Datasheet P89C52UBPN, P89C54UBAA, P89C51UBPN, P89C51UBAA, P89C54NBPN Datasheet (Philips)

...
 
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
Product specification
Replaces Datasheets 89C51 of 1999 Apr 01 and 89C52/89C54/89C58 of 1999 Apr 01
1999 Oct 27
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
2
1999 Oct 27 853–2148 22592
DESCRIPTION
The 89C51/89C52/89C54/89C58 contain a non-volatile FLASH program memory that is parallel programmable. For devices that are serial programmable (In System Programmable (ISP) with a boot loader), see the 89C51RC+/89C51RD+ datasheet.
Both families are Single-Chip 8-bit Microcontrollers manufactured in advanced CMOS process and are derivatives of the 80C51 microcontroller family. All the devices have the same instruction set as the 80C51.
SELECTION T ABLE FOR FLASH DEVICES
ROM/EPROM Memory Size
(X by 8)
RAM Size
(X by 8)
Programmable
Timer Counter
(PCA)
Hardware
Watchdog
Timer Multi-Time Programmable (MTP) devices: 89C51
4 k 128 No No
89C52/54/58
8 k/16 k/32 k 256 No No
Serial In-System Programmable devices:
89C51RC+
32 k 512 Yes Yes
89C51RD+
64 k 1024 Yes Yes
FEATURES
80C51 Central Processing Unit
On-chip FLASH Program Memory
Speed up to 33 MHz
Full static operation
RAM expandable externally to 64 k bytes
4 level priority interrupt
6 interrupt sources
Four 8-bit I/O ports
Full-duplex enhanced UART
Framing error detectionAutomatic address recognition
Power control modes
Clock can be stopped and resumedIdle modePower down mode
Programmable clock out
Second DPTR register
Asynchronous port reset
Low EMI (inhibit ALE)
3 16-bit timers
Wake up from power down by an external interrupt
ORDERING INFORMATION
MEMORY SIZE
4 k × 8
MEMORY SIZE
8 k × 8
MEMORY SIZE
16 k × 8
MEMORY SIZE
32 k × 8
TEMPERATURE
RANGE °C
AND PACKAGE
VOLTAGE
RANGE
FREQ.
(MHz)
DWG.
#
FLASH P89C51UBA A P89C52UBA A P89C54UBA A P89C58UBA A
0 to +70, Plastic
Leaded Chip Carrier
5 V 0 to 33 SOT187-2
FLASH P89C51UBP N P89C52UBP N P89C54UBP N P89C58UBP N
0 to +70, Plastic
Dual In-line Package
5 V 0 to 33 SOT129-1
FLASH P89C51UBB B P89C52UBB B P89C54UBB B P89C58UBB B
0 to +70, Plastic
Quad Flat Pack
5 V 0 to 33 QFP44
2
FLASH P89C51UFA A P89C52UFA A P89C54UFA A P89C58UFA A
1
–40 to +85, Plastic
Leaded Chip Carrier
5 V 0 to 33 SOT187-2
FLASH P89C51UFP N P89C52UFP N P89C54UFP N P89C58UFP N
1
–40 to +85, Plastic
Dual In-line Package
5 V 0 to 33 SOT129-1
FLASH P89C51UFB B P89C52UFB B P89C54UFB B P89C58UFB B
1
–40 to +85, Plastic
Quad Flat Pack
5 V 0 to 33 QFP44
2
NOTES:
1. Contact Philips Sales for availability.
2. SOT not assigned for this package outline.
P ART NUMBER DERIVATION
DEVICE NUMBER (P89CXX) OPERATING FREQUENCY, MAX (V) TEMPERATURE RANGE (B) PACKAGE (AA, BB, PN)
P89C51 FLASH P89C52 FLASH P89C54 FLASH P89C58 FLASH
U = 33 MHz
B = 0_C to 70_C
F = –40_C to 85_C
AA = PLCC BB = PQFP
PN = PDIP
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
3
BLOCK DIAGRAM
SU01066
PSEN
EAV
PP
ALE
RST
XTAL1 XTAL2
V
CC
V
SS
PORT 0
DRIVERS
PORT 2
DRIVERS
RAM ADDR REGISTER
RAM
PORT 0
LATCH
PORT 2
LATCH
FLASH
REGISTER
B
ACC
STACK
POINTER
TMP2
TMP1
ALU
TIMING
AND
CONTROL
INSTRUCTION
REGISTER
PD
OSCILLATOR
PSW
PORT 1
LATCH
PORT 3
LATCH
PORT 1
DRIVERS
PORT 3
DRIVERS
PROGRAM
ADDRESS
REGISTER
BUFFER
PC
INCRE-
MENTER
PROGRAM COUNTER
DPTR’S
MULTIPLE
P1.0–P1.7
P3.0–P3.7
P0.0–P0.7 P2.0–P2.7
SFRs
TIMERS
8
8 16
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
4
LOGIC SYMBOL
PORT 0
PORT 1PORT 2
PORT 3
ADDRESS AND
DATA BUS
ADDRESS BUS
T2 T2EX
RxD
TxD INT0 INT1
T0 T1
WR
RD
SECONDARY FUNCTIONS
RST
EA/V
PP
PSEN
ALE/PROG
V
SS
V
CC
XTAL1
XTAL2
SU00830
PIN CONFIGURA TIONS Dual In-Line Package Pin Functions
SU01063
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
T2/P1.0
T2EX/P1.1
P1.2 P1.3 P1.4 P1.5 P1.6
RST RxD/P3.0 TxD/P3.1
INT0
/P3.2
INT1
/P3.3 T0/P3.4 T1/P3.5
P1.7
WR
/P3.6 RD
/P3.7
XTAL2 XTAL1
V
SS
P2.0/A8
P2.1/A9
P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15
PSEN
ALE
EA
/V
PP
P0.7/AD7
P0.6/AD6
P0.5/AD5
P0.4/AD4
P0.3/AD3
P0.2/AD2
P0.1/AD1
P0.0/AD0
V
CC
DUAL
IN-LINE
PACKAGE
Ceramic and Plastic Leaded Chip Carrier Pin Functions
SU01062
LCC
6140
7
17
39
29
18 28
Pin Function
1 NIC* 2 P1.0/T2 3 P1.1/T2EX 4 P1.2 5 P1.3 6 P1.4 7 P1.5 8 P1.6
9 P1.7 10 RST 11 P3.0/RxD 12 NIC* 13 P3.1/TxD 14 P3.2/INT0 15 P3.3/INT1
Pin Function
16 P3.4/T0 17 P3.5/T1 18 P3.6/WR 19 P3.7/RD 20 XTAL2 21 XTAL1 22 V
SS
23 NIC* 24 P2.0/A8 25 P2.1/A9 26 P2.2/A10 27 P2.3/A11 28 P2.4/A12 29 P2.5/A13 30 P2.6/A14
Pin Function
31 P2.7/A15 32 PSEN 33 ALE 34 NIC* 35 EA/V
PP
36 P0.7/AD7 37 P0.6/AD6 38 P0.5/AD5 39 P0.4/AD4 40 P0.3/AD3 41 P0.2/AD2 42 P0.1/AD1 43 P0.0/AD0 44 V
CC
* NO INTERNAL CONNECTION
Plastic Quad Flat Pack Pin Functions
SU01064
PQFP
44 34
1
11
33
23
12 22
Pin Function
1 P1.5 2 P1.6 3 P1.7 4 RST 5 P3.0/RxD 6 NIC* 7 P3.1/TxD 8 P3.2/INT0
9 P3.3/INT1 10 P3.4/T0 11 P3.5/T1 12 P3.6/WR 13 P3.7/RD 14 XTAL2 15 XTAL1
Pin Function
16 V
SS
17 NIC* 18 P2.0/A8 19 P2.1/A9 20 P2.2/A10 21 P2.3/A11 22 P2.4/A12 23 P2.5/A13 24 P2.6/A14 25 P2.7/A15 26 PSEN 27 ALE 28 NIC* 29 EA
/V
PP
30 P0.7/AD7
Pin Function
31 P0.6/AD6 32 P0.5/AD5 33 P0.4/AD4 34 P0.3/AD3 35 P0.2/AD2 36 P0.1/AD1 37 P0.0/AD0 38 V
CC
39 NIC* 40 P1.0/T2 41 P1.1/T2EX 42 P1.2 43 P1.3 44 P1.4
* NO INTERNAL CONNECTION
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
5
PIN DESCRIPTIONS
PIN NUMBER
MNEMONIC DIP LCC QFP TYPE NAME AND FUNCTION
V
SS
20 22 16 I Ground: 0 V reference.
