Datasheet OP490 Datasheet (ANALOG DEVICES)

Page 1
Low Voltage, Micropower,

FEATURES

Single/dual-supply operation
1.6 V to 36 V ±0.8 V to ±18 V
Single-supply operation; input and output
voltage ranges include ground Low supply current: 80 μA maximum High output drive: 5 mA minimum Low offset voltage: 1.0 mV maximum High open-loop gain: 800 V/mV typical Industry-standard quad pinouts
Quad Operational Amplifier
OP490

FUNCTIONAL BLOCK DIAGRAMS

1
OUT A
2
–IN A
3
+IN A
4
V+
OP490
5
+IN B
6
–IN B
7
OUT B
TOP VIEW
(Not to Scale)
Figure 1. 14-Lead Plastic DIP
(P-Suffix)
1
OUT A
2
–IN A
3
+IN A
4
V+
OP490
5
+IN B
6
–IN B
7
OUT B
TOP VIEW
8
NC
(Not to Scale)
NC = NO CONNECT
Figure 2. 16-Lead SOIC
(S-Suffix)
14 13 12 11 10
16 15 14 13 12
10
9 8
11
9
OUT D –IN D
+IN D V– +IN C –IN C OUT C
OUT D
–IN D
+IN D
V–
+IN C
–IN C OUT C NC
00308-001
00308-002

GENERAL DESCRIPTION

The OP490 is a high performance micropower quad op amp that operates from a single supply of 1.6 V to 36 V or from dual supplies of ±0.8 V to ±18 V. The input voltage range includes the negative rail allowing the OP490 to accommodate input signals down to ground in single-supply operation. The output swing of the OP490 also includes ground when operating from a single supply, enabling zero-in, zero-out operation.
The quad OP490 draws less than 20 μA of quiescent supply current per amplifier, but each amplifier is able to deliver over 5 mA of output current to a load. Input offset voltage is under
0.5 mV. Gain exceeds over 400,000 and CMR is better than 90 dB. A PSRR of under 5.6 μV/V minimizes offset voltage changes experienced in battery-powered systems.
The quad OP490 combines high performance with the space and cost savings of quad amplifiers. The minimal voltage and current requirements of the OP490 make it ideal for battery and solar-powered applications, such as portable instruments and remote sensors.
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©1987–2010 Analog Devices, Inc. All rights reserved.
Page 2
OP490

TABLE OF CONTENTS

Features .............................................................................................. 1
Functional Block Diagrams ............................................................. 1
General Description ......................................................................... 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Electrical Characteristics ............................................................. 3
Absolute Maximum Ratings ............................................................ 5
Thermal Resistance ...................................................................... 5
ESD Caution .................................................................................. 5
Typical Performance Characteristics ............................................. 6
Applications Information ................................................................ 9

REVISION HISTORY

5/10—Rev. D to Rev. E
Changes to Features Section............................................................ 1
Changes to Figure 24 ...................................................................... 12
7/09—Rev. C to Rev. D
Deleted 14-Lead CERDIP (Y-Suffix) ............................... Universal
Deleted Figure 1, Renumbered Figures Sequentially ................... 1
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 4
Changes to Figure 16 ........................................................................ 8
Updated Outline Dimensions ....................................................... 14
Changes to Ordering Guide .......................................................... 15
4/02—Rev. B to Rev. C
Deleted 28-Pin LCC (TC-Suffix) Pin Connection Diagram ...... 1
Deleted Electrical Characteristics .................................................. 3
Edits to Absolute Maximum Ratings ............................................ 6
Edits to Ordering Guide ............................................................... 16
Battery-Powered Applications .....................................................9
Single-Supply Output Voltage Range..........................................9
Input Voltage Protection ........................................................... 10
Micropower Voltage-Controlled Oscillator ............................ 10
Micropower Single-Supply Quad Voltage-Output 8-Bit DAC
....................................................................................................... 11
High Output Amplifier .............................................................. 12
Single-Supply Micropower Quad Programmable Gain
Amplifier ..................................................................................... 12
Outline Dimensions ....................................................................... 14
Ordering Guide .......................................................................... 15
Rev. E | Page 2 of 16
Page 3
OP490

