Datasheet PC355NT Datasheet (Sharp)

Page 1
PC355NT
PC355NT
Mini-Flat Package, High Sensitivity Photocoupler
Features
1. High current transfer ratio (CTR : MIN. 600% at IF= 1mA, VCE=2V
2. Opaque type, mini-flat package PC355NT (1-channel
)
3. Subminirature type (The volume is smaller than that of our conventional DIP type by as far as 30%
)
5. Recognized by UL (NO. E64380
•••Viso: 3 750V
rms
)
Package Specifications
Model No. Taping specifications
PC355NT
Taping reel diameter 178mm (750pcs.
Applications
1. Hybrid substrates that require high density mounting.
2. Programmable controllers
± 0.3
+ 0.2
- 0.7
34
(
Unit : mm
1 Anode 2 Cathode 3 Emitter 4 Collector
± 0.05
0.2
+ 0.4
0.5
- 0.2
Outline Dimensions
PC355NT
)
)
2.54
Anode mark
3.6
± 0.25
34
355
21
± 0.3
6˚
0.4
± 0.1
Internal connection diagram
± 0.2
4.4
12
C0.4
Input side
± 0.2
2.6
± 0.1
0.1
5.3
7.0
)
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
Page 2
PC355NT
Absolute Maximum Ratings
Parameter Symbol Rating Unit
Forward current I
*1
Input
Peak forward current I Reverse voltage V Power dissipation P 70 mW Collector-emitter voltage V
Output
Emitter-collector voltage 6 V Collector current I Collector power dissipation P Total power dissipation 170 mW
*2
Isolation voltage V Operating temperature ˚C Storage temperature ˚C
*3
Soldering temperature 260 ˚C
*1 Pulse width<=100µs, Duty ratio : 0.001 *2 40 to 60%RH, AC for 1 minute *3 For 10 senconds
Electro-optical Characteristics
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Forward voltage V
Input
Output
Transfer­charac­teristics
Reverse current Terminal capacitance C Collector dark current I Collector-emitter breakdown voltage Emitter-collector breakdown voltage Current transfer ratio CTR I Collector-emitter saturation voltage Isolation resistance R Floating capacitance C
Response time
Rise time t
Fall time - 53 250 µ s
BV BV
V
(
Ta = 25˚C
F
FM
R
CEO
V
ECO
C
C
P
tot
iso
T
opr
T
stg
T
sol
= 20mA - 1.2 1.4 V
FIF
VR=4V - - 10 µA
I
R
V= 0, f= 1kHz
t
VCE= 10V, IF=0 - - A
CEO
= 0.1mA, IF= 0 35 - - V
CEOIC
=10µA, IF=0 6 - - V
ECOIE
= 1mA, VCE= 2V 600 %
F
)
IF= 20mA, IC= 1mA - 0.8 1.0 V
CE(sat
DC500V, 40 to 60%RH
ISO
V= 0, f= 1MHz - 0.6 1.0 pF
f
VCE= 2V, IC= 2mA
r
R
L
= 100
t
f
50 mA
1A 6V
35 V
80 mA
150 mW
3 750
- 30 to + 100
- 40 to + 125
)
Soldering area
V
rms
- 30 250 pF
1 600 7 500
5x101010
- 60 300 µ s
11
(
Ta= 25˚C
-6
10
-
0.2mm or more
)
Page 3
PC355NT
Fig. 1 Forward Current vs. Ambient
Temperature
70
60
)
50
mA
(
F
40
30
20
Forward current I
10
0
0 25 50 75 100 125
-30 Ambient temperature Ta (˚C
)
Fig. 3 Collector Power Dissipation vs.
Ambient Temperature
200
)
mW
(
150
C
100
50
Collector power dissipation P
Fig. 2 Diode Power Dissipation vs.
Ambient Temperature
)
100
mW
(
80 70 60
40
Diode power dissipation P
20
0
-30
0 50 55 100 Ambient temperature T
(˚C
a
Fig. 4 Total Power Dissipation vs.
