Datasheet OP282 Datasheet (Analog Devices)

Page 1
Dual/Quad Low Power, High Speed
O
A
A

FEATURES

High slew rate: 9 V/µs Wide bandwidth: 4 MHz Low supply current: 250 µA/amplifier max Low offset voltage: 3 mV max Low bias current: 100 pA max Fast settling time Common-mode range includes V+ Unity-gain stable

APPLICATIONS

Active filters Fast amplifiers Integrators Supply current monitoring

GENERAL DESCRIPTION

The OP282/OP482 dual and quad operational amplifiers feature excellent speed at exceptionally low supply currents. The slew rate is typically 9 V/µs with a supply current under 250 µA per amplifier. These unity-gain stable amplifiers have a typical gain bandwidth of 4 MHz.
The JFET input stage of the OP282/OP482 ensures bias current is typically a few picoamps and below 500 pA over the full temperature range. Offset voltage is under 3 mV for the dual and under 4 mV for the quad.
With a wide output swing, within 1.5 V of each supply, low power consumption, and high slew rate, the OP282/OP482 are ideal for battery-powered systems or power restricted applications. An input common-mode range that includes the positive supply makes the OP282/OP482 an excellent choice for high-side signal conditioning.
The OP282/OP482 are specified over the extended industrial temperature range. The OP282 is available in the standard 8-lead narrow SOIC and MSOP packages. The OP482 is available in PDIP and narrow SOIC packages.
JFET Operational Amplifiers
OP282/OP482

PIN CONNECTIONS

+–
+–
V+
8
OUT B
7
–IN B
6
+IN B
5
8 7 6 5
14 13 12 11 10
14 13 12 11 10
9 8
V+ OUT B –IN B +IN B
9 8
OUT D –IN D +IN D V– +IN C –IN C OUT C
OUT D –IN D +IN D V– +IN C –IN C OUT C
00301-001
00301-002
00301-003
00301-004
1
UT
–IN A
2 3 4
OP282
OP-482
+IN A
V–
Figure 1. 8-Lead Narrow-Body SOIC (S-Suffix) [R-8]
OUT
1
V–
OP282
2
TOP VIEW
3
(Not to Scale)
4
–IN A +IN A
Figure 2. 8-Lead MSOP [RM-8]
1
OUT A
2
–IN A
+IN A
V+ +IN B –IN B
OUT B
– +
3
OP482
4 5
– +
6 7
Figure 3. 14-Lead PDIP (P-Suffix) [N-14]
OUT A
1
–IN A
2
+IN A
3 4 5 6 7
OP482
V+
+IN B
–IN B
OUT B
Figure 4. 14-Lead Narrow-Body SOIC (S-Suffix) [R-14]
Rev. F
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.
www.analog.com
Page 2
OP282/OP482

