Datasheet MX29LV040QC-55, MX29LV040QC-70, MX29LV040QC-90, MX29LV040QI-70, MX29LV040QI-90 Datasheet (MXIC)

...
Page 1
FEA TURES
ADVANCE INFORMATION
MX29LV040
4M-BIT [512K x 8] CMOS SINGLE VOLTAGE
3V ONLY EQUAL SECTOR FLASH MEMORY
• Extended single - supply voltage range 2.7V to 3.6V
• 524,288 x 8 only
• Single power supply operation
- 3.0V only operation for read, erase and program operation
• Fast access time: 55R/70/90ns
• Low power consumption
- 20mA maximum active current
- 0.2uA typical standby current
• Command register architecture
- 8 equal sector of 64K-Byte each
- Byte Programming (9us typical)
- Sector Erase (Sector structure 64K-Byte x8)
• Auto Erase (chip & sector) and Auto Program
- Automatically erase any combination of sectors with Erase Suspend capability.
- Automatically program and verify data at specified address
• Erase suspend/Erase Resume
- Suspends sector erase operation to read data from, or program data to, any sector that is not being erased,
GENERAL DESCRIPTION
then resumes the erase.
• Status Reply
• Sector protection
- Hardware method to disable any combination of sectors from program or erase operations
- Any combination of sectors can be erased with erase suspend/resume function.
- Tempoary sector unprotect allows code changes in previously locked sectors.
• 100,000 minimum erase/program cycles
• Latch-up protected to 100mA from -1V to VCC+1V
• Low VCC write inhibit is equal to or less than 2.3V
• Package type:
- 32-pin PLCC
- 32-pin TSOP
• Compatibility with JEDEC standard
- Pinout and software compatible with single-power supply Flash
The MX29LV040 is a 4-mega bit Flash memory orga­nized as 512K bytes of 8 bits. MXIC's Flash memories offer the most cost-effective and reliable read/write non­volatile random access memory. The MX29LV040 is packaged in 32-pin PLCC and TSOP. It is designed to be reprogrammed and erased in system or in standard EPROM programmers.
The standard MX29L V040 off ers access time as fast as 55ns, allowing operation of high-speed microprocessors without wait states. To eliminate bus contention, the MX29LV040 has separate chip enable (CE) and output enable (OE) controls.
MXIC's Flash memories augment EPROM functionality with in-circuit electrical erasure and programming. The MX29LV040 uses a command register to manage this functionality. The command register allows for 100% TTL level control inputs and fixed power supply levels
P/N:PM0722 REV. 0.7, JUL. 12, 2001
during erase and programming, while maintaining maxi­mum EPROM compatibility.
MXIC Flash technology reliably stores memory contents even after 100,000 erase and prog ram cycles. The MXIC cell is designed to optimize the erase and programming mechanisms. In addition, the combination of advanced tunnel oxide processing and low internal electric fields for erase and program operations produces reliable cy­cling. The MX29LV040 uses a 2.7V~3.6V VCC supply to perform the High Reliability Erase and auto Program/ Erase algorithms.
The highest degree of latch-up protection is achieved with MXIC's proprietary non-epi process. Latch-up pro­tection is proved for stresses up to 100 milliamps on address and data pin from -1V to VCC + 1V.