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

@ VS = ±1.5 V to ±15 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Input Offset Voltage VOS 0.6 1.0 mV Input Offset Current IOS VCM = 0 V 0.4 5 nA Input Bias Current IB V Large Signal Voltage Gain AVO V R R R V+ = 5 V, V− = 0 V, 1 V < VO < 4 V R R Input Voltage Range1 IVR V+ = 5 V, V− = 0 V 0 4 V Common-Mode Rejection Ratio CMRR V+ = 5 V, V− = 0 V, 0 V < VCM < 4 V 80 100 dB V Input Resistance Differential Mode RIN VS = ±15 V 30 MΩ Input Resistance Common-Mode R
VS = ±15 V 20
INCM
OUTPUT CHARACTERISTICS
Output Voltage Swing VO L V V Output Voltage High VOH V+ = 5 V, V− = 0 V, RL = 2 kΩ 4.0 4.2 V Output Voltage Low VOL V+ = 5 V, V− = 0 V, RL = 10 kΩ 100 500 μV Capacitive Load Stability AV = 1 650 pF
DYNAMIC PERFORMANCE
Slew Rate SR VS = ±15 V 5 12 V/ms Channel Separation2 CS fO = 10 Hz, VO = 20 V p-p, VS = ±15 V 120 150 dB Gain Bandwidth Product GBWP AV = 1 20 kHz
POWER SUPPLY
Power Supply Rejection Ratio PSRR 3.2 10 μV/V Supply Current (All Amplifiers) ISY VS = ±1.5 V, no load 40 60 μA V
NOISE PERFORMANCE
Voltage Noise en p-p fO = 0.1 Hz to 10 Hz, VS = ±15 V 3 μV p-p Voltage Noise Density en f = 1 kHz 60 nV/√Hz Current Noise Density in f = 1 kHz 0.07 pA/√Hz
1
Guaranteed by CMRR test.
2
Guaranteed but not 100% tested.
= 0 V 4.2 25 nA
CM
= ±15 V, VO = ±10 V
S
= 100 kΩ 400 800 V/mV
L
= 10 kΩ 200 400 V/mV
L
= 2 kΩ 100 200 V/mV
L
= 100 kΩ 100 250 V/mV
L
= 10 kΩ 70 140 V/mV
L
= ±15 V, −15 V < VCM < +13.5 V 90 120 dB
S
= ±15 V, RL = 10 kΩ ±13.5 ±14.2 V
S
= ±15 V, RL = 2 kΩ ±10.5 ±11.5 V
S
= ±15 V, no load 60 80 μA
S
Rev. E | Page 3 of 16
Page 4
OP490
V
@ VS = ±1.5 V to ±15 V, −40°C ≤ TA ≤ +85°C
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Input Offset Voltage V Average Input Offset Voltage Drift TCVOS VS = ±15 V 4 μV/°C Input Offset Current IOS VCM = 0 V 1.3 7 nA Input Bias Current IB VCM = 0 V 4.4 25 nA Large Signal Voltage Gain AVO VS = ±15 V, VO = ±10 V R R R V+ = 5 V, V− = 0 V, 1 V < VO < 4 V R R Input Voltage Range1 IVR V+ = 5 V, V− = 0 V 0.3 5 V
−15 +13.5 V Common-Mode Rejection Ratio CMRR V+ = 5 V, V− = 0 V, 0 V < VCM < 3.5 V 80 100 dB V
OUTPUT CHARACTERISTICS
Output Voltage Swing VO VS = ±15 V ±13 ±14 V R Output Voltage High VOH V+ = 5 V, V− = 0 V, RL = 2 kΩ 3.9 4.1 V Output Voltage Low VOL V+ = 5 V, V− = 0 V, RL = 10 kΩ 100 500 μV
POWER SUPPLY
Power Supply Rejection Ratio PSRR 5.6 17.8 μV/V Supply Current (All Amplifiers) ISY V V
1
Guaranteed by CMRR test.
0.8 1.5 mV
OS
= 100 kΩ 300 600 V/mV
L
= 10 kΩ 150 250 V/mV
L
= 2 kΩ 75 125 V/mV
L
= 100 kΩ 80 160 V/mV
L
= 10 kΩ 40 90 V/mV
L
= ±15 V, −15 V < VCM < +13.5 V 90 110 dB
S
= 2 kΩ ±10 ±11 V
L
= ±1.5 V, no load 60 100 mA
S
= ±15 V, no load 75 120 mA
S
+
+IN
IN
Figure 3. Simplified Schematic
Rev. E | Page 4 of 16
OUTPUT
V–
00308-003
Page 5
OP490