TABLE OF CONTENTS

Specifications..................................................................................... 3
High-Side Signal Conditioning ................................................ 12
Electrical Characteristics............................................................. 3
Absolute Maximum Ratings............................................................ 4
ESD Caution.................................................................................. 4
Typical Performance Characteristics............................................. 5
Applications Information .............................................................. 12
REVISION HISTORY
10/04—Data Sheet Changed from Rev. E to Rev. F
Deleted 8-Lead PDIP .........................................................Universal
Added 8-Lead MSOP .........................................................Universal
Changes to Format and Layout.........................................Universal
Changes to Features.......................................................................... 1
Changes to Pin Configurations....................................................... 1
Changes to General Description .................................................... 1
Changes to Specifications................................................................ 3
Changes to Absolute Maximum Ratings ....................................... 4
Changes to Table 3............................................................................ 4
Added Figure 5 through Figure 20; Renumbered
Successive Figures............................................................................. 5
Updated Figure 21 and Figure 22 ................................................... 7
Updated Figure 23 and Figure 27 ................................................... 8
Updated Figure 29............................................................................ 9
Updated Figure 35 and Figure 36 ................................................. 10
Updated Figure 43.......................................................................... 11
Changes to Applications Information.......................................... 12
Changes to Figure 44...................................................................... 12
Deleted OP282/OP482 Spice Macro Model Section.................... 9
Deleted Figure 4................................................................................ 9
Deleted OP282 Spice Marco Model............................................. 10
Updated Outline Dimensions....................................................... 14
Changes to Ordering Guide.......................................................... 14
Phase Inversion........................................................................... 12
Active Filters ............................................................................... 12
Programmable State-Variable Filter......................................... 13
Outline Dimensions....................................................................... 14
Ordering Guide .......................................................................... 16
10/02—Data Sheet Changed from Rev. D to Rev. E
Edits to 8-Lead Epoxy DIP (P-Suffix) Pin......................................1
Edits to Ordering Guide...................................................................3
Edits to Outline Dimensions......................................................... 11
9/02—Data Sheet Changed from Rev. C to Rev. D
Edits to 14-Lead SOIC (S-Suffix) Pin .............................................1
Replaced 8-Lead SOIC (S-Suffix)................................................. 11
4/02—Data Sheet changed from Rev. B to Rev. C
Wafer Test Limits Deleted ................................................................2
Edits to Absolute Maximum Ratings ..............................................3
Dice Characteristics Deleted............................................................3
Edits to Ordering Guide...................................................................3
Edits to Figure 1.................................................................................7
Edits to Figure 3.................................................................................8
20-Position Chip Carrier (RC Suffix) Deleted ........................... 11
Rev. F | Page 2 of 16
Page 3
OP282/OP482

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

At VS = ±15.0 V, TA = 25°C, unless otherwise noted; applies to both A and G grade.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage V
OS
OP282, −40°C ≤ TA ≤ +85°C 4.5 mV V
OS
OP482, −40°C ≤ TA ≤ +85°C 6 mV Input Bias Current I
B
V Input Offset Current I
OS
V Input Voltage Range −11 +15 V Common-Mode Rejection Ratio CMRR −11 V ≤ VCM ≤ +15 V, −40°C ≤ TA ≤ +85°C 70 90 dB Large Signal Voltage Gain A
VO
R Offset Voltage Drift ∆VOS/∆T 10 µV/°C Bias Current Drift ∆IB/∆T 8 pA/°C
OUTPUT CHARACTERISTICS
Output Voltage High V Output Voltage Low V Short-Circuit Limit I
OH
OL
SC
Sink −12 −8 mA Open-Loop Output Impedance Z
OUT
POWER SUPPLY
Power Supply Rejection Ratio PSRR VS = ±4.5 V to ±18 V, −40°C ≤ TA ≤ +85°C 25 316 µV/V Supply Current/Amplifier I Supply Voltage Range V
SY
S
DYNAMIC PERFORMANCE
Slew Rate SR RL = 10 kΩ 7 9 V/µs Full-Power Bandwidth BW Settling Time t
P
S
Gain Bandwidth Product GBP 4 MHz Phase Margin Ø
O
NOISE PERFORMANCE
Voltage Noise en p-p 0.1 Hz to 10 Hz 1.3 µV p-p Voltage Noise Density e Current Noise Density i
n
n
OP282 0.2 3 mV
OP482 0.2 4 mV
VCM = 0 V 3 100 pA
1
CM
= 0 V
500 pA
VCM = 0 V 1 50 pA
= 0 V1 250 pA
CM
RL = 10 kΩ 20 V/mV
= 10 kΩ, −40°C ≤ TA ≤ +85°C 15 V/mV
L
RL = 10 kΩ +13.5 +13.9 V RL = 10 kΩ −13.9 −13.5 V Source 3 10 mA
f = 1 MHz 200
VO = 0 V, −40°C ≤ TA ≤ 85°C 210 250 µA ±4.5 ±18 V
1% distortion 125 kHz To 0.01% 1.6 µs
55 Degrees
f = 1 kHz 36
0.01
nV/√ pA/√
Hz Hz
1
The input bias and offset currents are characterized at TA = TJ = 85°C. Bias and offset currents are guaranteed but not tested at −40°C.
Rev. F | Page 3 of 16
Page 4
OP282/OP482