V
CC
40 44 38 I Power Supply: This is the power supply voltage for normal, idle, and power-down operation.
P0.0–0.7 39–32 43–36 37–30 I/O Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to
them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong internal pull-ups when emitting 1s.
P1.0–P1.7 1–8 2–9 40–44,
1–3
I/O Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I
IL
). Alternate function for Port 1: 1 2 40 I/O T2 (P1.0): Timer/Counter2 external count input/clockout (see Programmable Clock-Out). 2 3 41 I T2EX (P1.1): Timer/Counter2 reload/capture/direction control.
P2.0–P2.7 21–28 24–31 18–25 I/O Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I
IL
). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register.
P3.0–P3.7 10–17 11,
13–195,7–13
I/O Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: I
IL
). Port 3 also serves the special features of the
89C51/89C52/89C54/89C58, as listed below:
10 11 5 I RxD (P3.0): Serial input port 11 13 7 O TxD (P3.1): Serial output port 12 14 8 I INT0 (P3.2): External interrupt 13 15 9 I INT1 (P3.3): External interrupt 14 16 10 I T0 (P3.4): Timer 0 external input 15 17 11 I T1 (P3.5): Timer 1 external input 16 18 12 O WR (P3.6): External data memory write strobe 17 19 13 O RD (P3.7): External data memory read strobe
RST 9 10 4 I Reset: A high on this pin for two machine cycles while the oscillator is running, resets the
device. An internal diffused resistor to V
SS
permits a power-on reset using only an external
capacitor to V
CC
.
ALE 30 33 27 O Address Latch Enable: Output pulse for latching the low byte of the address during an
access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency , and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. ALE can be disabled by setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction.
PSEN 29 32 26 O Program Store Enable: The read strobe to external program memory. When executing
code from the external program memory, PSEN
is activated twice each machine cycle,
except that two PSEN
activations are skipped during each access to external data memory.
PSEN
is not activated during fetches from internal program memory.
EA/V
PP
31 35 29 I External Access Enable/Programming Supply Voltage: EA must be externally held low
to enable the device to fetch code from external program memory locations 0000H to the maximum internal memory boundary. If EA
is held high, the device executes from internal program memory unless the program counter contains an address greater than 0FFFH for 4 k devices, 1FFFH for 8 k devices, 3FFFH for 16 k devices, and 7FFFH for 32 k devices. The value on the EA
pin is latched when RST is released and any subsequent changes
have no effect. This pin also receives the 12.00 V programming supply voltage (V
PP
) during
FLASH programming.
XTAL1 19 21 15 I Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock
generator circuits.
XTAL2 18 20 14 O Crystal 2: Output from the inverting oscillator amplifier.
NOTE: To avoid “latch-up” effect at power-on, the voltage on any pin (other than VPP) at any time must not be higher than VCC + 0.5 V or V
SS
– 0.5 V , respectively.
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
6
Table 1. 89C51/89C52/89C54/89C58 Special Function Registers
SYMBOL DESCRIPTION
DIRECT
ADDRESS
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION
MSB LSB
RESET VALUE
ACC* Accumulator E0H E7 E6 E5 E4 E3 E2 E1 E0 00H AUXR# Auxiliary 8EH AO xxxxxxx0B AUXR1# Auxiliary 1 A2H GF2 0 DPS xxxx00x0B B* B register F0H F7 F6 F5 F4 F3 F2 F1 F0 00H DPTR: Data Pointer (2 bytes)
DPH Data Pointer High 83H 00H DPL Data Pointer Low 82H 00H
AF AE AD AC AB AA A9 A8
IE* Interrupt Enable A8H EA ET2 ES ET1 EX1 ET0 EX0 0x000000B
BF BE BD BC BB BA B9 B8
IP* Interrupt Priority B8H PT2 PS PT1 PX1 PT0 PX0 xx000000B
B7 B6 B5 B4 B3 B2 B1 B0
IPH# Interrupt Priority High B7H PT2H PSH PT1H PX1H PT0H PX0H xx000000B
87 86 85 84 83 82 81 80
P0* Port 0 80H AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 FFH
97 96 95 94 93 92 91 90
P1* Port 1 90H T2EX T2 FFH
A7 A6 A5 A4 A3 A2 A1 A0
P2* Port 2 A0H AD15 AD14 AD13 AD12 AD1 1 AD10 AD9 AD8 FFH
B7 B6 B5 B4 B3 B2 B1 B0
P3* Port 3 B0H RD WR T1 T0 INT1 INT0 TxD RxD FFH
PCON#1Power Control 87H SMOD1 SMOD0 POF
2
GF1 GF0 PD IDL 00xxx000B
D7 D6 D5 D4 D3 D2 D1 D0
PSW* Program Status Word D0H CY AC F0 RS1 RS0 OV P 000000x0B
RACAP2H# Timer 2 Capture High CBH 00H RACAP2L# Timer 2 Capture Low CAH 00H
SADDR# Slave Address A9H 00H SADEN# Slave Address Mask B9H 00H
SBUF Serial Data Buffer 99H xxxxxxxxB
9F 9E 9D 9C 9B 9A 99 98
SCON* Serial Control 98H
SM0/FE
SM1 SM2 REN TB8 RB8 TI RI 00H
SP Stack Pointer 81H 07H
8F 8E 8D 8C 8B 8A 89 88
TCON* Timer Control 88H TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00H
CF CE CD CC CB CA C9 C8 T2CON* Timer 2 Control C8H TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 00H T2MOD# Timer 2 Mode Control C9H T2OE DCEN xxxxxx00B
TH0 Timer High 0 8CH 00H TH1 Timer High 1 8DH 00H TH2# Timer High 2 CDH 00H TL0 Timer Low 0 8AH 00H TL1 Timer Low 1 8BH 00H TL2# Timer Low 2 CCH 00H
TMOD T imer Mode 89H GATE C/T M1 M0 GATE C/T M1 M0 00H
* SFRs are bit addressable. # SFRs are modified from or added to the 80C51 SFRs. – Reserved bits.