1
Page 2
PIN CONFIGURATIONS
MX29LV040
32 TSOP (Standard T ype) (8mm x 20mm)
A11
A13 A14 A17
WE
VCC
A18 A16 A15 A12
1 2
A9
3
A8
4 5 6 7 8 9 10 11 12 13
A7
14
A6
15
A5
16
A4
MX29LV040
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
SECTOR STRUCTURE
T able 1. MX29L V040 SECTOR ADDRESS T ABLE
Sector A1 8 A1 7 A1 6 Address Range
SA0 0 0 0 00000h-0FFFFh SA1 0 0 1 10000h-1FFFFh SA2 0 1 0 20000h-2FFFFh SA3 0 1 1 30000h-3FFFFh SA4 1 0 0 40000h-4FFFFh SA5 1 0 1 50000h-5FFFFh SA6 1 1 0 60000h-6FFFFh SA7 1 1 1 70000h-7FFFFh
OE A10 CE Q7 Q6 Q5 Q4 Q3 GND Q2 Q1 Q0 A0 A1 A2 A3
32 PLCC
A12
A15
A16
A18
VCCWEA17
4
5
A7 A6 A5 A4
9
A3 A2 A1 A0
13
Q0
14 17 20
Q1
1
32
MX29LV040
Q2
Q3Q4Q5
GND
30
29
25
21
Q6
PIN DESCRIPTION
SYMBOL PIN NAME
A0~A18 Address Input Q0~Q7 Data Input/Output CE Chip Enable Input WE Write Enable Input OE Output Enable Input GN D Ground Pin VC C +3.0V single power supply
A14 A13 A8 A9 A11 OE A10 CE Q7
Note:All sectors are 64 Kbytes in size.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
2
Page 3
BLOCK DIAGRAM
MX29LV040
CE OE
WE
A0-A18
CONTROL INPUT
LOGIC
ADDRESS
LATCH
AND
BUFFER
PROGRAM/ERASE
HIGH VOLT A GE
X-DECODER
MX29L V040
FLASH ARRA Y
Y-DECODER
Y-PASS GATE
SENSE
AMPLIFIER
PGM
DATA
ARRAY
SOURCE
HV
HV
WRITE
STATE
MACHINE
(WSM)
STATE
REGISTER
COMMAND DATA
DECODER
COMMAND
DATA LATCH
P/N:PM0722
Q0-Q7
PROGRAM
DATA LATCH
I/O BUFFER
REV. 0.7, JUL. 12, 2001
3
Page 4
MX29LV040
AUTOMATIC PROGRAMMING
The MX29L V040 is byte prog rammable using the A uto­matic Programming algorithm. The A utomatic Program­ming algorithm makes the external system do not need to have time out sequence nor to verify the data pro­grammed. The typical chip programming time at room temperature of the MX29L V040 is less than 10 seconds.
AUTOMATIC CHIP ERASE
The entire chip is bulk erased using 10 ms erase pulses according to MXIC's Automatic Chip Erase algorithm. T ypical erasure at room temper ature is accomplished in less than 11 second. The Automatic Erase algorithm automatically programs the entire array prior to electri­cal erase. The timing and v erification of electrical erase are controlled internally within the device.
AUTOMATIC SECTOR ERASE
The MX29L V040 is sector(s) erasable using MXIC's A uto Sector Erase algorithm. The Automatic Sector Erase algorithm automatically programs the specified sector(s) prior to electrical erase. The timing and verification of electrical erase are controlled internally within the de­vice. An erase operation can erase one sector , multiple sectors, or the entire device.
AUTOMATIC PROGRAMMING ALGORITHM
MXIC's Automatic Programming algorithm requires the user to only write program set-up commands (including 2 unlock write cycle and A0H) and a program command (program data and address). The device automatically times the programming pulse width, provides the pro­gram verification, and counts the number of sequences. The device provides an unlock bypass mode with faster programming. Only two write cycles are needed to pro­gram a word or byte, instead of f our . A status bit similar to DATA polling and a status bit toggling between con­secutive read cycles, provide feedback to the user as to the status of the programming operation. Refer to write operation status-table6, for more information on these status bits.
AUTOMATIC ERASE ALGORITHM
MXIC's Automatic Erase algorithm requires the user to write commands to the command register using stan­dard microprocessor write timings. The device will auto­matically pre-program and verify the entire array. Then the device automatically times the erase pulse width, provides the erase verification, and counts the number of sequences. A status bit toggling between consecu­tive read cycles provides feedback to the user as to the status of the erasing operation.
Register contents serve as inputs to an internal state­machine which controls the erase and programming cir­cuitry . During write cycles, the command register inter­nally latches address and data needed for the program­ming and erase operations. During a system write cycle, addresses are latched on the falling edge, and data are latched on the rising edge of WE or CE, whichev er hap­pens first.
MXIC's Flash technology combines years of EPROM experience to produce the highest lev els of quality, reli­ability, and cost effectiveness. The MX29LV040 electri­cally erases all bits simultaneously using Fowler­Nordheim tunneling. The bytes are prog rammed by us­ing the EPROM programming mechanism of hot elec­tron injection.