ABSOLUTE MAXIMUM RATINGS

Table 3.
Parameter Rating
Supply Voltage ±18 V Digital Input Voltage [(V−) − 20 V] to [(V+) + 20 V] Common-Mode Input Voltage [(V−) − 20 V] to [(V+) + 20 V] Output Short-Circuit Duration Continuous Storage Temperature Range −65°C to +150°C Operating Temperature Range −40°C to +85°C Junction Temperature (TJ) Range −65°C to +150°C Lead Temperature (Soldering,
60 sec)
300°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA is specified for worst-case mounting conditions, that is, θJA is specified for a device in socket for the PDIP package; θ
is
JA
specified for a device soldered to a printed circuit board (PCB) for the SOIC package.
Table 4.
Package Type θJA θ
14-Lead PDIP_N (S-Suffix) 76 33 °C/W 16-Lead SOIC_R (S-Suffix) 92 27 °C/W
Unit
JC

ESD CAUTION

Rev. E | Page 5 of 16
Page 6
OP490

TYPICAL PERFORMANCE CHARACTERISTICS

0.4
VS = ±15V
0.3
90
80
70
0.2
0.1
INPUT OFFSET VOLTAGE (mA)
2
–75 –50 –25 25 50 75 1250
TEMPERATURE ( °C)
Figure 4. Input Offset Voltage vs. Temperature
1.6 VS = ±15V
1.4
1.2
1.0
0.8
0.6
INPUT OFFSET CURRENT (nA)
0.4
0.2
–75 –50 –25 25 50 75 1250
TEMPERATURE ( °C)
Figure 5. Input Offset Current vs. Temperature
4.8 VS = ±15V
4.6
4.4
4.2
4.0
INPUT BIAS CURRENT (nA)
3.8
60
VS = ±15V
50
V
= ±1.5V
TOTAL S UP PLY CURRENT (µA)
40
30
–75 –50 –25 25 50 75 1250
00308-004
S
TEMPERATURE ( °C)
00308-007
Figure 7. Total Supply Current vs. Temperature
600
TA = 25°C R
= 10k
L
500
400
300
200
OPEN-LOOP GAIN (V/mV)
100
0
0 5 10 20 25 3015
00308-005
SINGLE-SUPPLY VOL T AG E (V)
25°C
85°C
125°C
00308-008
Figure 8. Open-Loop Gain vs. Single-Supply Voltage
140
VS = ±15V T
= 25°C
A
120
R
= 10k
L
100
80
60
40
OPEN-LOOP GAIN (dB)
20
GAIN
PHASE
0
45
90
135
180
PHASE SHIFT ( Deg rees)
3.6
–75 –50 –25 25 50 75 1250
TEMPERATURE ( °C)
Figure 6. Input Bias Current vs. Temperature
00308-006
Rev. E | Page 6 of 16
0
0.1 1 10 100 1k 10k 100k FREQUENCY (Hz)
Figure 9. Open-Loop Gain and Phase Shift vs. Frequency
00308-009
Page 7
OP490
60
VS = ±15V T
= 25°C
A
40
20
CLOSED-LOOP GAIN (dB)
0
120
TA = 25°C
100
80
60
40
POWER SUPP LY REJECTION (dB)
POSITIVE SUPPLY
NEGATIVE SUPPLY
–20
10 100 1k 10k 100k
FREQUENCY (Hz)
Figure 10. Closed-Loop Gain vs. Frequency
6
V+ = 5V, V– = 0V T
= 25°C
A
5
4
3
2
OUTPUT VOLT AGE SWING (V)
1
0 100 1k 10k 100k
LOAD RESISTANCE ()
Figure 11. Output Voltage Swing vs. Load Resistance
16
VS = ±15V T
= 25°C
A
14
12
POSITIVE
10
20
00308-010
1 10 100 1k
LOAD RESISTANCE ()
00308-013
Figure 13. Power Supply Rejection vs. Frequency
140
120
100
80
60
COMMON-MODE REJECTION (dB)
40
00308-011
0.1 1 10 100 1k FREQUENCY (Hz)
VS = ±15V T
= 25°C
A
00308-014
Figure 14. Common-Mode Rejection vs. Frequency
1k
100
VS = ±15V T
= 25°C
A
8
6
OUTPUT SWING (V)
4
2
0 100 1k 10k 100k
NEGATIVE
LOAD RESISTANCE ()
Figure 12. Output Voltage Swing vs. Load Resistance
00308-012
Rev. E | Page 7 of 16
10
VOLTAG E NOISE DENSI T Y (nV/ Hz)
1
0.1 1 10 100 1k FREQUENCY (Hz)
Figure 15. Voltage Noise Density vs. Frequency
00308-015
Page 8
OP490
100
10
VS = ±15V T
= 25°C
A
VS = ±15V T
= 25°C
A
A
= 1
V
R
= 10k
L
C
= 500pF
L
1
CURRENT NOISE DENSITY (pA/ Hz)
0.1
0.1 1 10 100 1k FREQUENCY (Hz)
Figure 16. Current Noise Density vs. Frequency
00308-016
VOLTAGE (5V/DIV)
TIME (1ms/DIV)
00308-018
Figure 18. Large Signal Transient Response
VS = ±15V T
= 25°C
A
A
= 1
V
R
= 10k
L
C
= 500pF
L
VOLTAGE (20mV/DIV)
TIME ( 100µs/DIV)
00308-017
Figure 17. Small Signal Transient Response
Rev. E | Page 8 of 16
Page 9
OP490
V
–18V
V