ABSOLUTE MAXIMUM RATINGS

Table 2.
Parameters Ratings
Supply Voltage ±18 V Input Voltage ±18 V Differential Input Voltage
1
36 V Output Short-Circuit Duration Indefinite Storage Temperature Range
P-Suffix (N), S-Suffix (R), RM Packages −65°C to +150°C
Operating Temperature Range
OP282G, OP282A, OP482G −40°C to +85°C
Junction Temperature Range
P-Suffix (N), S-Suffix (R), RM Packages −65°C to +150°C
Lead Temperature Range (Soldering 60 sec) 300°C
1
For supply voltages less than ±18 V, the absolute maximum input voltage is
equal to the supply voltage.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Table 3.
Package Type θ
8-Lead MSOP [RM] 206 44 °C/W 8-Lead SOIC (S-Suffix) [R] 157 56 °C/W 14-Lead PDIP (P-Suffix) [N] 83 39 °C/W 14-Lead SOIC (S-Suffix) [R] 104 36 °C/W
1
θJA is specified for the worst-case conditions; i.e., θJA is specified for device in
socket for CERDIP, PDIP; θ for SOIC or MSOP package.
1
JA
is specified for device soldered in circuit board
JA
θ
Unit
JC

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. F | Page 4 of 16
Page 5
OP282/OP482

