Datasheet OP200FZ, OP200GS, OP200EZ, OP200AZ Datasheet (Analog Devices)

Page 1
Dual Low Offset, Low Power
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
NC = NO CONNECT
–IN A
+IN A
NC
V–
NC
+IN B
–IN B
NC
OUT A
NC
NC
V+
NC
NC
OUT B
NC
+
+
8
7
6
5
V+
–IN B
+IN B
OUT B
1
2
3
4
–IN A
+IN A
V–
OUT A
+
+
A
B
a
FEATURES Low Input Offset Voltage: 75 V Max Low Offset Voltage Drift, Over –55C
0.5 V/C Max
Low Supply Current (Per Amplifier): 725 mA Max High Open-Loop Gain: 5000 V/mV Min Low Input Bias Current: 2 nA Max Low Noise Voltage Density: 11 nV/÷Hz at 1 kHz Stable with Large Capacitive Loads: 10 nF Typ Pin Compatible to OP221, MC1458, and LT1013 with
Improved Performance
Available in Die Form
GENERAL DESCRIPTION
The OP200 is the first monolithic dual operational amplifier to offer OP77 type precision performance. Available in the industry standard 8-pin pinout, the OP200 combines precision performance with the space and cost savings offered by a dual amplifier.
The OP200 features an extremely low input offset voltage of less than 75 mV with a drift below 0.5 mV/C, guaranteed over the full military temperature range. Open-loop gain of the OP200 exceeds 5,000,000 into a 10 kW load; input bias current is under 2 nA; CMR is over 120 dB and PSRR below 1.8 mV/V. On-chip zener- zap trimming is used to achieve the extremely low input offset voltage of the OP200 and eliminates the need for offset pulling.
Power consumption of the OP200 is very low, with each amplifier drawing less than 725 mA of supply current. The total current drawn by the dual OP200 is less than one-half that of a single OP07, yet the OP200 offers significant improvements over this industry standard op amp. The voltage noise density of the OP200, 11 nV/÷Hz at 1 kHz, is half that of most competitive devices.
The OP200 is pin compatible with the OP221, LM158, MC1458/1558, and LT1013.
<
T
<
+125C:
A
Operational Amplifier
OP200
PIN CONNECTIONS
16-Pin SOIC
(S-Suffix)
EPOXY MINI-DI
(P-Suffix),
8-Pin Hermetic DIP
(Z-Suffix)
The OP200 is an ideal choice for applications requiring multiple precision op amps and where low power consumption is critical.
For a quad precision op amp, see the OP400.
P
VOLTAGE
LIMITING
NETWORK
+IN –IN
Figure 1. Simplified Schematic (One of two amplifiers is shown.)
REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
V+
BIAS
OUT
V–
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002
Page 2
OP200–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
(VS = ±15 V, TA = 25C, unless otherwise noted.)
OP200A/E OP200F OP200G
Parameter Symbol Conditions Min Typ Max Min Typ Max Min Typ Max Unit
Input Offset Voltage V
OS
25 75 50 150 80 200 mV
Long Term Input
Voltage Stability 0.1 0.1 0.1 mV/mo
Input Offset Current I
Input Bias Current I
Input Noise Voltage e
Input Noise e
Voltage Density
1
Input Noise Current i
OS
B
n p-p
n
n p-p
V
= 0 V 0.05 1.0 0.05 2.0 0.05 3.5 nA
CM
V
= 0 V 0.1 2.0 0.1 4.0 0.1 5.0 nA
CM
0.1 Hz to 10 Hz 0.5 0.5 0.5 mV
p-p
fO = 10 Hz 22 36 22 36 22 nV/Hz fO = 1000 Hz 11 18 11 18 11
0.1 Hz to 10 Hz 15 15 15 pA
p-p
Input Noise
Current Density i
n
fO = 10 Hz 0.4 0.4 0.4 pA/Hz
Input Resistance
Differential Mode R
IN
10 10 10 MW
Input Resistance