APPLICATIONS INFORMATION

BATTERY-POWERED APPLICATIONS

The OP490 can be operated on a minimum supply voltage of
14 13 12 11 10 9 8
DC
AB
12345 67
GND
+18
00308-019
Figure 19. Burn-In Circuit
+15
+15V
+
1/4
1k
V
IN
OP490
A
15V
+
1/4
OP490
B
100 10k
+
OP37
A
15V
V1
20V p-p @ 10Hz
V2
1.6 V or with dual supplies of ±0.8 V drawing only 60 μA of supply current. In many battery-powered circuits, the OP490 can be continuously operated for hundreds of hours before requiring battery replacement, thereby reducing equipment downtime and operating costs.
High performance portable equipment and instruments frequently use lithium cells because of their long shelf life, light weight, and high energy density relative to older primary cells. Most lithium cells have a nominal output voltage of 3 V and are noted for a flat discharge characteristic. The low supply current requirement of the OP490, combined with the flat discharge characteristic of the lithium cell, indicates that the OP490 can be operated over the entire useful life of the cell. Figure 21 shows the typical discharge characteristic of a 1 Ah lithium cell powering an OP490 with each amplifier, in turn, driving full output swing into a 100 kΩ load.
4
3
2
1
+
1/4
OP490
C
+
1/4
OP490
D
CHANNEL SEPARATI ON = 20 log
Figure 20. Channel Separation Test Circuit
V1
V2/1000
00308-020
Rev. E | Page 9 of 16
LITHIUM-SULPHUR DIOXIDE CELL VOLTAGE (V)
0
0 250 500 1000 1250 1500750
HOURS
00308-021
Figure 21. Lithium-Sulphur Dioxide Cell Discharge Characteristic with
OP490 and 100 kΩ Loads

SINGLE-SUPPLY OUTPUT VOLTAGE RANGE

In single-supply operation the input and output ranges of the OP490 include ground. This allows true zero-in, zero-out operation. The output stage provides an active pull-down to around 0.8 V above ground. Below this level, a load resistance of up to 1 MΩ to ground is required to pull the output down to zero.
In the region from ground to 0.8 V, the OP490 has voltage gain equal to the data sheet specification. Output current source capability is maintained over the entire voltage range including ground.
Page 10
OP490

INPUT VOLTAGE PROTECTION

The OP490 uses a PNP input stage with protection resistors in series with the inverting and noninverting inputs. The high breakdown of the PNP transistors coupled with the protection resistors provides a large amount of input protection, allowing the inputs to be taken 20 V beyond either supply without damaging the amplifier.