During a program cycle, the state-machine will control the program sequences and command register will not respond to any command set. During a Sector Erase cycle, the command register will only respond to Erase Suspend command. After Erase Suspend is completed, the device stays in read mode. After the state machine has completed its task, it will allow the command regis­ter to respond to its full command set.
AUTOMATIC SELECT
The automatic select mode provides manufacturer and device identification, and sector protection verification, through identifier codes output on Q7~Q0. This mode is mainly adapted for programming equipment on the de­vice to be programmed with its programming algorithm. When programming by high voltage method, automatic select mode requires VID (11.5V to 12.5V) on address pin A9 and other address pin A6, A1, and A0 as referring to Table 2. In addition, to access the automatic select codes in-system, the host can issue the automatic se
P/N:PM0722
REV. 0.7, JUL. 12, 2001
4
Page 5
MX29LV040
lect command through the command register without requiring VID , as sho wn in table 3.
T o v erify whether or not sector being protected, the sec­tor address must appear on the appropriate highest or­der address bit (see Table 1 and Table 2). The rest of address bits, as shown in table3, are don't care. Once all necessary bits have been set as required, the pro­gramming equipment may read the corresponding iden­tifier code on Q7~Q0.
T ABLE 2. MX29LV040 AUTOMA TIC SELECT MODE OPERA TION
A18 A15 A9 A8 A6 A5 A1 A0
Description CE OE WE | | | | Q7~Q0
A16 A10 A7 A2
Read Silicon ID L L H X X VID X L X L L C2H Manfacturer Code Read Silicon ID L L H X X VID X L X L H 4FH
01H
Sector Protection L L H SA X VID X L X H L (protected) Verification 00H
(unprotected)
NOTE:SA=Sector Address, X=Don't Care, L=Logic Lo w , H=Logic High
P/N:PM0722
REV. 0.7, JUL. 12, 2001
5
Page 6
MX29LV040
T ABLE 3. MX29LV040 COMMAND DEFINITIONS
First Bus Second Bus Third Bus Fourth Bus Fifth Bus Sixth Bus
Command Bus Cycle Cycle Cycle Cycle Cycle Cycle
Cycle Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data Reset 1 XXXH F0H Read 1 RA RD Read Manufacturer ID 4 555H AAH 2AAH 5 5H 555H 90H X00H C2H Read Silicon ID 4 555H AAH 2AAH 55 H 555H 90H X01H 4FH Sector Protect 4 555H AAH 2AAH 55H 555H 90H (SA) 00H Verify x02H 01H Porgram 4 555H AAH 2AAH 5 5 H 555H A0H PA PD Chip Erase 6 555H AAH 2AAH 5 5H 555H 80H 555H AAH 2AAH 55H 555H 10H Sector Erase 6 555H AAH 2AAH 55H 555H 80H 555H AAH 2AAH 55H SA 30H Sector Erase Suspend 1 XXXH B 0H Sector Erase Resume 1 XXXH 30 H
Note:
1. ADI = Address of Device identifier; A1=0, A0 = 0 for manufacturer code,A1=0, A0 = 1 for device code. A2-A18=do not care. (Refer to table 2) DDI = Data of Device identifier : C2H for manufacture code, 4FH for device code. X = X can be VIL or VIH RA=Address of memory location to be read. RD=Data to be read at location RA.
2.PA = Address of memory location to be programmed. PD = Data to be programmed at location PA. SA = Address of the sector to be erased.