TYPICAL PERFORMANCE CHARACTERISTICS

80
60
40
20
0
OPEN-LOOP GAIN (dB)
–20
–40
1k
10k 1M 10M
100k
FREQUENCY (Hz)
Figure 5. OP282 Open-Loop Gain and Phase vs. Frequency
VS = ±15V
= 25°C
T
A
180
135
90
45
0
–45
–90
PHASE (Degree)
00301-005
70
60
50
A
= 1
00
VCL
40
30
A
= 1
0
VCL
20
10
A
= 1
VCL
0
CLOSED-LOOP GAIN (dB)
–10
–20
–30
1k
10k 1M 10M
100k
FREQUENCY (Hz)
Figure 8. OP282 Closed-Loop Gain vs. Frequency
VS = ±15V
= 25°C
T
A
00301-008
OPEN-LOOP GAIN (V/mV)
45
40
35
30
25
20
15
10
5
0
–75
–25 100 125
25
TEMPERATURE (°C)
75500–50
VS = ±15V
= 10k
R
L
Figure 6. OP282 Open-Loop Gain vs. Temperature
80
VS = ±15V
= 2k
R
L
70
= 100mV p-p
V
IN
A
= 1
VCL
TA = 25°C
60
50
40
30
OVERSHOOT (%)
20
10
0
0
LOAD CAPACITANCE (pF)
+OS
–OS
200 400 500
300100
Figure 7. OP282 Small Signal Overshoot vs. Load Capacitance
00301-006
00301-007
30
25
20
15
10
SLEW RATE (V/µs)
5
0
–75
–25 100 125
TEMPERATURE (°C)
–SR
+SR
25
Figure 9. OP282 Slew Rate vs. Temperature
1000
VS = ±15V
= 0V
V
CM
100
10
1
INPUT BIAS CURRENT (pA)
0.1 –75
–25 100 125
25
TEMPERATURE (°C)
Figure 10. OP282 Input Bias Current vs. Temperature
75500–50
75500–50
VS = ±15V
= 10k
R
L
= 50pF
C
L
00301-009
00301-010
Rev. F | Page 5 of 16
Page 6
OP282/OP482
1000
100
VS = ±15V
= 25°C
T
A
20
15
10
5
0
TA = 25°C
= 10k
R
L
V
OH
10
VOLTAGE NOISE DENSITY (nV/ Hz)
1
10
100 10k
FREQUENCY (Hz)
1k
Figure 11. OP282 Voltage Noise Density vs. Frequency
1000
VS = ±15V T
= 25°C
A
100
10
1
INPUT BIAS CURRENT (pA)
0.1 –15
–5
COMMON-MODE VOLTAGE (V)
50–10
10 15
Figure 12. OP282 Input Bias Current vs. Common-Mode Voltage
00301-011
00301-012
–5
–10
OUTPUT VOLTAGE SWING (V)
–15
–20
0
SUPPLY VOLTAGE (V)
±10
V
OL
±15±5
Figure 14. OP282 Output Voltage Swing vs. Supply Voltage
1000
VS = ±15V
= 25°C
T
A
100
)
A
= 100
VCL
10
A
= 10
VCL
1
OUTPUT IMPEDANCE (
A
= 1
VCL
0.1 1k
10k 1M100
FREQUENCY (Hz)
100k
Figure 15. OP282 Closed-Loop Output Impedance vs. Frequency
±20
00301-014
00301-015
480
TA = 25°C
475
A)
µ
470
465
460
SUPPLY CURRENT (
455
450
0
±10
SUPPLY VOLTAGE (V)
Figure 13. OP282 Supply Current vs. Supply Voltage
480
475
470
465
460
SUPPLY CURRENT (µA)
455
00301-013
±15±5
±20
450
–50
–25 50 100
25
TEMPERATURE (°C)
750
125
00301-016
Figure 16. OP282 Supply Current vs. Temperature
Rev. F | Page 6 of 16
Page 7
OP282/OP482
16
14
12
10
8
VS = ±15V
= 25°C
T
A
V
OL
V
OH
30
25
20
15
VS = ±15V
= 25°C
T
A
R
= 10k
L
= 1
A
VCL
6
4
ABSOLUTE OUTPUT VOLTAGE (V)
2
0
LOAD RESISTANCE (Ω)
1k 10k100