1. Reset value depends on reset source.
2. Bit will not be affected by reset.
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
7
FLASH EPROM MEMORY General Description
The 89C51/89C52/89C54/89C58 FLASH reliably stores memory contents even after 100 erase and program cycles. The cell is designed to optimize the erase and programming mechanisms. In addition, the combination of advanced tunnel oxide processing and low internal electric fields for erase and programming operations produces reliable cycling.
Features
FLASH EPROM internal program memory with Chip Erase
Up to 64 k byte external program memory if the internal program
memory is disabled (EA
= 0)
Programmable security bits
100 minimum erase/program cycles for each byte
10 year minimum data retention
Programming support available from many popular vendors
OSCILLA T OR CHARACTERISTICS
XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator.
To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, because the input to the internal clock circuitry is through a divide-by-two flip-flop. However, minimum and maximum high and low times specified in the data sheet must be observed.
RESET
A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), while the oscillator is running. To insure a good power-on reset, the RST pin must be high long enough to allow the oscillator time to start up (normally a few milliseconds) plus two machine cycles. At power-on, the voltage on V
CC
and RST must come up at the same time for a proper start-up. Ports 1, 2, and 3 will asynchronously be driven to their reset condition when a voltage above V
IH1
(min.) is applied to RESET.
The value on the EA
pin is latched when RST is deasserted and has
no further effect.
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
8
LOW POWER MODES Stop Clock Mode
The static design enables the clock speed to be reduced down to 0 MHz (stopped). When the oscillator is stopped, the RAM and Special Function Registers retain their values. This mode allows step-by-step utilization and permits reduced system power consumption by lowering the clock frequency down to any value. For lowest power consumption the Power Down mode is suggested.
Idle Mode
In the idle mode (see Table 2), the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a power-on reset.
Power-Down Mode
To save even more power, a Power Down mode (see Table 2) can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values down to 2.0 V and care must be taken to return V
CC
to the minimum specified operating voltages before the Power Down Mode is terminated.
Either a hardware reset or external interrupt can be used to exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.
To properly terminate Power Down the reset or external interrupt should not be executed before V
CC
is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10ms).
With an external interrupt, INT0 and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.
Design Consideration
When the idle mode is terminated by a hardware reset, the device
normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.
ONCE Mode
The ONCE (“On-Circuit Emulation”) Mode facilitates testing and debugging of systems without the device having to be removed from the circuit. The ONCE Mode is invoked by:
1. Pull ALE low while the device is in reset and PSEN
is high;
2. Hold ALE low as RST is deactivated. While the device is in ONCE Mode, the Port 0 pins go into a float
state, and the other port pins and ALE and PSEN
are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.
Programmable Clock-Out
A 50% duty cycle clock can be programmed to come out on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed:
1. to input the external clock for Timer/Counter 2, or
2. to output a 50% duty cycle clock ranging from 61Hz to 4MHz at a
16MHz operating frequency.
To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in T2CON) must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer.
The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:
Oscillator Frequency
4 (65536 * RCAP2H,RCAP2L)
Where (RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.
In the Clock-Out mode Timer 2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and the Clock-Out frequency will be the same.
Table 2. External Pin Status During Idle and Power-Down Mode
MODE PROGRAM MEMORY ALE PSEN PORT 0 PORT 1 PORT 2 PORT 3
Idle Internal 1 1 Data Data Data Data Idle External 1 1 Float Data Address Data Power-down Internal 0 0 Data Data Data Data Power-down External 0 0 Float Data Data Data
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
9
TIMER 2 OPERA TION Timer 2
Timer 2 is a 16-bit Timer/Counter which can operate as either an event timer or an event counter, as selected by C/T
2* in the special function register T2CON (see Figure 1). Timer 2 has three operating modes: Capture, Auto-reload (up or down counting), and Baud Rate Generator, which are selected by bits in the T2CON as shown in Table 3.
Capture Mode
In the capture mode there are two options which are selected by bit EXEN2 in T2CON. If EXEN2=0, then timer 2 is a 16-bit timer or counter (as selected by C/T
2* in T2CON) which, upon overflowing sets bit TF2, the timer 2 overflow bit. This bit can be used to generate an interrupt (by enabling the Timer 2 interrupt bit in the IE register). If EXEN2= 1, Timer 2 operates as described above, but with the added feature that a 1- to -0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2 like TF2 can generate an interrupt (which vectors to the same location as Timer 2 overflow interrupt. The Timer 2 interrupt service routine can interrogate TF2 and EXF2 to determine which event caused the interrupt). The capture mode is illustrated in Figure 2 (There is no reload value for TL2 and TH2 in this mode. Even when a capture event occurs from T2EX, the counter keeps on counting T2EX pin transitions or osc/12 pulses.).
Auto-Reload Mode (Up or Down Counter)
In the 16-bit auto-reload mode, Timer 2 can be configured (as either a timer or counter [C/T
2* in T2CON]) then programmed to count up or down. The counting direction is determined by bit DCEN (Down Counter Enable) which is located in the T2MOD register (see
Figure 3). When reset is applied the DCEN=0 which means Timer 2 will default to counting up. If DCEN bit is set, Timer 2 can count up or down depending on the value of the T2EX pin.
Figure 4 shows Timer 2 which will count up automatically since DCEN=0. In this mode there are two options selected by bit EXEN2 in T2CON register. If EXEN2=0, then T imer 2 counts up to 0FFFFH and sets the TF2 (Overflow Flag) bit upon overflow. This causes the Timer 2 registers to be reloaded with the 16-bit value in RCAP2L and RCAP2H. The values in RCAP2L and RCAP2H are preset by software means.
If EXEN2=1, then a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at input T2EX. This transition also sets the EXF2 bit. The Timer 2 interrupt, if enabled, can be generated when either TF2 or EXF2 are 1.
In Figure 5 DCEN=1 which enables Timer 2 to count up or down. This mode allows pin T2EX to control the direction of count. When a logic 1 is applied at pin T2EX Timer 2 will count up. Timer 2 will overflow at 0FFFFH and set the TF2 flag, which can then generate an interrupt, if the interrupt is enabled. This timer overflow also causes the 16–bit value in RCAP2L and RCAP2H to be reloaded into the timer registers TL2 and TH2.