3. For Sector Protect V erify operation:If read out data is 01H, it means the sector has been protected. If read out data is 00H, it means the sector is still not being protected.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
6
Page 7
COMMAND DEFINITIONS
MX29LV040
Device operations are selected by writing specific ad­dress and data sequences into the command register. Writing incorrect address and data values or writing them
sequences. Note that the Erase Suspend (B0H) and Erase Resume (30H) commands are valid only while the
Sector Erase operation is in progress. in the improper sequence will reset the device to the read mode. Table 3 defines the valid register command
T ABLE 4. MX29LV040 BUS OPERATION
ADDRESS
DESCRIPTION CE OE WE A18 A15 A9 A8 A6 A5 A1 A0 Q0~Q7
A16 A10 A7 A2
Read L L H AIN Dout Write L H L AIN DIN(3) Reset X X X X High Z Output Disable L H H X High Z Standby Vcc±0.3V X X X High Z Sector Protect L H L SA X X X L X H L X Chip Unprotect L H L X X X X H X H L X Sector Protection Verify L L H SA X VID X L X H L CODE(5)
NOTES:
1. Manufacturer and device codes may also be accessed via a command register write sequence. Refer to Table 3.
2. VID is the Silicon-ID-Read high voltage, 11.5V to 12.5V.
3. Refer to Table 3 for valid Data-In during a write operation.
4. X can be VIL or VIH, L=Logic Low=VIL, H=Logic High=VIH.
5. Code=00H/XX00H means unprotected. Code=01H/XX01H means protected.
6. A18~A13=Sector address for sector protect.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
7
Page 8
MX29LV040
REQUIREMENTS FOR READING ARRAY DATA
To read array data from the outputs, the system must drive the CE and OE pins to VIL. CE is the pow er control and selects the device. OE is the output control and gates array data to the output pins. WE should remain at VIH.
The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory contect occurs during the power transition. No command is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid address on the device address inputs produce valid data on the device data outputs. The device remains enab led for read access until the command register contents are altered.
WRITE COMMANDS/COMMAND SEQUENCES
T o program data to the de vice or erase sectors of memory , the sysytem must drive WE and CE to VIL, and OE to VIH.
Refer to the Autoselect Mode and Autoselect Command Sequence section for more information.
ICC2 in the DC Characteristics table represents the active current specification for the write mode. The "A C Characteristics" section contains timing specification table and timing diagrams for write operations.
STANDBY MODE
When the sysytem is not reading or writing to the de­vice, it can place the device in the standby mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state, inde­pendent of the OE input.
The device enters the CMOS standby mode when the CE pin is both held at VCC±0.3V. (Note that this is a more restricted voltage range than VIH.) If CE is held at VIH, but not within VCC±0.3V, the device will be in the standby mode, but the standby currect will be greater. The device requires standard access time (tCE) for read access when the device is in either of these standby modes, before itis ready to read data.
The device features an Unlock Bypass mode to facilitate faster programming. Once the device enters the Unlock Bypass mode, only two write cycles are required to program a byte, instead of four. The "byte Program Command Sequence" section has details on programming data to the device using both standard and Unlock Bypass command sequences.
An erase operation can erase one sector , multiple sectors , or the entire device. Table indicates the address space that each sector occupies. A "sector address" consists of the address bits required to uniquely select a sector. The "Writing specific address and data commands or sequences into the command register initiates device operations. Table 3 defines the valid register command sequences. Writing incorrect address and data values or writing them in the improper sequence resets the device to reading array data."section has details on erasing a sector or the entire chip, or suspending/resuming the erase operation.
After the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read autoselect codes from the internal reqister (which is separate from the memory array) on Q7-Q0. Standard read cycle timings apply in this mode.
If the device is deselected during erasure or program­ming, the device draws active current until the operation is completed.
ICC3 in the DC Characteristicstable represents the standby current specification.
OUTPUT DISABLE
With the OE input at a logic high level (VIH), output from the devices are disabled. This will cause the output pins to be in a high impedance state.
READ/RESET COMMAND
The read or reset operation is initiated by writing the read/reset command sequence into the command reg­ister. Microprocessor read cycles retrieve array data. The device remains enabled for reads until the command register contents are altered.
If program-fail or erase-fail happen, the write of F0H will reset the device to abort the operation. A valid com­mand must then be written to place the device in the desired state.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
8
Page 9
MX29LV040
SILICON-ID-READ COMMAND
Flash memories are intended for use in applications where the local CPU alters memory contents. As such, manu­facturer and device codes must be accessible while the device resides in the target system. PROM program­mers typically access signature codes by raising A9 to a high voltage(VID). Howev er, m ultiplexing high voltage onto address lines is not generally desired system de­sign practice.