Common Mode R
Large Signal A
INCM
VO
Voltage Gain R
VO - ± 10 V
= 10 kW 5000 12000 3000 7000 3000 7000
L
125 125 125 GW
RL = 2 kW 2000 3700 1500 3200 1500 3200 M/mV
NOTES
1
Sample tested
2
Guaranteed but not 100% tested
3
Guaranteed by CMR test
–2–
REV. A
Page 3
OP200
ELECTRICAL CHARACTERISTICS
(VS = 15 V, –55C £ TA £ +125C for OP200A, unless otherwise noted.)
OP200A
Parameter Symbol Conditions Min Typ Max Unit
Input Offset Voltage V
OS
Average Input Offset Voltage Drift TCV
Input Offset Current I
Input Bias Current I
Large Signal Voltage Gain A
OS
B
VO
OS
VCM = 0 V 0.15 2.5 nA
VCM = 0 V 0.9 5.0 nA
VO = 10 V
= 10 W 3000 9000 V/mV
R
L
45 125 mV
0.2 0.5 mV/∞C
RL = 2 kW 1000 2700 V/mV
Input Voltage Range* IVR ±12 ±12.5 V
Common-Mode Rejection CMR VCM = ±12 V 115 130 dB
Power Supply Rejection Ratio PSRR VS = +3 V to +18 V 0.2 3.2 mV/V
Output Voltage Swing V
O
RL = 10 k12 ±12.4 V RL = 2 k11 ±12 V
Supply Current Per Amplifier I
SY
No Load 600 775 mA
Capacitive Load Stability AV = +1 8 nF
NOTE *Guaranteed by CMR test.
ELECTRICAL CHARACTERISTICS
(VS = 15 V, TA = 25C, unless otherwise noted.)
OP200A/E OP200F OP200G
Parameter Symbol Conditions Min Typ Max Min Typ Max Min Typ Max Unit
Input Voltage Range3IVR ±12 ±13 ± 12 ±13 ±12 ±13 V
Common-Mode
Rejection CMR VCM = ±12 V 120 135 115 135 110 130 dB
Power Supply V
= ±3 V
S
Rejection Ratio PSRR to ± 18 V 0.4 1.8 0.4 3.2 0.6 5.6 mV/V
Output Voltage V
O
RL= 10 k12 ±12.6 ±12 ±12.6 ±12 ±12.6 V
Swing RL = 2 k11 ±12.2 ± 11 ±12.2 ±11 ±12.2 V
Supply Current
Per Amplifier I
SY
No Load 570 725 570 725 570 725 mA
Slew Rate SR 0.1 0.15 0.1 0.15 0.1 0.15 V/mS
Gain Bandwidth
Product GBWP AV = 1 500 500 500 kHz
Channel Separation
2
VO = 20 Vp-p
CS fO = 10 Hz 123 145 123 145 123 145 dB
Input Capacitance C
IN
Capacitive Load A
V
= 1
3.2 3.2 3.2 pF
Stability No Oscillations 10 10 10 nF
NOTES
1
Sample tested
2
Guaranteed but not 100% tested
3
Guaranteed by CMR test
REV. A
–3–
Page 4
OP200–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
(VS = ±15 V, –40C £ TA £ +85C, unless otherwise noted.)
OP200E OP200F OP200G
Parameter Symbol Conditions Min Typ Max Min Typ Max Min Typ Max Unit
Input Offset Voltage V
OS
35 100 80 250 110 300 mV
Average Input Offset
Voltage Drift TCV
Input Offset Current I
Input Bias Current I
OS
OS
B
Large-Signal V
Voltage Gain A
VO
VCM = 0 V 0.08 2.5 0.08 3.5 0.1 6.0 nA
VCM = 0 V 0 3 5.0 0.3 70 0.5 10.0 nA
= ±10 V
O
RL= 10 kW 3000 10000 2000 5000 2000 5000 V/mV
0.2 0.5 0.5 1.5 0.6 2.0 mV/∞C
RL = 2 kW 1500 3200 1000 2500 1000 2500 V/mV
Input Voltage
Range* IVR ± 12 ±12.5 ± 12 ±12.5 ±12 ±12.5 V
Common-Mode
Rejection CMR VCM = ±12 V 115 130 110 130 105 130 dB
Power Supply PSRR V
= ±3 V 0.15 3.2 0.15 5.6 0.3 10.0 mV/V
S
Rejection Ratio to ±18 V
Output Voltage V
O
RL = 10 k12 ±12.4 ± 12 ±12.4 ±12 ±12.4 V
Swing RL = 2 k11 ± 12 ± 11 ±12 ± 11 ±12.2 V
Supply Current
Per Amplifier I
SY
Capacitive Load A
No Load 600 775 600 775 600 775 mA
= 1 10 1010nF
V
Stability No Oscillations 10 10 10 nF
NOTE
*Guaranteed by CMR test.
–4–
REV. A
Page 5
OP200
WARNING!
ESD SENSITIVE DEVICE
1/2
OP200
50k
50
1/2
OP200
CHANNEL SEPARATION = 20 LOG
V2/1000
V
1
20Vp-p @ 10Hz
V
1
V
2
Figure 2. Channel Separation Test Circuit