When a logic 0 is applied at pin T2EX this causes Timer 2 to count down. The timer will underflow when TL2 and TH2 become equal to the value stored in RCAP2L and RCAP2H. Timer 2 underflow sets the TF2 flag and causes 0FFFFH to be reloaded into the timer registers TL2 and TH2.
The external flag EXF2 toggles when Timer 2 underflows or overflows. This EXF2 bit can be used as a 17th bit of resolution if needed. The EXF2 flag does not generate an interrupt in this mode of operation.
(MSB) (LSB)
Symbol Position Name and Significance
TF2 T2CON.7 Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set
when either RCLK or TCLK = 1.
EXF2 T2CON.6 Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and
EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).
RCLK T2CON.5 Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock
in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.
TCLK T2CON.4 Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock
in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2 T2CON.3 Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative
transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to
ignore events at T2EX. TR2 T2CON.2 Start/stop control for Timer 2. A logic 1 starts the timer. C/T2
T2CON.1 Timer or counter select. (Timer 2)
0 = Internal timer (OSC/12) 1 = External event counter (falling edge triggered).
CP/RL2
T2CON.0 Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When
cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when
EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload
on Timer 2 overflow .
TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2
CP/RL2
SU00728
Figure 1. Timer/Counter 2 (T2CON) Control Register
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
10
Table 3. Timer 2 Operating Modes
RCLK + TCLK CP/RL2 TR2 MODE
0 0 1 16-bit Auto-reload 0 1 1 16-bit Capture 1 X 1 Baud rate generator X X 0 (off)
OSC
÷ 12
C/T2
= 0
C/T2
= 1
TR2
Control
TL2
(8-bits)
TH2
(8-bits)
TF2
RCAP2L RCAP2H
EXEN2
Control
EXF2
Timer 2
Interrupt
T2EX Pin
Transition
Detector
T2 Pin
Capture
SU00066
Figure 2. Timer 2 in Capture Mode
Not Bit Addressable
Symbol Function
Not implemented, reserved for future use.* T2OE Timer 2 Output Enable bit. DCEN Down Count Enable bit. When set, this allows Timer 2 to be configured as an up/down counter.
T2OE DCEN
SU00729
76543210
* User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features.
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.
Bit
T2MOD Address = 0C9H Reset Value = XXXX XX00B
Figure 3. Timer 2 Mode (T2MOD) Control Register
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
11
OSC
÷ 12
C/T2 = 0
C/T2
= 1
TR2
CONTROL
TL2
(8-BITS)
TH2
(8-BITS)
TF2
RCAP2L RCAP2H
EXEN2
CONTROL
EXF2
TIMER 2
INTERRUPT
T2EX PIN
TRANSITION
DETECTOR
T2 PIN
RELOAD
SU00067
Figure 4. Timer 2 in Auto-Reload Mode (DCEN = 0)
÷12
C/T2 = 0
C/T2
= 1
TL2 TH2
TR2
CONTROL
T2 PIN
SU00730
FFH FFH
RCAP2L RCAP2H
(UP COUNTING RELOAD VALUE) T2EX PIN
TF2
INTERRUPT
COUNT DIRECTION 1 = UP 0 = DOWN
EXF2
OVERFLOW
(DOWN COUNTING RELOAD VALUE)
TOGGLE
OSC
Figure 5. Timer 2 Auto Reload Mode (DCEN = 1)
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
12
OSC
÷ 2
C/T2 = 0
C/T2
= 1
TR2
Control
TL2
(8-bits)
TH2
(8-bits)
÷ 16
RCAP2L RCAP2H
EXEN2
Control
EXF2
Timer 2
Interrupt
T2EX Pin
Transition
Detector
T2 Pin
Reload
NOTE: OSC. Freq. is divided by 2, not 12.
÷ 2
“0” “1”
RX Clock
÷ 16 TX Clock
“0”“1”
“0”“1”
Timer 1
Overflow
Note availability of additional external interrupt.
SMOD
RCLK
TCLK
SU00068
Figure 6. Timer 2 in Baud Rate Generator Mode
T able 4. Timer 2 Generated Commonly Used
Baud Rates
Timer 2
Baud Rate
Osc Freq
RCAP2H RCAP2L
375 k 12 MHz FF FF
9.6 k 12 MHz FF D9
2.8 k 12 MHz FF B2
2.4 k 12 MHz FF 64
1.2 k 12 MHz FE C8 300 12 MHz FB 1E 110 12 MHz F2 AF 300 6 MHz FD 8F 110 6 MHz F9 57
Baud Rate Generator Mode
Bits TCLK and/or RCLK in T2CON (Table 4) allow the serial port transmit and receive baud rates to be derived from either Timer 1 or Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit baud rate generator . When TCLK= 1, Timer 2 is used as the serial port transmit baud rate generator. RCLK has the same effect for the serial port receive baud rate. With these two bits, the serial port can have different receive and transmit baud rates – one generated by Timer 1, the other by Timer 2.
Figure 6 shows the Timer 2 in baud rate generation mode. The baud rate generation mode is like the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.
The baud rates in modes 1 and 3 are determined by Timer 2’s overflow rate given below:
Modes 1 and 3 Baud Rates +
Timer 2 Overflow Rate
16
The timer can be configured for either “timer” or “counter” operation. In many applications, it is configured for “timer” operation (C/T
2*=0). Timer operation is different for Timer 2 when it is being used as a baud rate generator.
Usually, as a timer it would increment every machine cycle (i.e., 1/12 the oscillator frequency). As a baud rate generator, it increments every state time (i.e., 1/2 the oscillator frequency). Thus the baud rate formula is as follows:
Oscillator Frequency
[32 [65536 * (RCAP2H,RCAP2L)]]
Modes 1 and 3 Baud Rates =
Where: (RCAP2H, RCAP2L) = The content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.
The Timer 2 as a baud rate generator mode shown in Figure 6, is valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Thus, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Also if the EXEN2 (T2 external enable flag) is set, a 1-to-0 transition in T2EX (Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2). Therefore when Timer 2 is in use as a baud rate generator, T2EX can be used as an additional external interrupt, if needed.
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
13
When Timer 2 is in the baud rate generator mode, one should not try to read or write TH2 and TL2. As a baud rate generator, T imer 2 is incremented every state time (osc/2) or asynchronously from pin T2; under these conditions, a read or write of TH2 or TL2 may not be accurate. The RCAP2 registers may be read, but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.
Table 4 shows commonly used baud rates and how they can be obtained from Timer 2.
Summary Of Baud Rate Equations
Timer 2 is in baud rate generating mode. If Timer 2 is being clocked through pin T2(P1.0) the baud rate is:
Baud Rate +
Timer 2 Overflow Rate
16
If Timer 2 is being clocked internally , the baud rate is:
Baud Rate +
f
OSC
[32 [65536 * (RCAP2H,RCAP2L)]]
Where f
OSC
= Oscillator Frequency
To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as:
RCAP2H,RCAP2L + 65536 *
ǒ
f
OSC
32 Baud Rate
Ǔ
Timer/Counter 2 Set-up
Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set, separately, to turn the timer on. see Table 5 for set-up of Timer 2 as a timer. Also see Table 6 for set-up of Timer 2 as a counter.