Figure 17. OP282 Absolute Output Voltage vs. Load Resistance
140
VS = ±15V
T
= 25°C
A
120
100
80
60
40
PSRR (dB)
20
0
–20
–40
–60
1k
10k 1M100
FREQUENCY (Hz)
+PSRR
–PSRR
100k
Figure 18. OP282 PSRR vs. Frequency
00301-017
00301-018
10
5
MAXIMUM OUTPUT SWING (V p-p)
0
100
1k 100k 1M
10k
FREQUENCY (Hz)
Figure 20. OP282 Maximum Output Swing vs. Frequency
140
120
100
80
60
40
20
CMRR (dB)
0
–20
–40
–60
1k
10k 1M100
FREQUENCY (Hz)
100k
Figure 21. OP282 CMRR vs. Frequency
VS = ±15V
= 25°C
T
A
00301-020
00301-021
14
12
10
SHORT-CIRCUIT CURRENT (mA)
8
6
4
2
0
–50
–25 50 100
25
TEMPERATURE (°C)
SINK
SOURCE
750
Figure 19. OP282 Short-Circuit Current vs. Temperature
VS = ±15V
00301-019
125
Rev. F | Page 7 of 16
200
160
120
UNITS
80
40
0
–2000
–1200
Figure 22. OP282 V
0
–400
OS
400 1200 2000
VOS (µV)
Distribution SOIC Package
VS = ±15V T
= 25°C
A
300 × OP282 (600 OP AMPS)
00301-022
Page 8
OP282/OP482
400
360
320
280
240
200
UNITS
160
120
80
40
0
0
4128
Figure 23. OP282 TCV
VS = ±15V 300 × OP282 (600 OP AMPS)
20
16
TCVOS (µV/°C)
Distribution SOIC Package
OS
28 32 3624
00301-023
70
60
50
40
30
OVERSHOOT (%)
20
10
0
VS = ±15V
= 2k
R
L
VIN = 100mV p-p
100 200 400
LOAD CAPACITANCE (pF)
A
= 1
VCL
NEGATIVE EDGE
A
= 1
VCL
POSITIVE EDGE
300
Figure 26. OP482 Small Signal Overshoot vs. Load Capacitance
00301-026
5000
80
60
40
20
OPEN-LOOP GAIN (dB)
0
1k 10k 100k 1M 100M10M
FREQUENCY (Hz)
Figure 24. OP482 Open-Loop Gain, Phase vs. Frequency
35
30
25
20
15
10
OPEN-LOOP GAIN (V/mV)
5
VS = ±15V
= 25°C
T
A
VS = ±15V R
= 10k
L
0
45
90
135
180
PHASE (Degrees)
00301-024
60
50
A
= 100
VCL
40
30
A
= 10
VCL
20
10
A
= 1
VCL
CLOSED-LOOP GAIN (dB)
0
–10
–20
1k 10k 100k 1M 100M10M
FREQUENCY (Hz)
Figure 27. OP482 Closed-Loop Gain vs. Frequency
25
–SR
20
15
10
+SR
SLEW RATE (V/µs)
5
VS = ±15V
T
= 25°C
A
VS = ±15V R
= 10k
L
C
= 50pF
L
00301-027
0
TEMPERATURE (°C)
Figure 25. OP482 Open-Loop Gain (V/mV)
00301-025
12510050 75250–75 –50 –25
Rev. F | Page 8 of 16
0
–75
–50 –25 0 25 50 75 100 125
TEMPERATURE (°C)
Figure 28. OP482 Slew Rate vs. Temperature
00301-028
Page 9
OP282/OP482
1000
VS = ±15V
= 0V
V
CM
1000
VS = ±15V
= 25°C
T
A
100
10
1.0
INPUT BIAS CURRENT (pA)
0.1 050
TEMPERATURE (°C)
Figure 29. OP482 Input Bias Current vs. Temperature
60
55
50
PHASE MARGIN (Degrees)
45
GBW
VS= ±15V
= 10k
R
L
00301-029
125–25–50 250 75 100
5.0
4.5
4.0
3.5
GAIN BANDWIDTH PRODUCT (MHz)
100
10
1
INPUT BIAS CURRENT (pA)
0.1
COMMON-MODE VOLTAGE (V)
Figure 32. OP482 Input Bias Current vs. Common-Mode Voltage