ABSOLUTE MAXIMUM RATINGS

1
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . ± 30 V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . Supply Voltage
Output Short-Circuit Duration . . . . . . . . . . . . . . Continuous
Storage Temperature Range
P, S, Z-Package . . . . . . . . . . . . . . . . . . . . . –65C to +150∞C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300∞C
Junction Temperature (T
) . . . . . . . . . . . . . –65C to +150C
J
Operating Temperature Range
OP200A . . . . . . . . . . . . . . . . . . . . . . . . . . . –55C to +125∞C
OP200E, OP200F . . . . . . . . . . . . . . . . . . . . –40C to +85∞C
OP200G . . . . . . . . . . . . . . . . . . . . . . . . . . . –40C to +85∞C
Package Type
2
JA
JC
Unit
8-Pin Hermetic DIP (Z) 148 16 ∞C/W 8-Pin Plastic DIP (P) 96 37 ∞C/W 16-Pin SOL (S) 92 27 ∞C/W
NOTES
1
Absolute maximum ratings apply to both DICE and packaged parts, unless
otherwise noted.
2
is specified for worst case mounting conditions, i.e., JA is specified for
JA
device in socket for CERDIP and P-DIP packages; JA is specified for device soldered to printed circuit board for SOL package.
10k100
1/2
OP200
(nV/ Hz) = 2 e
e
OUT
1/2
OP200
(nV/ Hz) 101
OUT
TO SPECTRUM
e
OUT
ANALYZER
Figure 3. Noise Test Schematic

ORDERING GUIDE

Package
= 25COperating
T
A
V
Max CERDIP Temperature
OS
(V) 8-Pin Plastic Range
75 OP200AZ MIL 75 OP200EZ XIND 150 OP200FZ* XIND 200 OP200GP XIND 200 OP200GS XIND
*Not for new design, obsolete April 2002.
For military processed devices, please refer to the Standard Microcircuit Drawing (SMD) available at www.dscc.dla.mil/programs/milspec/default.asp
SMD Part Number ADI Equivalent
5962-8859301M2A OP200ARCMDA 5962-8859301MPA OP200AZMDA

