolation resistance R Floating capacitance C Cut-off frequency f
Response time
Rise time t
Fall time t
FM
R
CEO
ECO
C
C
tot
iso
- 30 to + 100 ˚C
opr
- 55 to + 125 ˚C
stg
sol
(
Ta= 25˚C
50 mA
1A 6V
35 V
6V
80 mA 150 mW 200 mW
5 000
260 ˚C
)
V
rms
(
Ta= 25˚C
Conditions
V
V
C
CEO
CTR 600 %
V
CE(sat
= 20mA
I
= 0.5A
I
FM
FM
I
R
ISO
c
r
f
=4V
V
R
V= 0, f= 1kHz
t
= 10V, IF=0
V
CE
= 1mA, VCE=2V
I
F
)
= 20mA, IC= 5mA
I
F
DC500V, 40 to 60%RH V= 0, f= 1MHz
f
VCE= 2V, IC= 2mA, RL= 100
= 2V, IC= 10mA, RL= 100
V
CE
- 1.2 1.4 V
- - 3.0 V
--10µA
- 30 250 pF
--10-6A
- 7 500
- 0.8 1.0 V
10
11
5x10
-
10
0.6 1.0 pF
-
1 6 - kHz
-
60 300 µ s
- 53 250 µ s
)
Fig. 1 Forward Current vs.
Ambient Temperature
60
50
)
mA
(
40
30
20
Forward current I
10
0
-30
0 25 50 75 100 125
Ambient temperature Ta Ambient temperature Ta
(˚C)
Fig. 2 Collector Power Dissipation vs.
Ambient Temperature
200
)
mW
(
C
150
100
50
Collector power dissipation P
0
-30
0 125
25 50 75 100
(˚C)
Page 3
PC815 Series
Fig. 3 Peak Forward Current vs. Duty Ratio
10 000
5 000
)
2 000
mA
1 000
(
FM
500 200 100
50
20
Peak forward current I
10
5
-3
5
2
10
52
10
Pulse width <=100µs Ta= 25˚C
-2
525
Duty ratio
-1
10
1
Fig. 5 Current Transfer Ratio vs.
Forward Current
) %
(
2 000 1 800 1 600
VCE=2V
= 25˚C
T
a
1 400 1 200 1 000
800
Current transfer ratio CTR
600 400 200
0
0.1
0.2 0.5 1 2 5 10 )
Forward current I
(mA
Fig. 7 Relative Current Transfer Ratio vs.
Ambient Temperature
150
) %
(
100
50
Relative current transfer ratio
0
-30
250 50 75 100
Ambient temperature Ta (˚C
I
V
= 1mA
CE
=2V
)
Fig. 4 Forward Current vs. Forward Voltage
500
200 100
) mA
50
(
20 10
Forward current I
T
= 75˚C
a
50˚C
25˚C
0˚C
- 25˚C
5
1
020.5 1.0 1.5 2.0 2.5 3.0 3.5 )
Forward voltage V
(V
Fig. 6 Collector Current vs.
Collector-emitter Voltage
100
90 80
) (
mA
C
I
F
70 60 50 40 30
Collector current I
20
= 10mA
P
5mA
2mA
(MAX.
C
Ta= 25˚C
)
1mA
10
0
0
12345
Collector-emitter voltage VCE (V
)
Fig. 8 Collector-emitter Saturation Voltage
vs. Ambient Temperature
)
V
1.3
(
)
1.2
sat
( CE
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
Collector-emitter saturation voltage V
0.1 0
-30
25 50 75
0 100
Ambient temperature Ta (˚C
I
I
C
= 20mA
= 5mA
)
Page 4
PC815 Series
Fig. 9 Collector Dark Current vs.
Ambient Temperature
-4
10
VCE= 10V
-5
10
) A
-6
(
10
CEO
-7
10
-8
10
-9
10
-10
Collector dark current I
10
-11
10
-12
10
-30
200406080
Ambient temperature T
Fig.11 Frequency Response
0
)
dB
(
v
-10
Voltage gain A
RL= 10K
100
(˚C)
a
=2V
V
CE
= 2mA
I
C
= 25˚C
T
a
1k 100
Fig.10 Response Time vs. Load Resistance
500
VCE=2V I
= 10mA
C
T
= 25˚C
a
200 100
)
µs
50
(
20 10
Response time
5
t
r
t
f
t
d
t
s
2 1
0.1 1 20.05 0.2 0.5 Load resistance R
L
(k)
Test Circuit for Response Time
Input
V
CC
R
D
R
Output
Input
Output
t
t
s
r
10%
90%
tt
f
-20
0.05 0.1 0.2 0.5 201052
1
Frequency f (kHz
50
)
Fig.12 Collector-emitter Saturation Voltage vs.
Forward Current
8
7
6
5
)
V
4
3
CE (sat) (
V
2
1
Collector-emitter Saturation Voltage
0
0
1.0 2.0 3.0 4.0
Forward current I
I
= 0.5mA
C
30mA
1mA 3mA
5mA
7mA
(mA)
T
50mA
= 25˚C
a
3.52.51.50.5
1000.02
Test Circuit for Frepuency Response
V
CC
R
R
D
Please refer to the chapter
Output
“Precautions for Use ”
Loading...