Table 5. Timer 2 as a Timer
T2CON
MODE
INTERNAL CONTROL
(Note 1)
EXTERNAL CONTROL
(Note 2)
16-bit Auto-Reload 00H 08H 16-bit Capture 01H 09H Baud rate generator receive and transmit same baud rate 34H 36H Receive only 24H 26H Transmit only 14H 16H
Table 6. Timer 2 as a Counter
TMOD
MODE
INTERNAL CONTROL
(Note 1)
EXTERNAL CONTROL
(Note 2)
16-bit 02H 0AH Auto-Reload 03H 0BH
NOTES:
1. Capture/reload occurs only on timer/counter overflow.
2. Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generator mode.
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
14
Enhanced UART
The UART operates in all of the usual modes that are described in the first section of
Data Handbook IC20, 80C51-Based 8-Bit
Microcontrollers
. In addition the UART can perform framing error detect by looking for missing stop bits, and automatic address recognition. The UART also fully supports multiprocessor communication as does the standard 80C51 UART.
When used for framing error detect the UART looks for missing stop bits in the communication. A missing bit will set the FE bit in the SCON register. The FE bit shares the SCON.7 bit with SM0 and the function of SCON.7 is determined by PCON.6 (SMOD0) (see Figure 7). If SMOD0 is set then SCON.7 functions as FE. SCON.7 functions as SM0 when SMOD0 is cleared. When used as FE SCON.7 can only be cleared by software. Refer to Figure 8.
Automatic Address Recognition
Automatic Address Recognition is a feature which allows the UART to recognize certain addresses in the serial bit stream by using hardware to make the comparisons. This feature saves a great deal of software overhead by eliminating the need for the software to examine every serial address which passes by the serial port. This feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be automatically set when the received byte contains either the “Given” address or the “Broadcast” address. The 9 bit mode requires that the 9th information bit is a 1 to indicate that the received information is an address and not data. Automatic address recognition is shown in Figure 9.
The 8 bit mode is called Mode 1. In this mode the RI flag will be set if SM2 is enabled and the information received has a valid stop bit following the 8 address bits and the information is either a Given or Broadcast address.
Mode 0 is the Shift Register mode and SM2 is ignored. Using the Automatic Address Recognition feature allows a master to
selectively communicate with one or more slaves by invoking the Given slave address or addresses. All of the slaves may be contacted by using the Broadcast address. Two special Function Registers are used to define the slave’s address, SADDR, and the address mask, SADEN. SADEN is used to define which bits in the SADDR are to b used and which bits are “don’t care”. The SADEN mask can be logically ANDed with the SADDR to create the “Given” address which the master will use for addressing each of the slaves. Use of the Given address allows multiple slaves to be recognized while excluding others. The following examples will help to show the versatility of this scheme:
Slave 0 SADDR = 1100 0000
SADEN = 1111 1101 Given = 1100 00X0
Slave 1 SADDR = 1100 0000
SADEN = 1111 1110 Given = 1100 000X
In the above example SADDR is the same and the SADEN data is used to differentiate between the two slaves. Slave 0 requires a 0 in bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is ignored. A unique address for Slave 0 would be 1100 0010 since slave 1 requires a 0 in bit 1. A unique address for slave 1 would be 1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be selected at the same time by an address which has bit 0 = 0 (for slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed with 1100 0000.
In a more complex system the following could be used to select slaves 1 and 2 while excluding slave 0:
Slave 0 SADDR = 1100 0000
SADEN = 1111 1001 Given = 1100 0XX0
Slave 1 SADDR = 1110 0000
SADEN = 1111 1010 Given = 1110 0X0X
Slave 2 SADDR = 1110 0000
SADEN = 1111 1100 Given = 1110 00XX
In the above example the differentiation among the 3 slaves is in the lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be uniquely addressed by 1110 01 10. Slave 1 requires that bit 1 = 0 and it can be uniquely addressed by 1110 and 0101. Slave 2 requires that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0 and 1 and exclude Slave 2 use address 1110 0100, since it is necessary to make bit 2 = 1 to exclude slave 2.
The Broadcast Address for each slave is created by taking the logical OR of SADDR and SADEN. Zeros in this result are trended as don’t-cares. In most cases, interpreting the don’t-cares as ones, the broadcast address will be FF hexadecimal.
Upon reset SADDR (SFR address 0A9H) and SADEN (SFR address 0B9H) are leaded with 0s. This produces a given address of all “don’t cares” as well as a Broadcast address of all “don’t cares”. This effectively disables the Automatic Addressing mode and allows the microcontroller to use standard 80C51 type UART drivers which do not make use of this feature.
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
15
SCON Address = 98H
Reset Value = 0000 0000B
SM0/FE SM1 SM2 REN TB8 RB8 Tl Rl
Bit Addressable
(SMOD0 = 0/1)*
Symbol Function FE Framing Error bit. This bit is set by the receiver when an invalid stop bit is detected. The FE bit is not cleared by valid
frames but should be cleared by software. The SMOD0 bit must be set to enable access to the FE bit.
SM0 Serial Port Mode Bit 0, (SMOD0 must = 0 to access bit SM0) SM1 Serial Port Mode Bit 1
SM0 SM1 Mode Description Baud Rate**
0 0 0 shift register f
OSC
/12 0 1 1 8-bit UART variable 1 0 2 9-bit UART f
OSC
/64 or f
OSC
/32
1 1 3 9-bit UART variable
SM2 Enables the Automatic Address Recognition feature in Modes 2 or 3. If SM2 = 1 then Rl will not be set unless the
received 9th data bit (RB8) is 1, indicating an address, and the received byte is a Given or Broadcast Address. In Mode 1, if SM2 = 1 then Rl will not be activated unless a valid stop bit was received, and the received byte is a Given or Broadcast Address. In Mode 0, SM2 should be 0.
REN Enables serial reception. Set by software to enable reception. Clear by software to disable reception. TB8 The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired. RB8 In modes 2 and 3, the 9th data bit that was received. In Mode 1, if SM2 = 0, RB8 is the stop bit that was received.
In Mode 0, RB8 is not used.
Tl Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the
other modes, in any serial transmission. Must be cleared by software.
Rl Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or halfway through the stop bit time in
the other modes, in any serial reception (except see SM2). Must be cleared by software.
