
High Collector-emitter Voltage
PC723V
❈ Lead forming type (I type) and taping reel type (P type) are also available. (PC723VI/PC723VP)
..
❈❈ TUV (VDE0884) approved type as an option is also available.
■ Features
1. High collector-emitter voltage (V
CEO
2. High isolation voltage between input and
output (V
: 5 000V
iso
)
rms
3. Current transfer ratio
CTR : MIN. 50% at I
= 5mA, VCE=5V
F
4. TTL compatible output
5. Recognized by UL, file No. E64380
■ Applications
1. Telephone systems, telegram systems
2. System appliances, measuring instruments
3. Signal transmission between circuits of
different potentials and impedances
: 80V
)
Type Photocoupler
■ Outline Dimensions
± 0.3
± 0.2
1.2
5
0.9
Anode mark
TYP.
0.5
± 0.5
0.5
± 0.5
3.5
3.7
± 0.1
6
PC723V
123
7.12
1 Anode
2 Cathode
3 NC
2.54
4
± 0.5
6.5
± 0.5
± 0.25
± 0.5
3.35
(
Internal connection
diagram
65 4
123
7.62
0.26
θ
= 0 to 13 ˚
4 Emitter
5 Collector
6 Base
PC723V
Unit : mm
± 0.3
± 0.1
θθ
)
■ Absolute Maximum Ratings
Parameter Symbol Rating Unit
Input
Forward current I
*1
Peak forward current
Reverse voltage V
F
I
FM
R
Power dissipation P 70 mW
Collector-emitter voltage V
Emitter-collector voltage V
Output
Collector-base voltage V
Emitter-base voltage V
Collector current I
Collector power dissipation P
Total power dissipation P
*2
Isolation voltage V
Operating temperature T
Storage temperature T
*3
Soldering temperature T
*1 Pulse width<=100µs, Duty ratio : 0.001
*2 40 to 60%RH, AC for 1 minute
*3 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
CEO
ECO
CBO
EBO
C
C
tot
iso
opr
stg
sol
50 mA
1A
6V
80 V
6V
130 V
6V
50 mA
150 mW
200 mW
5 000
V
rms
- 25 to + 100 ˚C
- 40 to + 125 ˚C
260 ˚C

PC723V
■ Electro-optical Characteristics
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Forward voltage V
Input
Output Collector dark current I
Transfer
charac-
teristics
Fig. 1 Forward Current vs.
Ambient Temperature
)
mA
(
F
Forward current I
Peak forward voltage V
Reverse current I
Terminal capacitance C
Current transfer ratio CTR I
Collector-emitter saturation voltage
Isolation resistance R
Floating capacitance C
Cut-off frequency f
Response time
60
50
40
30
20
10
Rise time
Fall time
(
Ta= 25˚C
= 20mA - 1.2 1.4 V
FIF
FMIFM
R
CEOVCE
V
CE(sat
ISO
= 0.5A - - 3.0 V
VR=4V - - 10 µA
V= 0, f= 1kHz - 30 250 pF
t
= 40V, IF= 0, RBE=--10-7A
= 5mA, VCE= 5V, RBE= 50 100 400 %
F
)
IF= 20mA, IC= 1mA, RBE=
DC500V, 40 to 60%RH
V= 0, f= 1MHz - 0.6 1.0 pF
f
= 5V, IC= 2mA, RL= 100 Ω, RBE= , - 3dB
cVCE
- 0.1 0.3 V
5x101010
11
- 50 - kHz
- Ω
trVCE= 2V, IC= 2mA - 6 20 µ s
RL= 100Ω, RBE=-720µs
t
f
Fig. 2 Collector Power Dissipation vs.
Ambient Temperature
200
)
mW
(
150
C
100
50
Collector power dissipation P
)
0
-25
0 25 50 75 100 125
Ambient temperature T
(˚C)
a
Fig. 3 Peak Forward Current vs. Duty Ratio
10 000
5 000
)
2 000
mA
1 000
(
FM
500
200
100
50
20
Peak forward current I
10
5
-3
5
10
2
5
10
Duty ratio
-2
2
Pulse width <=100µs
Ta= 25˚C
-1
2
5
10
5
1
0
-25
0 125
25 50 75 100
Ambient temperature T
Fig. 4 Forward Current vs.
Forward Voltage
500
200
100
)
50
mA
(
F
20
10
5
Forward current I
1
020.5 1.0 1.5 2.0 2.5 3.0 3.5
= 75˚C
T
a
50˚C
Forward voltage V
(˚C)
a
25˚C
0˚C
- 25˚C
(V)
F

PC723V
Fig. 5 Current Transfer Ratio vs.
Forward Current
200
180
)
160
%
(
140
120
100
R
=
BE
V
=5V
CE
Ta= 25˚C
80
60
Current transfer ratio CTR
500kΩ
40
20
100kΩ
0
2 5 10 20 50
1
)
Forward current I
(mA
F
Fig. 7 Relative Current Transfer Ratio vs.
Ambient Temperature
150
)
%
(
I
F
V
R
= 5mA
CE
BE
=5V
=
100
50
Relative current transfer ratio
0
0 255075100
-25
Ambient temperature T
a
(˚C
)
Fig. 9 Collector Dark Current vs.
Ambient Temperature
-5
10
10
)
A
(
CEO
10
10
10
Collector dark current I
10
10
V
= 40V
CE
R
=
BE
5
-6
5
-7
5
-8
5
-9
5
-10
5
-11
0
-25
Ambient temperature Ta (˚C
25
50 75 100
)
Fig. 6 Collector Current vs.
Collector-emitter Voltage
14
R
=
BE
12
Ta= 25˚C
)
10
mA
(
C
8
6
4
Collector current I
0
0212345678910
Collector-emitter voltage VCE (V
I
F
= 30mA
20mA
10mA
5mA
3mA
)
Fig. 8 Collector-emitter Saturation Voltage
vs. Ambient Temperature
0.16
)
I
= 20mA
F
V
(
)
I
= 1mA
0.14
C
sat
(
R
=
0.12
BE
CE
0.10
0.08
0.06
0.04
0.02
Collector-emitter saturation voltage V
0
- 25 0 25 50 75 100
Ambient temperature T
a
(˚C
)
Fig.10 Response Time vs. Load Resistance
100
50
20
)
µ s
10
(
Response time
0.5
0.2
=2V
V
CE
= 2mA
I
C
=
R
BE
T
= 25˚C
a
t
f
5
t
r
2
1
0.1 0.2 2 100.5 1 5 20
Load resistance R
(kΩ
L
t
r
t
f
t
d
t
s
)

Fig.11 Frequency Response
0
)
-5
dB
(
v
-10
-15
Voltage gain A
-20
R
= 10kΩ
L
VCE=5V
I
R
T
1kΩ
= 2mA
C
BE
a
=
= 25˚C
100Ω
Test Circuit for Response Time
Input
Output
Input
V
CC
R
L
R
D
Output
PC723V
10%
t
t
d
t
r
90%
s
t
f
0.5 1 2 5 2001005020
10
Frequency f (kHz
)
Fig.12 Collector-emitter Saturation Voltage vs.
Forward Current
6
)
V
(
)
sat
5
(
CE
4
3
2
1
Collector-emitter saturation voltage V
0
0
246810
Please refer to the chapter “Precautions for Use ”
●
= 1mA
I
C
3mA
5mA
7mA
Forward current IF (mA
12 14 16
)
R
T
.
=
BE
= 25˚C
a
500
Test Circuit for Frequency Response
V
CC
R
R
D
L
Output