Datasheet NTE1721, NTE1723 Datasheet (NTE)

Page 1
NTE1721 & NTE1723
Integrated Circuit
Pulse Width Modulator (PWM) Regulator
Description:
The NTE1721 and NTE1723 are pulse width modulator control–circuits designed to offer improved performance and lowered external parts count when implemented for controlling all types of switching power supplies. The no–chip +5.1V reference is trimmed to ±1% and the input common–mode range of the errror amplifier includes the reference voltage, thus eliminating the need for external divider resistors. A sync input to the oscillator enables multiple units to be slaved or a single unit to be syn­chronized to an external system clock. A wide range of dead time can be programmed by a single resistor connected between the CT and the Discharge pins. These devices also feature a built–in soft–start circuitry, requiring only an external timing capacitor. A shutdown pin controls both the soft– start circuitry and the output stages, provided instantaneous turn–off through the PWM latch with pulsed shutdown, as well as soft–start recycle with longer shutdown commands. The under voltage lockout inhibits the outputs and the changing of the soft–start capacitor when VCC is below nominal. The output stages are totem–pole design capable of sinking and sourcing in excess of 200mA. The output stages of the NTE1721 features NOR logic resulting in a low output for an off state while the NTE1723 utilizes OR logic which gives a high output when off.
Features:
D 8V to 35V Operation D +5.1V ±1% Trimmed Reference D 100Hz to 400kHz Oscillator Range D Separate Oscillator Sync Pin D Adjustable Dead Time Control
D Input Undervoltage Lockout D Latching PWM to Prevent Multiple Pulses D Pulse–by–Pulse Shutdown D Dual Source/Sink Outputs: ±400mA Peak
Absolute Maximum Ratings: (Note 1)
Supply Voltage, VCC +40V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Collector Supply Voltage, V
C
+40V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Logic Inputs –0.3V to +5.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analog Inputs –0.3V to V Output Current, Source or Sink, I Reference Output Current, I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
O
ref
±500mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oscillator Charging Current 5mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Dissipation (TA = +25°C), P
D
1000mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Derate Above 50°C 10mW/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Dissipation (TC = +25°C), P
D
2000mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Derate Above 25°C 16mW/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Junction Temperature, T Storage Temperature Range, T Thermal Resistance, Junction–to–Ambient, R Thermal Resistance, Junction–to–Case, R
J
stg
thJA
thJC
Lead Temperature (During Soldering, 10sec), T
–55° to +125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
L
+150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
100°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
+300°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Note 1 Values beyond which damage may occur
CC
Page 2
Recommended Operating Conditions:
Parameter Symbol Min Typ Max Unit
Supply Voltage V Collector Supply Voltage V Output Sink/Source Current
Steady State
I
CC
C
O
8.0 35.0 V
4.5 35.0 V
0 ±100 mA
Peak 0 ±400 mA Reference Load Current I Oscillator Frequency Range f Oscillator Timing Resistor R Oscillator Timing Capacitor C Deadtime Resistor Range R Operating Ambient Temperature Range T
ref
osc
T
T D A
0 20 mA
0.1 400 kHz
2.0 150 k
0.001 0.2 µF
0.5 0 70 °C
Electrical Characteristics: (VCC = +20V, TA = 0° to +70°C unless otherwise specified)
Parameter Symbol Test Conditions Min Typ Max Unit
Reference Section
Reference Output Voltage V Line Regulation Reg Load Regulation Reg Temperature Stability ∆V Total Output Variation (Includes Line
ref
V and Load Regulation over Temperature
TJ = +25°C 5.0 5.1 5.2 V
ref
+8V VCC +35V 10 20 mV
line
0mA IL 20mA 20 50 mV
load
/T 20 mV
ref
4.95 5.25 V
Short Circuit Current I Output Noise Voltage V
SC
V
= 0V, TJ = +25°C 80 100 mA
ref
10Hz f 10kHz, TJ = +25°C 40 200 µV
n
rms
Long Term Stability S TJ = +25°C, Note 2 20 50 mV/kHr Oscillator Section (Tested at f
= 40kHz, RT = 3.6k, CT = 0.001µF, RD = 0 unless otherwise specified)
osc
Initial Accuracy TJ = +25°C ±2 ±6 % Frequency Stability with Voltage f
osc/VCC
Frequency Stability with Temperature f Minimum Frequency f Maximum Frequency f
osc
min max
+8V VCC +35V ±1 ±2 %
/T ±3 %
RT = 150k, CT = 0.2µF 50 Hz
RT = 2k, CT = 1.0nF 400 kHz Current Mirror IRT = 2mA 1.7 2.0 2.2 mA Clock Amplitude 3.0 3.5 V Clock Width TJ = +25°C 0.3 0.5 1.0 µs Sync Threshold 1.2 2.0 2.8 V Sync Input Current Sync Voltage = +3.5V 1.0 2.5 mA Error Amplifier Section (VCM = +5.1V) Input Offset Voltage V Input Bias Current I
IO
IB
2.0 10.0 mV 1.0 10.0 µA
Note 2. Since long term stability cannot be measured on each device before shipment, this specifica-
tion is an engineering estimate of average stability from lot to lot.