NOTE:
*SMOD0 is located at PCON6. **f
OSC
= oscillator frequency
SU00043
Bit: 76543210
Figure 7. SCON: Serial Port Control Register
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
16
SMOD1 SMOD0 POF GF1 GF0 PD IDL
PCON
(87H)
SM0 / FE SM1 SM2 REN TB8 RB8 TI RI
SCON
(98H)
D0 D1 D2 D3 D4 D5 D6 D7 D8
STOP
BIT
DATA BYTE
ONLY IN
MODE 2, 3
START
BIT
SET FE BIT IF STOP BIT IS 0 (FRAMING ERROR)
SM0 TO UART MODE CONTROL
0 : SCON.7 = SM0 1 : SCON.7 = FE
SU01191
Figure 8. UART Framing Error Detection
SM0 SM1 SM2 REN TB8 RB8 TI RI
SCON
(98H)
D0 D1 D2 D3 D4 D5 D6 D7 D8
1 1
1 0
COMPARATOR
11 X
RECEIVED ADDRESS D0 TO D7
PROGRAMMED ADDRESS
IN UART MODE 2 OR MODE 3 AND SM2 = 1: INTERRUPT IF REN=1, RB8=1 AND “RECEIVED ADDRESS” = “PROGRAMMED ADDRESS” – WHEN OWN ADDRESS RECEIVED, CLEAR SM2 TO RECEIVE DATA BYTES – WHEN ALL DATA BYTES HAVE BEEN RECEIVED: SET SM2 TO WAIT FOR NEXT ADDRESS.
SU00045
Figure 9. UART Multiprocessor Communication, Automatic Address Recognition
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
17
Interrupt Priority Structure
The 89C51/89C52/89C54/89C58 have a 6-source four-level interrupt structure.
There are 3 SFRs associated with the four-level interrupt. They are the IE, IP, and IPH. (See Figures 10, 11, and 12.) The IPH (Interrupt Priority High) register makes the four-level interrupt structure possible. The IPH is located at SFR address B7H. The structure of the IPH register and a description of its bits is shown in Figure 12.
The function of the IPH SFR is simple and when combined with the IP SFR determines the priority of each interrupt. The priority of each interrupt is determined as shown in the following table:
PRIORITY BITS
IPH.x IP.x
INTERRUPT PRIORITY LEVEL
0 0 Level 0 (lowest priority) 0 1 Level 1 1 0 Level 2 1 1 Level 3 (highest priority)
There are four interrupt levels rather than two as on the 80C51. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.
Table 7. Interrupt Table
SOURCE POLLING PRIORITY REQUEST BITS HARDWARE CLEAR? VECTOR ADDRESS
X0 1 IE0 N (L)1Y (T)
2
03H T0 2 TP0 Y 0BH X1 3 IE1 N (L) Y (T) 13H T1 4 TF1 Y 1BH SP 5 RI, TI N 23H T2 6 TF2, EXF2 N 2BH
NOTES:
1. L = Level activated
2. T = Transition activated
EX0IE (0A8H)
Enable Bit = 1 enables the interrupt. Enable Bit = 0 disables it.
BIT SYMBOL FUNCTION
IE.7 EA Global disable bit. If EA = 0, all interrupts are disabled. If EA = 1, each interrupt can be individually
enabled or disabled by setting or clearing its enable bit. IE.6 Not implemented. Reserved for future use. IE.5 ET2 Timer 2 interrupt enable bit. IE.4 ES Serial Port interrupt enable bit. IE.3 ET1 Timer 1 interrupt enable bit. IE.2 EX1 External interrupt 1 enable bit. IE.1 ET0 Timer 0 interrupt enable bit. IE.0 EX0 External interrupt 0 enable bit.
SU00571
ET0EX1ET1ESET2EA
01234567
Figure 10. IE Registers
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
18
PX0IP (0B8H)
Priority Bit = 1 assigns higher priority Priority Bit = 0 assigns lower priority
BIT SYMBOL FUNCTION
IP.7 Not implemented, reserved for future use. IP.6 Not implemented, reserved for future use. IP.5 PT2 Timer 2 interrupt priority bit. IP.4 PS Serial Port interrupt priority bit. IP.3 PT1 Timer 1 interrupt priority bit. IP.2 PX1 External interrupt 1 priority bit. IP.1 PT0 Timer 0 interrupt priority bit. IP.0 PX0 External interrupt 0 priority bit.
SU00572
PT0PX1PT1PSPT2
01234567
Figure 11. IP Registers
PX0HIPH (B7H)
Priority Bit = 1 assigns higher priority Priority Bit = 0 assigns lower priority
BIT SYMBOL FUNCTION
IPH.7 Not implemented, reserved for future use. IPH.6 Not implemented, reserved for future use. IPH.5 PT2H Timer 2 interrupt priority bit high. IPH.4 PSH Serial Port interrupt priority bit high. IPH.3 PT1H Timer 1 interrupt priority bit high. IPH.2 PX1H External interrupt 1 priority bit high. IPH.1 PT0H Timer 0 interrupt priority bit high. IPH.0 PX0H External interrupt 0 priority bit high.
SU01058
PT0HPX1HPT1HPSHPT2H
01234567
Figure 12. IPH Registers
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
19
Reduced EMI Mode
The AO bit (AUXR.0) in the AUXR register when set disables the ALE output.
Reduced EMI Mode
AUXR (8EH)
765432 1 0 – AO
AUXR.0 AO Turns off ALE output.
Dual DPTR
The dual DPTR structure (see Figure 13) is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 that allows the program code to switch between them.
New Register Name: AUXR1#
SFR Address: A2H
Reset Value: xxxx00x0B
AUXR1 (A2H)
76543210 – GF2 0 DPS
Where:
DPS = AUXR1/bit0 = Switches between DPTR0 and DPTR1.
Select Reg DPS
DPTR0 0 DPTR1 1
The DPS bit status should be saved by software when switching between DPTR0 and DPTR1.
The GF0 bit is a general purpose user-defined flag. Note that bit 2 is not writable and is always read as a zero. This allows the DPS bit to be quickly toggled simply by executing an INC AUXR1 instruction without affecting the GF2 bit.
DPS
DPTR1 DPTR0
DPH
(83H)
DPL
(82H)
EXTERNAL
DATA
MEMORY
SU00745A
BIT0
AUXR1
Figure 13.
DPTR Instructions
The instructions that refer to DPTR refer to the data pointer that is currently selected using the AUXR1/bit 0 register. The six instructions that use the DPTR are as follows:
INC DPTR Increments the data pointer by 1 MOV DPTR, #data16 Loads the DPTR with a 16-bit constant MOV A, @ A+DPTR Move code byte relative to DPTR to ACC MOVX A, @ DPTR Move external RAM (16-bit address) to
ACC
MOVX @ DPTR , A Move ACC to external RAM (16-bit
address)
JMP @ A + DPTR Jump indirect relative to DPTR
The data pointer can be accessed on a byte-by-byte basis by specifying the low or high byte in an instruction which accesses the SFRs. See application note AN458 for more details.
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
20
ABSOLUTE MAXIMUM RATINGS
1, 2, 3
PARAMETER
RATING UNIT
Operating temperature under bias 0 to +70 or –40 to +85 °C Storage temperature range –65 to +150 °C Voltage on EA/VPP pin to V
SS
0 to +13.0 V
Voltage on any other pin to V
SS
–0.5 to +6.5 V Maximum IOL per I/O pin 15 mA Power dissipation (based on package heat transfer limitations, not device power consumption) 1.5 W
NOTES:
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section of this specification is not implied.