1.15
1.10
1.05
1.00
0.95
0.90
RELATIVE SUPPLY CURRENT (ISY)
TA = 25°C
00301-032
15–15 0 5 10–10 –5
40
–75
–50 –25 0 25 50 75 100 125
TEMPERATURE (°C)
3.0
Figure 30. OP482 Phase Margin and Gain Bandwidt h Product vs. Temperature
80
70
60
50
40
30
GE NOISE DENSITY (nV/ Hz)
20
VOLTA
10
0
10 100 1k 10k
FREQUENCY (Hz)
VS = ±15V
= 25°C
T
A
00301-031
Figure 31. OP482 Voltage Noise Density vs. Frequency
00301-030
0.85
SUPPLY VOLTAGE (V)
±15±10±5
Figure 33. OP482 Relative Supply Current vs. Supply Voltage
20
RL = 10k
TA = 25°C
15
10
5
0
–5
–10
OUTPUT VOLTAGE SWING (V)
–15
–20
SUPPLY VOLTAGE (V)
±1510±5 ±20
Figure 34. OP482 Output Voltage Swing vs. Supply Voltage
00301-033
20
00301-034
Rev. F | Page 9 of 16
Page 10
OP282/OP482
600
500
VS = ±15V
T
= 25°C
A
100
+PSRR
80
VS = ±15V
V = 100mV
T
= 25°C
A
400
)
300
IMPEDANCE (
200
A
= 100
100
VCL
0
FREQUENCY (Hz)
A
= 10
VCL
A
= 1
VCL
Figure 35. OP482 Closed-Loop Output Impedance vs. Frequency
1.20
1.15
1.10
1.05
1.00
0.95
0.90
RELATIVE SUPPLY CURRENT (ISY)
0.85
0.80 –50–75 1251007550250–25
TEMPERATURE (°C)
VS = ±15V
Figure 36. OP482 Relative Supply Current vs. Temperature
60
40
PSRR (dB)
20
0
00301-035
1M1k100 100k10k
20
–PSRR
FREQUENCY (Hz)
00301-038
1M1k100 100k10k
Figure 38. OP482 Power Supply Rejection Ratio (PSRR) vs. Frequency
00301-036
20
15
10
5
SHORT-CIRCUIT CURRENT (mA)
0
SINK
SOURCE
TEMPERATURE (°C)
VS = ±15V
00301-039
75–75 0 25 50–50 –25 100 125
Figure 39. OP482 Short-Circuit Current vs. Temperature
16
VS = ±15V
= 25°C
T
A
14
12
10
8
6
4
ABSOLUTE OUTPUT VOLTAGE (V)
2
0
POSITIVE SWING
NEGATIVE SWING
LOAD RESISTANCE ()
10k1k100
Figure 37. OP482 Maximum Output Voltage vs. Load Resistance
00301-037
Rev. F | Page 10 of 16
30
25
20
15
10
MAXIMUM OUTPUT SWING (V)
5
0
1K
FREQUENCY (Hz)
100K10K
Figure 40. OP482 Maximum Output Swing vs. Frequency
VS = ±15V T
= 25°C
A
= 1
A
VCL
= 10k
R
L
1M
00301-040
Page 11
OP282/OP482
100
320
80
60
40
CMRR (dB)
20
0
VS = ±15V T
= 25°C
A
= 100mV
V
–20
CM
FREQUENCY (Hz)
00301-041
1M1k100 100k10k
Figure 41. OP482 Common-Mode Rejection Ratio (CMRR) vs. Frequency
700
600
500
400
UNITS
300
200
VS = ±15V T
= 25°C
A
300 × OP482 (1200 OP AMPS)
280
240
200
160
UNITS
120
80
40
0
0
TCV
(µV/°C)
Figure 43. OP482 TCV
OS
Distribution P Package
OS
32282412 201684
00301-043
100
0
–1600–2000
Figure 42. OP482 V
–400–800–1200
(µV)
V
OS
Distribution P Package
OS
160012008004000
00301-045
2000
Rev. F | Page 11 of 16
Page 12
OP282/OP482