Page 3
Electrical Characteristics (Cont’d): (VCC = +20V, TA = 0° to +70°C unless otherwise specified)
Parameter Symbol Test Conditions Min Typ Max Unit
Error Amplifier Section (Cont’d) (VCM = +5.1V)
DC Open Loop Gain A Low Level Output Voltage V High Level Output Voltage V
VOL
OH
RL 10M 60 75 dB
OL
0.2 0.5 V
3.8 5.6 V Common Mode Rejection Ratio CMRR +1.5V VCM +5.2V 60 75 dB Power Supply Rejection Ratio PSRR +8V VCC +35V 50 60 dB
PWM Comparator Section
Minimum Duty Cycle DC Maximum Duty Cycle DC Input Threshold, Zero Duty Cycle
V Input Threshold, Maximum Duty Cycle Input Bias Current I
min
max
TH
IB
f
= 40kHz, RT = 3.6kΩ,
osc
CT = 0.01µF, RD = 0
0 %
45 49 %
0.6 0.9 V
3.3 3.6 V 0.05 1.0 µA
Soft–Start Section
Soft–Start Current V Soft–Start Voltage V Shutdown Input Current V
shutdown shutdown shutdown
= 0V 25 50 80 µA = 2.0V 0.4 0.6 V
= 2.5V 0.4 1.0 mA Output Drivers (Each Output, VCC = +20V) Output Low Level V
Output High Level V
Under Voltage Lockout V Collector Leakage I
C(leak)
Rise Time t Fall Time t Shutdown Delay t Supply Current I
OH
ds
CC
I
OL
UL
= 20mA 0.2 0.4 V
sink
I
= 100mA 1.0 2.0 V
sink
I
= 20mA 18 19 V
sink
I
= 100mA 17 18 V
sink
V8 and V9 = High 6.0 7.0 8.0 V VC = +35V, Note 3 200 µA CL = 1.0nF, TJ = +25°C 100 600 ns
r
CL = 1.0nF, TJ = +25°C 50 300 ns
f
VDS = +3V, CS = 0, TJ = +25°C 0.2 0.5 µs VCC = +35V 14 20 mA
Note 3.Applies to NTE1721 Only, due to polarity of output pulses. Application Information (Shutdown Options):
Since both the compensation and soft–start terminals (Pin9 and Pin8) have current source pull–ups, either can readily accept a pull–down signal which only has to sink a maximum of 100µA to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.
An alternate approach is the use of the shutdown circuitry of Pin10 which has been improved to en­hance the available shutdown options. Activating this circuit by applying a positive signal on Pin10 performs two functions: the PWM latch is immediately set providing the fastest turn–off signal to the outputs; and a 150µA current sink begins to discharge the external soft–start capacitor. If the shut­down command is short, the PWM signal is terminated without significant discharge of the soft–start capacitor, thus, allowing, for example, a convenient implementation of pulse–by–pulse current limit­ing. Holding Pin10 high for a longer duration, however, will ultimately discharge this external capaci­tor, recycling slow turn–on upon release.
Pin10 should not be left floating as noise pickup could conceivably interrupt normal operation.
Page 4
Pin Connection Diagram
Invert Input 1
Non–Invert Input
Sync
OSC Output
Discharge Soft–Start
16 9
C R
2 3
4 5
T
6
T
7 8
V
16
ref
V
15
IN
Output B
14
V
13
C
GND
12
Output A
11
Shutdown
10
Compensation
9
18
.870 (22.0) Max .260 (6.6)
Max
.200 (5.08)
Max
.100 (2.54)
.700 (17.78)
.099 (2.5) Min
Loading...