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V
SS
unless otherwise noted.
AC ELECTRICAL CHARACTERISTICS
T
amb
= 0°C to +70°C or –40°C to +85°C
SYMBOL
PARAMETER
CLOCK FREQUENCY
RANGE –f
UNIT
MIN MAX
1/t
CLCL
Oscillator frequency: U (33MHz) 0 33 MHz
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
21
DC ELECTRICAL CHARACTERISTICS
T
amb
= 0°C to +70°C or –40°C to +85°C; 5 V ±10%; VSS = 0 V
TEST
LIMITS
SYMBOL
PARAMETER
CONDITIONS
MIN TYP
1
MAX
UNIT
V
IL
Input low voltage 4.5 V < VCC < 5.5 V –0.5 0.2 VCC–0.1 V
V
IH
Input high voltage (ports 0, 1, 2, 3, EA) 0.2 VCC+0.9 VCC+0.5 V
V
IH1
Input high voltage, XTAL1, RST 0.7 V
CC
VCC+0.5 V
V
OL
Output low voltage, ports 1, 2, 3
8
VCC = 4.5 V
IOL = 1.6 mA
2
0.4 V
V
OL1
Output low voltage, port 0, ALE, PSEN
7, 8
VCC = 4.5 V
IOL = 3.2 mA
2
0.4 V
V
OH
Output high voltage, ports 1, 2, 3
3
VCC = 4.5 V
IOH = –30 µA
VCC – 0.7 V
V
OH1
Output high voltage (port 0 in external bus mode), ALE9, PSEN
3
VCC = 4.5 V
IOH = –3.2 mA
VCC – 0.7 V
I
IL
Logical 0 input current, ports 1, 2, 3 VIN = 0.4 V –1 –75 µA
I
TL
Logical 1-to-0 transition current, ports 1, 2, 3
6
VIN = 2.0 V
See Note 4
–650 µA
I
LI
Input leakage current, port 0 0.45 < VIN < VCC – 0.3 ±10 µA
I
CC
Power supply current (see Figure 21): See Note 5
Active mode (see Note 5) Idle mode (see Note 5) Power-down mode or clock stopped (see Figure 25
T
amb
= 0°C to 70°C 3 100 µA
for conditions)
T
amb
= –40°C to +85°C 125 µA
R
RST
Internal reset pull-down resistor 40 225 k
C
IO
Pin capacitance10 (except EA) 15 pF
NOTES:
1. Typical ratings are not guaranteed. The values listed are at room temperature, 5 V.
2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V
OL
s of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V . In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I
OL
can exceed these conditions provided that no
single output sinks more than 5 mA and no more than two outputs exceed the test conditions.
3. Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the VCC–0.7 specification when the address bits are stabilizing.
4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when V
IN
is approximately 2 V .
5. See Figures 22 through 25 for I
CC
test conditions and Figure 21 for I
CC
vs Freq.
Active mode: I
CC(MAX)
= (0.9 × FREQ. + 20)mA
Idle mode: I
CC(MAX)
= (0.37 × FREQ. +1.0)mA
6. This value applies to T
amb
= 0°C to +70°C.
7. Load capacitance for port 0, ALE, and PSEN
= 100pF, load capacitance for all other outputs = 80 pF .
8. Under steady state (non-transient) conditions, I
OL
must be externally limited as follows:
Maximum I
OL
per port pin: 15 mA (*NOTE: This is 85°C specification.)
Maximum I
OL
per 8-bit port: 26 mA
Maximum total I
OL
for all outputs: 71 mA
If I
OL
exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed
test conditions.
9. ALE is tested to V
OH1
, except when ALE is off then VOH is the voltage specification.
10.Pin capacitance is characterized but not tested. Pin capacitance is less than 25 pF. Pin capacitance of ceramic package is less than 15 pF (except EA
is 25 pF).
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
22
AC ELECTRICAL CHARACTERISTICS
T
amb
= 0°C to +70°C or –40°C to +85°C, VCC = 5 V ±10%, VSS = 0V
1, 2, 3
VARIABLE CLOCK
4
33MHz CLOCK
SYMBOL FIGURE PARAMETER MIN MAX MIN MAX UNIT
1/t
CLCL
14 Oscillator frequency
Speed versions: I;J;U (33 MHz)
3.5 33
3.5 33
MHz
t
LHLL
14 ALE pulse width 2t
CLCL
–40 21 ns
t
AVLL
14 Address valid to ALE low t
CLCL
–25 5 ns
t
LLAX
14 Address hold after ALE low t
CLCL
–25 5 ns
t
LLIV
14 ALE low to valid instruction in 4t
CLCL
–65 55 ns
t
LLPL
14 ALE low to PSEN low t
CLCL
–25 5 ns
t
PLPH
14 PSEN pulse width 3t
CLCL
–45 45 ns
t
PLIV
14 PSEN low to valid instruction in 3t
CLCL
–60 30 ns
t
PXIX
14 Input instruction hold after PSEN 0 0 ns
t
PXIZ
14 Input instruction float after PSEN t
CLCL
–25 5 ns
t
AVIV
14 Address to valid instruction in 5t
CLCL
–80 70 ns
t
PLAZ
14 PSEN low to address float 10 10 ns
Data Memory
t
RLRH
15, 16 RD pulse width 6t
CLCL
–100 82 ns
t
WLWH
15, 16 WR pulse width 6t
CLCL
–100 82 ns
t
RLDV
15, 16 RD low to valid data in 5t
CLCL
–90 60 ns
t
RHDX
15, 16 Data hold after RD 0 0 ns
t
RHDZ
15, 16 Data float after RD 2t
CLCL
–28 32 ns
t
LLDV
15, 16 ALE low to valid data in 8t
CLCL
–150 90 ns
t
AVDV
15, 16 Address to valid data in 9t
CLCL
–165 105 ns
t
LLWL
15, 16 ALE low to RD or WR low 3t
CLCL
–50 3t
CLCL
+50 40 140 ns
t
AVWL
15, 16 Address valid to WR low or RD low 4t
CLCL
–75 45 ns
t
QVWX
15, 16 Data valid to WR transition t
CLCL
–30 0 ns
t
WHQX
15, 16 Data hold after WR t
CLCL
–25 5 ns
t
QVWH
16 Data valid to WR high 7t
CLCL
–130 80 ns
t
RLAZ
15, 16 RD low to address float 0 0 ns
t
WHLH
15, 16 RD or WR high to ALE high t
CLCL
–25 t
CLCL
+25 5 55 ns
External Clock
t
CHCX
18 High time 17 t
CLCL–tCLCX
ns
t
CLCX
18 Low time 17 t
CLCL–tCHCX
ns
t
CLCH
18 Rise time 5 ns
t
CHCL
18 Fall time 5 ns
Shift Register
t
XLXL
17 Serial port clock cycle time 12t
CLCL
360 ns
t
QVXH
17 Output data setup to clock rising edge 10t
CLCL
–133 167 ns
t
XHQX
17 Output data hold after clock rising edge 2t
CLCL
–80 50 ns
t
XHDX
17 Input data hold after clock rising edge 0 0 ns
t
XHDV
17 Clock rising edge to input data valid 10t
CLCL
–133 167 ns
NOTES:
1. Parameters are valid over operating temperature range unless otherwise specified.
2. Load capacitance for port 0, ALE, and PSEN
= 100 pF, load capacitance for all other outputs = 80 pF .