APPLICATIONS INFORMATION

The OP282 and OP482 are dual and quad JFET op amps that are optimized for high speed at low power. This combination makes these amplifiers excellent choices for battery-powered or low power applications that require above average performance. Applications benefiting from this performance combination include telecommunications, geophysical exploration, portable medical equipment, and navigational instrumentation.

HIGH-SIDE SIGNAL CONDITIONING

There are many applications that require the sensing of signals near the positive rail. OP282s and OP482s were tested and are guaranteed over a common-mode range (−11 V ≤ V that includes the positive supply.
One application where this is commonly used is in the sensing of power supply currents. This enables it to be used in current sensing applications, such as the partial circuit shown in Figure 44. In this circuit, the voltage drop across a low value resistor, such as the 0.1 Ω shown here, is amplified and compared to 7.5 V. The output can then be used for current limiting.
15V
100k
0.1
500k
100k
≤ +15 V)
CM
R
L

PHASE INVERSION

Most JFET-input amplifiers invert the phase of the input signal if either input exceeds the input common-mode range. For the OP282/OP482, negative signals in excess of approximately 14 V cause phase inversion. The cause of this effect is saturation of the input stage leading to the forward-biasing of a drain-gate diode. A simple fix for this in noninverting applications is to place a resistor in series with the noninverting input. This limits the amount of current through the forward-biased diode and prevents the shutting down of the output stage. For the OP282/OP482, a value of 200 kΩ has been found to work; however, this adds a significant amount of noise.
15
10
5
0
OUT
V
5
10
15
–15 –10 –5 5 10 15
Figure 45. OP282 Phase Reversal
0
V
IN

ACTIVE FILTERS

The wide bandwidth and high slew rates of the OP282/OP482
500k
Figure 44. High-Side Signal Conditioning
1/2
OP282
00301-046
make either an excellent choice for many filter applications.
There are many active filter configurations, but the four most popu lar configu rat ions are Butterworth, E lliptical, Bess el, and Chebyshev. Each type has a response that is optimized for a given characteristic as shown in Table 4.
Table 4.
Type Selectivity Overshoot Phase Amplitude (Pass Band) Amplitude (Stop Band)
Butterworth Moderate Good Maximum Flat Chebyshev Good Moderate Nonlinear Equal Ripple Elliptical Best Poor Equal Ripple Equal Ripple Bessel (Thompson) Poor Best Linear
00301-047
Rev. F | Page 12 of 16
Page 13
OP282/OP482

PROGRAMMABLE STATE-VARIABLE FILTER

The circuit shown in Figure 46 can be used to accurately program the Q, the cutoff frequency f state variable filter. OP482s have been used in this design because of their high bandwidths, low power, and low noise. This circuit takes only three packages to build because of the quad configuration of the op amps and DACs.
The DACs shown are used in the voltage mode; therefore, many values are dependent on the accuracy of the DAC only and not on the absolute values of the DAC’s resistive ladders. This makes this circuit unusually accurate for a programmable filter.
Adjusting DAC 1 changes the signal amplitude across R1; therefore, the DAC attenuation times R1 determines the amount of signal current that charges the integrating capacitor, C1. This cutoff frequency can now be expressed as
V
IN
DAC8408
1/4
1/4
OP482
R5
2k
, and gain of a 2-pole
C
R4
2k
1/4
OP482
HIGH PASS
1/4
DAC8408
OP482
1/4
1 D1
=
fc
R1C1
where
D1 is the digital code for the DAC.
The gain of this circuit is set by adjusting
R4
=
Gain
R5
⎜ ⎝
⎛ ⎜
D3
256
⎞ ⎟
256
D3. The gain equation is
⎞ ⎟ ⎠
DAC 2 is used to set the Q of the circuit. Adjusting this DAC controls the amount of feedback from the band-pass node to the input summing node. Note that the digital value of the DAC is in the numerator; therefore, zero code is not a valid operating point.
256
R2
⎛ ⎜ ⎝
D2R3
R7
2k
DAC8408
⎞ ⎟ ⎠
C1
1000pF
1/4
1/4
OP482
R1
2k
1/4
OP482
R1
2k
Q
=
C1
1000pF
1/4
OP482
LOW
PASS
2k
R6
R3
2k
R2
2k
1/4
OP482
1/4
OP482
Figure 46.
1/4
DAC8408
BAND PASS
00301-048
Rev. F | Page 13 of 16
Page 14
OP282/OP482