MICROPOWER VOLTAGE-CONTROLLED OSCILLATOR

An OP490 in combination with an inexpensive quad CMOS switch comprise the precision V provides triangle and square wave outputs and draws only 75 μA from a 5 V supply. A acts as an integrator; S1 switches the
R1
200k
V
CONTROL
R2
200k
100k
of Figure 22. This circuit
CO
75nF
+15V
2
1/4
OP490
+
A
3
R4
R3
200k
C1
4
1
11
TRIANGLE
OUT
charging current symmetrically to yield positive and negative ramps. The integrator is bounded by B, which acts as a Schmitt trigger with a precise hysteresis of 1.67 V, set by Resistors R5, R6, and R7, and the associated CMOS switches. The resulting output of A is a triangle wave with upper and lower levels of
3.33 V and 1.67 V. The output of B is a square wave with almost rail-to-rail swing. With the components shown, frequency of operation is given by the equation
f
OUT
= V
(Volts) × 10 Hz/V
CONTROL
but this is easily changed by varying C1. The circuit operates well up to a few hundred hertz.
+15V
R5
200k
6
R8
200k
+5V
5
1/4
OP490
+
7
B
SQUARE OUT
IN/OUT
114
OUT/IN
213
OUT/IN
312
IN/OUT
411
CONT
510
CONT
69
V
SS
78
S1
S2
S3
S4
V
CONT
CONT
IN/OUT
OUT/IN
OUT/IN
IN/OUT
DD
+5V
+5V
R6
200k
R7 200k
Figure 22. Micropower Voltage Controlled Oscillator
00308-022
Rev. E | Page 10 of 16
Page 11
OP490
V
MICROPOWER SINGLE-SUPPLY QUAD VOLTAGE­OUTPUT 8-BIT DAC
The circuit shown in Figure 23 uses the DAC8408 CMOS quad 8-bit DAC, and the OP490 to form a single-supply quad voltage output DAC with a supply drain of only 140 μA. The DAC8408 is used in voltage switching mode and each DAC has an output resistance (≈10 kΩ) independent of the digital input code. The output amplifiers act as buffers to avoid loading the DACs. The 100 kΩ resistors ensure that the OP490 outputs swing below 0.8 V when required.
+5
4
REFERENCE
VOLTAGE
1.5V
25
4
5
6
I
OUT1A
I
OUT2A/2B
I
OUT1B
I
OUT1C
DAC A
1/4
DAC8408
DAC B
1/4
DAC8408
DAC C
1/4
DAC8408
2
V
A
2
REF
B
V
8
REF
C
V
REF
27
3
6
5
13
12
1/4
OP490
+
A
1/4
OP490
+
B
1/4
OP490
+
C
1
11
7
14
R1 100k
R2 100k
R3 100k
V
A
OUT
V
B
OUT
V
C
OUT
I
24
DAC DATA BUS PIN 9 (LSB) TO PIN 16 (MSB)
DIGITAL
CONTROL
SIGNALS
23
17 18
19 20
OUT2C/2D
I
OUT1D
A/B
R/W
DS1 DS2
DAC D
1/4
DAC8408
DAC8408
DGND
28
D
V
REF
9
1021
1/4
OP490
+
D
8
R4 100k
V
D
OUT
OP490
00308-023
Figure 23. Micropower Single-Supply Quad Voltage Output 8-Bit DAC
Rev. E | Page 11 of 16
Page 12
OP490
+15V
R1
1k
2
4
1/4
OP490
3
V
IN
+
15V
1
A
11
R2
9k
6
OP490
+
5
1/4
R3
50
7
B
Figure 24. High Output Amplifier

HIGH OUTPUT AMPLIFIER

The amplifier shown in Figure 24 is capable of driving 25 V p-p into a 1 kΩ load. Design of the amplifier is based on a bridge configuration. A amplifies the input signal and drives the load with the help of B. Amplifier C is a unity-gain inverter which drives the load with help from D. Gain of the high output amplifier with the component values shown is 10, but can easily be changed by varying R1 or R2.