3. Interfacing the microcontroller to devices with float times up to 45 ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.
4. Parts are guaranteed to operate down to 0 Hz.
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
23
EXPLANATION OF THE AC SYMBOLS
Each timing symbol has five characters. The first character is always ‘t’ (= time). The other characters, depending on their positions, indicate the name of a signal or the logical status of that signal. The designations are: A – Address C – Clock D – Input data H – Logic level high I – Instruction (program memory contents) L – Logic level low, or ALE
P – PSEN Q – Output data R–RD
signal t – Time V – Valid W– WR
signal X – No longer a valid logic level Z – Float Examples: t
AVLL
= Time for address valid to ALE low .
t
LLPL
=Time for ALE low to PSEN low.
t
PXIZ
ALE
PSEN
PORT 0
PORT 2
A0–A15 A8–A15
A0–A7 A0–A7
t
AVLL
t
PXIX
t
LLAX
INSTR IN
t
LHLL
t
PLPH
t
LLIV
t
PLAZ
t
LLPL
t
AVIV
SU00006
t
PLIV
Figure 14. External Program Memory Read Cycle
ALE
PSEN
PORT 0
PORT 2
RD
A0–A7
FROM RI OR DPL
DATA IN A0–A7 FROM PCL INSTR IN
P2.0–P2.7 OR A8–A15 FROM DPF A0–A15 FROM PCH
t
WHLH
t
LLDV
t
LLWL
t
RLRH
t
LLAX
t
RLAZ
t
AVLL
t
RHDX
t
RHDZ
t
AVWL
t
AVDV
t
RLDV
SU00025
Figure 15. External Data Memory Read Cycle
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
24
t
LLAX
ALE
PSEN
PORT 0
PORT 2
WR
A0–A7
FROM RI OR DPL
DATA OUT A0–A7 FROM PCL INSTR IN
P2.0–P2.7 OR A8–A15 FROM DPF A0–A15 FROM PCH
t
WHLH
t
LLWL
t
WLWH
t
AVLL
t
AVWL
t
QVWX
t
WHQX
t
QVWH
SU00026
Figure 16. External Data Memory Write Cycle
012345678
INSTRUCTION
ALE
CLOCK
OUTPUT DATA
WRITE TO SBUF
INPUT DATA
CLEAR RI
VALID VALID VALID VALID VALID VALID VALID VALID
SET TI
SET RI
t
XLXL
t
QVXH
t
XHQX
t
XHDX
t
XHDV
SU00027
1230 4567
Figure 17. Shift Register Mode Timing
VCC–0.5
0.45V
0.7V
CC
0.2VCC–0.1
t
CHCL
t
CLCL
t
CLCH
t
CLCX
t
CHCX
SU00009
Figure 18. External Clock Drive
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
25
VCC–0.5
0.45V
0.2V
CC
+0.9
0.2V
CC
–0.1
NOTE: AC inputs during testing are driven at VCC –0.5 for a logic ‘1’ and 0.45V for a logic ‘0’. Timing measurements are made at VIH min for a logic ‘1’ and VIL max for a logic ‘0’.
SU00717
Figure 19. AC Testing Input/Output
V
LOAD
V
LOAD
+0.1V
V
LOAD
–0.1V
V
OH
–0.1V
V
OL
+0.1V
NOTE:
TIMING
REFERENCE
POINTS
For timing purposes, a port is no longer floating when a 100mV change from load voltage occurs, and begins to float when a 100mV change from the loaded V
OH/VOL
level occurs. IOH/IOL ±20mA.
SU00718
Figure 20. Float Waveform
4 8 12 16 20 24 28 32 36
60
50
40
30
20
10
Frequency at XTAL1 (MHz)
I
CC
(mA)
SU01056
Icc IDLE MODE (TYP.)
Icc MAX ACTIVE MODE (TYP.)
Icc MAX. ACTIVE MODE
Icc MAX. IDLE MODE
Figure 21. ICC vs. FREQ
Valid only within frequency specifications of the device under test
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
26
V
CC
P0
EA
RST
XTAL1
XTAL2
V
SS
V
CC
V
CC
V
CC
I
CC
(NC)
CLOCK SIGNAL
SU00719
Figure 22. ICC Test Condition, Active Mode
All other pins are disconnected
V
CC
P0 EA
RST
XTAL1
XTAL2
V
SS
V
CC
V
CC
I
CC
(NC)
CLOCK SIGNAL
SU00720
Figure 23. ICC Test Condition, Idle Mode
All other pins are disconnected
VCC–0.5
0.45V
0.7V
CC
0.2VCC–0.1
t
CHCL
t
CLCL
t
CLCH
t
CLCX
t
CHCX
SU00009
Figure 24. Clock Signal Waveform for ICC Tests in Active and Idle Modes
t
CLCH
= t
CHCL
= 5ns
V
CC
P0
EA
RST
XTAL1
XTAL2
V
SS
V
CC
V
CC
I
CC
(NC)
SU00016
Figure 25. ICC Test Condition, Power Down Mode All other pins are disconnected. V
CC
= 2V to 5.5V
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
27
Security
The security feature protects against software piracy and prevents the contents of the FLASH from being read. The Security Lock bits are located in FLASH. The 89C51/89C52/89C54/89C58 has 3 programmable security lock bits that will provide different levels of protection for the on-chip code and data (see Table 8). Unlike the ROM and OTP versions, the security lock bits are independent. LB3 includes the security protection of LB1.
Table 8.
SECURITY LOCK BITS
1
Level
PROTECTION DESCRIPTION
LB1
MOVC instructions executed from external program memory are disabled from fetching code bytes from
internal memory. LB2 Program verification is disabled LB3 External execution is disabled.
NOTE:
1. The security lock bits are independent.
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
28
PLCC44: plastic leaded chip carrier; 44 leads SOT187-2
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
29
DIP40: plastic dual in-line package; 40 leads (600 mil) SOT129-1
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
30
QFP44: plastic quad flat package; 44 leads
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
31
NOTES
Philips Semiconductors Product specification
89C51/89C52/89C54/89C58
80C51 8-bit microcontroller family 4K/8K/16K/32K Flash
1999 Oct 27
32
Definitions
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook. Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Disclaimers
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury . Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.
Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381
Copyright Philips Electronics North America Corporation 1999
All rights reserved. Printed in U.S.A.
Date of release: 10-99
Document order number: 9397–750–06613
 
Data sheet status
Objective specification
Preliminary specification
Product specification
Product status
Development
Qualification
Production
Definition
[1]
This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Data sheet status
[1] Please consult the most recently issued datasheet before initiating or completing a design.
Loading...