OUTLINE DIMENSIONS

4.00 (0.1574)
3.80 (0.1497)
5.00 (0.1968)
4.80 (0.1890)
85
6.20 (0.2440)
5.80 (0.2284)
41
1.27 (0.0500) BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MS-012AA
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0196)
0.25 (0.0099)
1.27 (0.0500)
0.40 (0.0157)
Figure 47. 8-Lead Standard Small Outline Package [SOIC]
Narrow-Body S-Suffix (R-8)
Dimensions shown in millimeters and (inches)
3.00
BSC
8
5
4
SEATING PLANE
4.90
BSC
1.10 MAX
0.23
0.08
8° 0°
0.80
0.60
0.40
3.00 BSC
1
PIN 1
0.65 BSC
0.15
0.00
0.38
0.22
COPLANARITY
0.10 COMPLIANT TO JEDEC STANDARDS MO-187AA
Figure 48. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
× 45°
Rev. F | Page 14 of 16
Page 15
OP282/OP482
Y
8.75 (0.3445)
8.55 (0.3366)
4.00 (0.1575)
3.80 (0.1496)
0.25 (0.0098)
0.10 (0.0039)
COPLANARIT
0.10
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
14 1
1.27 (0.0500) BSC
0.51 (0.0201)
0.31 (0.0122)
COMPLIANT TO JEDEC STANDARDS MS-012AB
8
6.20 (0.2441)
7
5.80 (0.2283)
SEATING PLANE
1.75 (0.0689)
1.35 (0.0531)
0.25 (0.0098)
0.17 (0.0067)
0.50 (0.0197)
0.25 (0.0098)
8° 0°
Figure 49. 14-Lead Standard Small Outline Package [SOIC]
Narrow-Body S-Suffix (R-14)
Dimensions shown in millimeters and (inches)
0.685 (17.40)
0.665 (16.89)
0.645 (16.38)
14 17
0.100 (2.54) BSC
0.015 (0.38)
0.180 (4.57) MAX
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
COMPLIANT TO JEDEC STANDARDS MO-095-AB
0.060 (1.52)
0.050 (1.27)
0.045 (1.14)
8
MIN
0.295 (7.49)
0.285 (7.24)
0.275 (6.99)
SEATING PLANE
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.015 (0.38)
0.010 (0.25)
0.008 (0.20)
Figure 50. 14-Lead Plastic Dual-in-Line Package [PDIP]
P-Suffix (N-14)
Dimension shown in inches and (millimeters)
1.27 (0.0500)
0.40 (0.0157)
0.150 (3.81)
0.135 (3.43)
0.120 (3.05)
× 45°
Rev. F | Page 15 of 16
Page 16
OP282/OP482

ORDERING GUIDE

Model Temperature Range Package Description Package Option Branding
OP282ARMZ-R2 OP282ARMZ-REEL1 −40°C to +85°C 8-Lead MSOP RM-8 A0B OP282GS −40°C to +85°C 8-Lead SOIC S-Suffix (R-8) OP282GS-REEL −40°C to +85°C 8-Lead SOIC S-Suffix (R-8) OP282GS-REEL7 −40°C to +85°C 8-Lead SOIC S-Suffix (R-8) OP282GSZ1 −40°C to +85°C 8-Lead SOIC S-Suffix (R-8) OP282GSZ-REEL1 −40°C to +85°C 8-Lead SOIC S-Suffix (R-8) OP282GSZ-REEL71 −40°C to +85°C 8-Lead SOIC S-Suffix (R-8) OP482GP −40°C to +85°C 14-Lead PDIP P-Suffix (N-14) OP482GS −40°C to +85°C 14-Lead SOIC S-Suffix (R-14) OP482GS-REEL −40°C to +85°C 14-Lead SOIC S-Suffix (R-14) OP482GS-REEL7 −40°C to +85°C 14-Lead SOIC S-Suffix (R-14) OP482GSZ1 −40°C to +85°C 14-Lead SOIC S-Suffix (R-14) OP482GSZ-REEL1 −40°C to +85°C 14-Lead SOIC S-Suffix (R-14) OP482GSZ-REEL71 −40°C to +85°C 14-Lead SOIC S-Suffix (R-14)
1
Z = Pb-free part.
1
−40°C to +85°C 8-Lead MSOP RM-8 A0B
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
C00301–0–10/04(F)
Rev. F | Page 16 of 16
Loading...