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP200 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
REV. A
–5–
Page 6
OP200
–Typical Performance Characteristics
TA = 25C
= 15V
V
S
2
1
CHANGE IN OFFSET VOLTAGE – V
5
0
12345
TIME – Minutes
TPC 1. Warm-Up Drift
300
VS = 15V
250
200
150
100
50
INPUT OFFSET CURRENT – pA
0 –75
–50 –25 0 25 50 75 100 125
TEMPERATURE – C
TPC 4. Input Offset Current vs. Temperature
60
VS = 15V
50
40
30
20
10
INPUT OFFSET VOLTAGE – V
0
–75
–50 –25 0 25 50 75 100 125
TEMPERATURE – C
TPC 2. Input Offset Voltage vs. Temperature
1.0 TA = 25C VS = 15V
0.8
0.6
0.4
0.2
INPUT BIAS CURRENT – nA
0
–15
–10 –5 0 5 10 15
COMON-MODE VOLTAGE – V
TPC 5. Input Bias Current vs. Common-Mode Voltage
3
VS = 15V
2
1
0
–1
INPUT BIAS CURRENT – nA
–2
–3
–50 –25 0 25 50 75 100 125
–75
TEMPERATURE – C
TPC 3. Input Bias Current vs. Temperature
140
120
100
80
60
40
20
COMMON-MODE REJECTION – dB
0
1
10 100 1k 10k 100k
FREQUENCY – Hz
TA = 25C
= 15V
V
S
TPC 6. Common-Mode Rejection vs. Frequency
CURRENT NOISE DENSITY – nV/ Hz
100
10
110010
FREQUENCY – Hz
TA = 25C
= 15V
V
S
TPC 7. Voltage Noise Density vs. Frequency
1000
CURRENT NOISE DENSITY – fA/ Hz
1k
100
1
10 1k100
FREQUENCY – Hz
TPC 8. Current Noise Density
TA = 25C
= 15V
V
S
TPC 9. 0.1 to 10Hz Noise
vs. Frequency
–6–
REV. A
Page 7
OP200
1.18 TWO AMPLIFIERS
= 25C
T
A
1.16
1.14
1.12
1.10
1.08
TOTAL SUPPLY CURRENT – mA
1.06
2 6 10 14 16
SUPPLY VOLTAGE – V
TPC 10. Total Supply Current vs. Supply Voltage
0.7
0.6
0.5
0.4
0.3
0.2
POWER SUPPLY REJECTION – V/V
0.1 –75
–50 –25 0 25 50 75 100 125
TEMPERATURE – C
TPC 13. Power Supply Rejection vs. Temperature
1.16
TWO AMPLIFIERS VS = 15V
1.15
1.14
1.13
SUPPLY CURRENT – mA
1.12
1.11 –75
–50 –25 0 25 50 75 100 125
TEMPERATURE – C
TPC 11. Total Supply Current vs. Temperature
6000
5000
4000
3000
2000
OPEN-LOOP GAIN – V/mV
1000
0
–75
–50 –25 0 25 50 75 100 125
TEMPERATURE – C
VS = 15V RL = 2k
TPC 14. Open Loop Gain vs. Temperature
140
120
100
80
60
40
20
TA = 25C
POWER SUPPLY REJECTION – nA
0
1101001k10k 100k
0.1
POSITIVE SUPPLY
FREQUENCY – Hz
NEGATIVE SUPPLY
TPC 12. Power Supply Rejection vs. Temperature
140
120
100
80
60
40
OPEN-LOOP GAIN – dB
20
0
–20
10 100 1k 10k 100k
FREQUENCY – Hz
GAIN
TA = 25C
= 15V
V
S
PHASE
TPC 15. Open Loop Gain and Phase Shift vs. Frequency
0
90
135
PHASE SHIFT – Degrees
180
1M
140
120
100
AV = 1000
80
AV = 100
60
GAIN – dB
AV = 10
40
AV = 1
20
0
10 100 1k 10k 100k
FREQUENCY – Hz
TPC 16. Closed Loop Gain vs. Frequency
REV. A
TA = 25C
= 15V
V
S
1M
30
25
20
15
10
5
OUTPUT SWING – V p-p AT 1% Distortion
0
10 100 1k 10k
FREQUENCY – Hz
TA = 25C VS = 15V
TPC 17. Maximum Output Swing vs. Frequency
–7–
100k
1
0.1
DISTORTION – %
0.01
0.001
FREQUENCY – Hz
AV = 100
AV = 10
AV = 1
TA = 25C
= 15V
V
S
V
= 10V p-p
OUT
R
= 2k
L
TPC 18. Total Harmonic Distortion vs. Frequency
10k1k100
Page 8
OP200
50
TA = 25C
45
V
40
35
30
25
20
OVERSHOOT – %
15
10
5
0
0
= 15V
S
FALLING
RISING
0.5 1.0 1.5 CAPACITIVE LOAD – nF
1.0 1.5 3.0
TPC 19. Overshoot vs. Capacitive Load
29
28
27
26
25
24
SOURCING
23
SHORT-CIRCUIT CURRENT – mA
22
01 345
SINKING
2
TIME – Minutes
TPC 20. Short-Circuit Current vs. Time
TA = 25C VS = 15V
150
140
130
120
110
CHANNEL SEPARATION – dB
100
90
10 100 1k 10k
FREQUENCY – Hz
TPC 21. Channel Separation vs. Frequency
100k
TPC 22. Large-Signal Transient Response
TPC 23. Small-Signal Transient Response

APPLICATIONS INFORMATION

The OP200 is inherently stable at all gains and is capable of driving large capacitive loads without oscillating. Nonetheless, good supply decoupling is highly recommended. Proper supply decoupling reduces problems caused by supply line noise and improves the capacitive load driving capability of the OP200.