Ambient Temperature
300
)
250
mW
(
tot
200 170
150
100
Total power dissipation P
50
)
0
0 25 50 75 100 125
-30
Ambient temperature T
Fig. 5 Peak Forward Current vs.
Duty Ratio
10000
5000
)
2000
mA
(
1000
FM
500
200 100
50
Peak forward current I
20 10
5
-3
5252525
10
-2
10
Duty ratio
Pulse width <=100µs
Ta= 25˚C
10
a
(˚C
-1
0
-30
)
0 50 10025
Ambient temperature Ta (˚C
)
Fig. 6 Forward Current vs. Forward Voltage
500
200 100
) mA
50
(
F
20 10
5
Forward current I
1
1
020.5 1.0 1.5 2.0 2.5 3.0 3.5
= 75˚C
T
a
50˚C
Forward voltage VF (V
25˚C
0˚C
- 25˚C
)
Page 4
PC355NT
Fig. 7 Current Transfer Ratio vs.
Forward Current
5000
)
4000
%
(
V
=2V
CE
Ta= 25˚C
3000
2000
Current transfer ratio CTR
1000
0
0.1 Forward current I
(mA
F
)
Fig. 9 Relative Current Transfer Ratio vs.
Ambient Temperature
150
) %
(
I V
= 1mA
F
CE
=2V
100
50
Relative current transfer ratio
0
-30
0 20 100
Ambient temperature Ta (˚C
60
40
)
Fig.11 Collector Dark Current vs.
Ambient Temperature
-5
10
5
-6
)
10
A
(
5
CEO
-7
10
5
-8
10
5
-9
10
5
Collector dark current I
-10
10
5
-11
10
-30 Ambient temperature T
a
(˚C
V
= 10V
CE
806040200
)
100101
100
Fig. 8 Collector Current vs. Collector-
emitter Voltage
) mA
(
100
I
= 10mA
F
80
C
60
40
C
5mA
2mA
(
MAX.
P
T
= 25˚C
a
)
Collector current I
20
1mA
0
0
Collector-emitter voltage VCE (V
54321
)
Fig.10 Collector-emitter Saturation Voltage
vs. Ambient Temperature
1.6 = 20mA
I
1.4
I
F C
= 1mA
1.2
1.0
0.8
)
0.6
V
(
)
sat
0.4
(
CE
Collector-emitter saturation voltage
V
0.2
0
100200
-30
40
Ambient temperature Ta (˚C
8080
60
)
Fig.12 Responce Time vs. Load Resistance
500
=2V
V
CE
I
= 2mA
C
200
T
= 25˚C
a
100
) µs
50
(
20 10
t
d
5
Response time
2
t
s
1
0.5
0.2
0.1
0.01
0.1 1 10 Load resistance RL (k
t
r
t
f
100
)
Page 5
Fig.13 Collector-emitter Saturation Voltage
vs. Forward Current
6.4
4.8
3.2
) V
(
)
sat
(
1.6
CE
Collector-emitter saturation voltage
V
0
0.8 1.6 2.4 3.2 4.0
0
Forward current I
Input
Test Circuit For Response Time
V
CC
Output
Input
Output
t
d
R
R
D
L
10%
90%
t
s
t
t
r
f
Temperature Profile of Soldering Reflow
(1)
One time soldering reflow is recommended within the condition of temperature and time
profile shown below.
30 seconds
230˚C
= 0.5mA
I
C
1mA 3mA
5mA 7mA
30mA 50mA
F
(mA
PC355NT
Ta= 25˚C
)
200˚C
180˚C
1 minute
25˚C
2 minutes 1.5 minutes 1 minute
(2)
When using another soldering method such as infrared ray lamp, the temperature may rise partially in the mold of the device. Keep the temperature on the package of the device within the condition of above (1).
Please refer to the chapter “Precautions for Use.”
Loading...