SINGLE-SUPPLY MICROPOWER QUAD PROGRAMMABLE GAIN AMPLIFIER

The combination of a quad OP490 and the DAC8408 quad 8-bit CMOS DAC creates a quad programmable-gain amplifier with a quiescent supply drain of only 140 μA. The digital code present at the DAC, which is easily set by a microprocessor,
R4
50
R5
5k
R6
5k
9
R7
50
R
R8
L
50
14
1/4
OP490
D
13
+
12
8
1/4
OP490
C
10
+
00308-024
determines the ratio between the fixed DAC feedback resistor and the resistance of the DAC ladder seen by the op amp feed­back loop. The gain of each amplifier is:
V
OUT
256
=
IN
nV
where n equals the decimal equivalent of the 8-bit digital code present at the DAC. If the digital code present at the DAC consists of all zeros, the feedback loop opens causing the op amp output to saturate. The 10 MΩ resistors placed in parallel with the DAC feedback loop eliminate this problem with a very small reduction in gain accuracy. The 2.5 V reference biases the amplifiers to the center of the linear region providing maximum output swing.
Rev. E | Page 12 of 16
Page 13
OP490
V
1
VINA
VINB
C1
0.1µF
C2
0.1µF
DD
R
A
3
FB
DAC A
1/4
DAC8408
B
R
7
FB
V
REF
I
OUT1A
I
OUT2A/2B
V
REF
A
2
R1 10M
4
5
B
8
2
1/4
OP490
3
+
A
+5V
4
1
11
V
A
OUT
R2 10M
6
27
R3 10M
25
24
21
R4 10M
23
6
1/4
OP490
5
+
B
9
1/4
OP490
10
13
+
C
1/4
OP490
12
+
D
7
8
14
V
B
OUT
V
C
OUT
V
D
OUT
OP490
+2.5V REFERENCE VOLTAGE
00308-025
VINC
VIND
DIGITAL
CONTROL
SIGNALS
C3
0.1µF
C4
0.1µF
C
R
25
FB
D
R
22
FB
DAC DATA BUS PIN 9 (LSB) TO PIN 16 (MSB)
17
A/B
18
R/W
19
DS1
20
DS2
DAC B
DAC8408
DAC C
DAC8408
DAC D
DAC8408
DAC8408
DGND
1/4
1/4
1/4
I
OUT1B
C
V
REF
I
OUT1C
I
OUT2C/2D
V
D
REF
I
OUT1D
28
Figure 25. Single-Supply Micropower Quad Programmable Gain Amplifier
Rev. E | Page 13 of 16
Page 14
OP490
C

OUTLINE DIMENSIONS

0.775 (19.69)
0.750 (19.05)
0.735 (18.67)
0.210 (5.33)
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
MAX
14
1
0.100 (2.54) BSC
0.070 (1.78)
0.050 (1.27)
0.045 (1.14)
8
7
0.280 (7. 11)
0.250 (6.35)
0.240 (6.10)
0.015 (0.38) MIN
SEATING PLANE
0.005 (0.13) MIN
0.060 (1.52) MAX
0.015 (0.38) GAUGE
PLANE
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.430 (10.92) MAX
0.195 (4.95)
0.130 (3.30)
0.115 (2.92)
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
CONTROLL ING DIMENSIONS ARE IN INCHES; MILLIMET E R DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS F OR REFERENCE ON LY AND ARE NOT APPROPRIATE FOR USE IN DES IGN. CORNER LEADS M AY BE CONFIGURED AS WHOLE OR HALF LEADS.
COMPLIANT TO JEDEC STANDARDS MS-001
070606-A
Figure 26. 14-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
P-Suffix
(N-14)
Dimensions shown in inches and (millimeters)
10.50 (0.4134)
10.10 (0.3976)
BSC
9
7.60 (0.2992)
7.40 (0.2913)
8
10.65 (0.4193)
10.00 (0.3937)
2.65 (0.1043)
2.35 (0.0925)
SEATING PLANE
Wide Body
S-Suffix
(RW-16)
8° 0°
0.33 (0.0130)
0.20 (0.0079)
5
(
0
.
0
2
9
5
7 2
5
0
(
0
.
)
45°
0
9
8
)
1.27 (0.0500)
0.40 (0.0157)
032707-B
0
.
0
.
0.30 (0.0 118)
0.10 (0.0039)
OPLANARITY
0.10
16
1
1.27 (0.0500)
0.51 (0.0201)
0.31 (0.0122)
CONTROLL ING DIMENSIONS ARE IN MILLI METERS; I NCH DI M E NS IONS (IN PARENTHESES) ARE ROUNDED-OFF M ILLIM E TER EQUIVALENTS FOR REFERENCE ON LY AND ARE NOT APPROPRIATE FOR USE IN DE SIGN.
COMPLIANT TO JEDEC STANDARDS MS-013-AA
Figure 27. 16-Lead Standard Small Outline Package [SOIC_W]
Dimensions shown in millimeters and (inches)
Rev. E | Page 14 of 16
Page 15
OP490

ORDERING GUIDE

Model1 Temperature Range Package Description Package Option
OP490GP −40°C to +85°C 14-Lead PDIP_N N-14 (P-Suffix) OP490GPZ −40°C to +85°C 14-Lead PDIP_N N-14 (P-Suffix) OP490GS −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix) OP490GSZ −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix) OP490GSZ-REEL −40°C to +85°C 16-Lead SOIC_W RW-16 (S-Suffix)
1
Z = RoHS Compliant Part.
Rev. E | Page 15 of 16
Page 16
OP490
NOTES
©1987–2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00308-0-5/10(E)
Rev. E | Page 16 of 16
Loading...