APPLICATIONS DUAL LOW-POWER INSTRUMENTATION AMPLIFIER

A dual instrumentation amplifier that consumes less than 33 mW of power per channel is shown in Figure 4. The linearity of the instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is better than 14 bits in gains from 200 to 1000. CMRR is above 115 dB (Gain = 1000). Offset voltage drift is typically
0.2 mV/C over the military temperature range which is compa­rable to the best monolithic instrumentation amplifiers. The bandwidth of the low-power instrumentation amplifier is a func­tion of gain and is shown below:
Gain Bandwidth
5 150 kHz 10 67 kHz 100 7.5 kHz 1000 500 Hz
TPC 24. Small-Signal Transient
LOAD
3
2
40000
R
+15V
1/2
OP200AZ
–15V
VIN + V
G
= 1 nF
8
4
20k
REF
1
V
OUT
V
IN
V
REF
5
1/2
OP200AZ
6
20k 5k
Response C
7
5k
R
G
V
= 5 +
OUT
Figure 4. Dual Low-Power Instrumentation Amplifier
The output signal is specified with respect to the reference input, which is normally connected to analog ground. The reference input can be used to offset the output from –10 V to +10 V if required.
–8–
REV. A
Page 9
OP200

PRECISION ABSOLUTE VALUE AMPLIFIER

The circuit of Figure 5 is a precision absolute value amplifier with an input impedance of 10 MW. The high gain and low
of the OP200 ensure accurate operation with microvolt
TCV
OS
input signals. In this circuit, the input always appears as a common-mode signal to the op amps. The CMR of the OP200 exceeds 120 dB, yielding an error of less than 2 ppm.
+15
C2
0.1pF
R1
1k
C1
OP200AZ
2
1/2
–15
8
4
30pF
C2
0.1pF
3
V
IN
D1 1N4148
1
D1
1N4148
6
5
R2 2k
R3
1k
1/2
OP200AZ
7
0V < V
OUT
V
OUT
< 10V
Figure 5. Precision Absolute Value Amplifier

PRECISION CURRENT PUMP

Maximum output current of the precision current pump shown in Figure 6 is ±10 mA. Voltage compliance is ±10 V with ± 15 V supplies. Output impedance of the current transmitter exceeds 3 MW with linearity better than 16 bits.
=
2
3
100
10k
1/2
OP200EZ
R4
1k
V
IN
= 10mA/V
R3
R5
100
1
7
OP200EZ
+15
8
1/2
4
–15
5
6
I
OUT
R1
10k
V
R2
IN
10k
V
IN
I
=
OUT
RS
Figure 6. Precision Current Pump

DUAL 12-BIT VOLTAGE OUTPUT DAC

The dual output DAC shown in Figure 7 is capable of providing untrimmed 12-bit accurate operation over the entire military temperature range. Offset voltage, bias current and gain errors of the OP-200 contribute less than 1/lO of an LSB error at 12 bits over the military temperature range.
10V
REFERENCE
VOLTAGE
PINS 6(MSB) – 17(LSB)
CONTROL
4
DAC DATA BUS
22
18
19
DAC
20
5V
21
V
DD
R
A
FB
I
OUT
RFBB
I
OUT
AGND
3
A
2
23
B
24
1
2
1/2
OP200AZ
3
+
6
1/2
OP200AZ
5
+
DAC-8222EW
DAC A
A
V
REF
DAC8212AV
REF
CS
WR
B
DAC8212AV
DAC B
V
DAC A/DAC B
1/2
1/2
DGND
5
Figure 7. Dual 12-Bit Voltage Output DAC
8
1
4
7
OUTA
–15V
OUTB
REV. A
–9–
Page 10
OP200

DUAL PRECISION VOLTAGE REFERENCE

A dual OP200 and a REF-43, a 2.5 V reference, can be used to build a ±2.5 V precision voltage reference. Maximum output current from each reference is ±10 mA with load regulation under 25 mV/mA. Line regulation is better than 15 mV/V and output voltage drift is under 20 mV/C. Output voltage noise from 0.1 Hz to 10 Hz is typically 75 mV p-p. R1 and D1 ensure correct start-up.