The MX29LV040 contains a Silicon-ID-Read operation to supple traditional PROM programming methodology. The operation is initiated by writing the read silicon ID command sequence into the command register. Fol­lowing the command write, a read cycle with A1=VIL, A0=VIL retrieves the manufacturer code of C2H. A read cycle with A1=VIL, A0=VIH returns the device code of 4FH for MX29LV040.
SET-UP AUTOMATIC CHIP/SECTOR ERASE COMMANDS
Chip erase is a six-bus cycle operation. There are two "unlock" write cycles. These are followed b y writing the "set-up" command 80H. Two more "unlock" write cy­cles are then followed by the chip erase command 10H.
The Automatic Chip Erase does not require the device to be entirely pre-programmed prior to executing the Au­tomatic Chip Erase. Upon executing the Automatic Chip Erase, the device will automatically program and verify the entire memory for an all-zero data pattern. When the device is automatically verified to contain an all-zero pattern, a self-timed chip erase and verify begin. The erase and verify operations are completed when the data on Q7 is "1" at which time the device returns to the Read mode. The system is not required to pro vide any control or timing during these operations.
When using the Automatic Chip Erase algorithm, note that the erase automatically terminates when adequate erase margin has been achieved for the memory array(no erase verification command is required).
If the Erase operation was unsuccessful, the data on Q5 is "1"(see Table 6), indicating the erase operation exceed internal timing limit.
The automatic erase begins on the rising edge of the last WE or CE pulse, whichever happens first in the command sequence and terminates when the data on Q7 is "1" and the data on Q6 stops toggling for two con­secutive read cycles, at which time the device returns to the Read mode.
T ABLE 5. EXP ANDED SILICON ID CODE
Pins A0 A1 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Code(Hex) Manufacture code VIL VIL X 1 0 0 0 0 1 0 C2 H Device code VIH VIL 0 1 0 0 1 1 1 1 4FH Sector Protection Verification VIL VIH 0 0 0 0 0 0 0 0 00H (Unprotected)
P/N:PM0722
9
REV. 0.7, JUL. 12, 2001
Page 10
MX29LV040
READING ARRAY DATA
The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device is also ready to read arra y data after completing an Automatic Program or Automatic Erase algorithm.
After the device accepts an Erase Suspend command, the device enters the Erase Suspend mode. The sys­tem can read array data using the standard read tim­ings, except that if it reads at an address within erase­suspended sectors, the device outputs status data. After completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same exception. See rase Suspend/Erase Resume Commands” for more infor-mation on this mode. The system able the device for reading array data if Q5 goes high, or while in the autoselect mode. See the "Reset Command" section, next.
must issue the reset command to re-en-
RESET COMMAND
Writing the reset command to the device resets the device to reading array data. Address bits are don't care for this command.
The reset command may be written between the se­quence cycles in an erase command sequence before erasing begins. This resets the device to reading array data. Once erasure begins, however, the device ignores reset commands until the operation is complete.
The reset command may be written between the se­quence cycles in a program command sequence be-fore programming begins. This resets the device to reading array data (also applies to programming in Erase Suspend mode). Once prog ramming begins ,how ever, the device ignores reset commands until the operation is complete.
The reset command may be written between the se­quence cycles in an SILICON ID READ command sequence. Once in the SILICON ID READ mode, the reset command data (also applies to SILICON ID READ during Erase Suspend).
must be written to return to reading array
SECTOR ERASE COMMANDS
The Automatic Sector Erase does not require the de­vice to be entirely pre-programmed prior to executing the Automatic Sector Erase Set-up command and Au­tomatic Sector Erase command. Upon executing the Automatic Sector Erase command, the device will auto­matically program and verify the sector(s) memory for an all-zero data pattern. The system is not required to provide any control or timing during these operations.
When the sector(s) is automatically verified to contain an all-zero pattern, a self-timed sector erase and verify begin. The erase and verify operations are complete when the data on Q7 is "1" and the data on Q6 stops toggling for two consecutive read cycles, at which time the device returns to the Read mode. The system is not required to provide any control or timing during these operations.