PROGRAMMABLE HIGH RESOLUTION WINDOW COMPARATOR

The programmable window comparator shown in Figure 9 is easily capable of 12-bit accuracy over the full military tempera­ture range. A dual CMOS 12-bit DAC, the DAC-8212, is used in the voltage switching mode to set the upper and lower thresh­olds (DAC A and DAC B, respectively).
V
IN
21
V
DD
10V
REFERENCE
PINS 6(MSB) – 17(LSB)
CONTROL
SIGNALS
2
DAC DATA BUS
24
18
DAC
19
20
I
OUT
I
OUT
DAC A/DAC B
CS
WR
A
B
DAC A
1/2
DAC8212AV
DAC B
1/2
DAC8212AV
DGND
5
AGND
R
A
4
REF
R
B
22
REF
1
R1
10k
–15V
R2
10k
3
2
4
5
+5V
R2
1/2
OP200AZ
10k
8
1/2
OP-200AZ
4
–5V
7
2
3
R1 22k
2
REF-43A
4
6
D1
1N914
6
5
Figure 8. Dual Precision Voltage Reference
15V
8
+
1/2
OP200AZ
+
1/2
OP200AZ
1
D1
R3
1N4148
10k
D2 1N4148
7
R4 10k
OUTB
5V
Q1 2N2222
R4 5k
TTL OUT
R3 10k
–2.5V
–2.5V
Figure 9. Programmable High Resolution Window Comparator
–10–
REV. A
Page 11
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
PIN CONNECTIONS
16-Pin SOIC
(S-Suffix)
0.4133 (10.50)
0.3977 (10.00)
OP200
16
1
PIN 1
0.0118 (0.30)
0.0040 (0.10)
PIN 1
0.210
(5.33)
MAX
0.160 (4.06)
0.115 (2.93)
0.050 (1.27) BSC
0.0192 (0.49)
0.0138 (0.35)
0.430 (10.92)
0.348 (8.84)
8
1
0.100 (2.54)
0.022 (0.558)
0.014 (0.356)
9
0.2992 (7.60)
0.2914 (7.40)
8
0.1043 (2.65)
0.0926 (2.35)
SEATING PLANE
Epoxy MINI-DI
(P-Suffix)
5
0.280 (7.11)
0.240 (6.10)
4
BSC
0.070 (1.77)
0.045 (1.15)
0.060 (1.52)
0.015 (0.38)
SEATING PLANE
0.4193 (10.65)
0.3937 (10.00)
0.0125 (0.32)
0.0091 (0.23)
P
0.325 (8.25)
0.300 (7.62)
0.130 (3.30) MIN
0.0291 (0.74)
0.0098 (0.25)
8 0
0.195 (4.95)
0.115 (2.93)
0.015 (0.381)
0.008 (0.204)
45
0.0500 (1.27)
0.0157 (0.40)
REV. A
PIN 1
0.200 (5.08) MAX
0.200 (5.08)
0.125 (3.18)
8-Pin Hermetic DIP
0.005 (0.13) MIN
85
1
0.100 (2.54) BSC
0.405 (10.29) MAX
0.023 (0.58)
0.014 (0.36)
(Z-Suffix)
0.055 (1.4) MAX
4
0.070 (1.78)
0.030 (0.76)
0.310 (7.87)
0.220 (5.59)
0.060 (1.52)
0.015 (0.38)
0.150 (3.81) MIN
SEATING PLANE
–11–
0.320 (8.13)
0.290 (7.37)
15
0
0.015 (0.38)
0.008 (0.20)
Page 12
OP200

Revision History

Location Page
Data Sheet changed from REV. 0 to REV. A.
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Edits to PACKAGE TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
C00322–0–4/02(A)
–12–
PRINTED IN U.S.A.
REV. A
Loading...