When using the Automatic sector Erase algorithm, note that the erase automatically terminates when adequate erase margin has been achieved for the memory array (no erase verification command is required). Sector erase is a six-bus cycle operation. There are two "un­lock" write cycles. These are followed by writing the set-up command 80H. Two more "unlock" write cycles are then followed by the sector erase command 30H. The sector address is latched on the falling edge of WE or CE, whichever happens later , while the command(data) is latched on the rising edge of WE or CE, whichever happens first. Sector addresses selected are loaded into internal register on the sixth falling edge of WE or CE, whichever happens later. Each successive sector load cycle started by the falling edge of WE or CE, whichever happens later must begin within 50us from the rising edge of the preceding WE or CE, whichev er happens first. Otherwise, the loading period ends and internal auto sector erase cycle starts. (Monitor Q3 to determine if the sector erase timer window is still open, see section Q3, Sector Erase Timer .) Any command other than Sector Erase(30H) or Erase Suspend(B0H) during the time-out period resets the device to read mode.
If Q5 goes high during a program or erase operation, writing the reset command returns the device to read­ing array data (also applies during Erase Suspend).
P/N:PM0722
REV. 0.7, JUL. 12, 2001
10
Page 11
T able 6. Write Operation Status
Status Q7 Q6 Q5 Q3 Q2
MX29LV040
(Note1) (Note2)
Byte Program in Auto Program Algorithm Q7 Toggle 0 N/A N o
Auto Erase Algorithm 0 Toggle 0 1 Toggle
Erase Suspend Read 1 No 0 N/A Toggle (Erase Suspended Sector) Toggle
In Progress
Erase Suspended Mode Erase Suspend Read Data Data Data Data Data
(Non-Erase Suspended Sector) Erase Suspend Program Q7 Toggle 0 N/A N/A
Byte Program in Auto Program Algorithm Q7 Toggle 1 N/A N o
Exceeded Time Limits Auto Erase Algorithm 0 Toggle 1 1 Toggle
Erase Suspend Program Q7 Toggle 1 N/A N/A
Toggle
Toggle
Note:
1. Q7 and Q2 require a valid address when reading status information. Refer to the appropriate subsection for further details.
2. Q5 switches to '1' when an Auto Program or Auto Erase operation has exceeded the maximum timing limits. See "Q5:Exceeded Timing Limits " for more information.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
11
Page 12
MX29LV040
ERASE SUSPEND
This command only has meaning while the state ma­chine is executing Automatic Sector Erase operation, and therefore will only be responded during Automatic Sector Erase operation. When the Erase Suspend com­mand is written during a sector erase operation, the de­vice requires a maximum of 100us to suspend the erase operations. However , When the Erase Suspend command is written during the sector erase time-out, the device immediately terminates the time-out period and suspends the erase operation. After this command has been ex­ecuted, the command register will initiate erase suspend mode. The state machine will return to read mode auto­matically after suspend is ready . At this time, state ma­chine only allows the command register to respond to the Read Memory Array, Erase Resume and program commands.
The system can determine the status of the program operation using the Q7 or Q6 status bits, just as in the standard program operation. After an erase-suspend pro­gram operation is complete, the system can once again read array data within non-suspended sectors.
ERASE RESUME
This command will cause the command register to clear the suspend state and return back to Sector Erase mode but only if an Erase Suspend command was previously issued. Erase Resume will not have any effect in all other conditions. Another Erase Suspend command can be written after the chip has resumed erasing.
AUTOMATIC PROGRAM COMMANDS
T o initiate Automatic Progr am mode, A three-cycle com­mand sequence is required. There are two "unlock" write cycles. These are f ollowed by writing the Automatic Pro­gram command A0H.
Once the Automatic Program command is initiated, the next WE pulse causes a tr ansition to an active program­ming operation. Addresses are latched on the falling edge, and data are internally latched on the rising edge of the WE or CE, whichever happens first. The rising edge of WE or CE, whiche ver happens first, also begins the programming operation. The system is not required to provide further controls or timings. The device will automatically provide an adequate internally generated
program pulse and verify margin. The device provides Q2, Q3, Q5, Q6, Q7 to determine
the status of a write operation. If the program operation was unsuccessful, the data on Q5 is "1"(see Table 7), indicating the program operation exceed internal timing limit. The automatic programming operation is completed when the data read on Q6 stops toggling for two con­secutive read cycles and the data on Q7 and Q6 are equivalent to data written to these two bits, at which time the device returns to the Read mode(no program verify command is required).
WORD/BYTE PROGRAM COMMAND SEQUENCE
The device programs one byte of data for each program operation. The command sequence requires four bus cycles, and is initiated by writing two unlock write cycles, followed by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program algorithm. The system is required to provide further controls or timings. The device automatically generates the program pulses and verifies the programmed cell margin. Table 3 shows the address and data requirements for the byte program command sequence.
When the Embedded Program algorithm is complete, the device then returns to reading array data and addresses are no longer latched. The system can determine the status of the program operation by using Q7, Q6, or RY/BY. See "Write Operation Status" for information on these status bits.
Any commands written to the device during the Em­bedded Program Algorithm are ignored. Note that a hardware reset immediately terminates the programming operat ion. The Byte Prog ram command sequence should be reinitiated once the device has reset to reading array data, to ensure data integrity.
Programming is allowed in any sequence and across sector boundaries. A bit cannot be programmed from a "0" back to a "1". Attempting to do so may halt the operation and set Q5 to "1" ,” or cause the Data Polling algorithm to indicate the operation was successful. However, a succeeding read will show that the data is still "0". Only erase operations can convert a "0" to a "1".
not
P/N:PM0722
REV. 0.7, JUL. 12, 2001
12
Page 13
MX29LV040
WRITE OPERSTION STATUS
The device provides several bits to determine the sta­tus of a write operation: Q2, Q3, Q5, Q6 and Q7. Table 10 and the following subsections describe the functions of these bits. Q7 and Q6 each offer a method for deter­mining whether a program or erase operation is com­plete or in progress. These three bits are discussed first.
Q7: Data Polling
The Data Polling bit, Q7, indicates to the host sys-tem whether an Automatic Algorithm is in progress or com­pleted, or whether the device is in Erase Suspend. Data Polling is v alid after the rising edge of the final WE pulse in the program or erase command sequence.
During the Automatic Program algorithm, the device out­puts on Q7 the complement of the datum programmed to Q7. This Q7 status also applies to progr amming dur­ing Er ase Suspend. When the Automatic Program algo­rithm is complete, the device outputs the datum pro­grammed to Q7. The system must provide the progr am address to read valid status information on Q7. If a pro­gram address falls within a protected sector, Data Poll­ing on Q7 is active for approximately 1 us, then the de­vice returns to reading array data.
on the following read cycles. This is because Q7 may change asynchr onously with Q0-Q6 while Output En­able (OE) is asserted low.
Q6:Toggle BIT I
Toggle Bit I on Q6 indicates whether an Automatic Pro­gram or Erase algorithm is in progress or complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE or CE, whichever happens first, in the command sequence(prior to the pro­gram or erase operation), and during the sector time­out.
During an Automatic Program or Erase algorithm opera­tion, successive read cycles to any address cause Q6 to toggle. The system may use either OE or CE to con­trol the read cycles. When the operation is complete , Q6 stops toggling.
After an erase command sequence is written, if all sec­tors selected for erasing are protected, Q6 toggles and returns to reading array data. If not all selected sectors are protected, the Automatic Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected.
During the Automatic Erase algorithm, Data Polling pro­duces a "0" on Q7. When the Automatic Erase algo­rithm is complete, or if the device enters the Erase Sus­pend mode, Data P olling produces a "1" on Q7. This is analogous to the complement/true datum out-put de­scribed for the Automatic Program algorithm: the erase function changes all the bits in a sector to "1" prior to this, the device outputs the "complement,” or "0". ” The system must provide an address within any of the sec­tors selected for erasure to read valid status information on Q7.
After an erase command sequence is written, if all sec­tors selected for erasing are protected, Data P olling on Q7 is active for approximately 100 us, then the device returns to reading array data. If not all selected sectors are protected, the Automatic Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected.
When the system detects Q7 has changed from the complement to true data, it can read valid data at Q7-Q0
The system can use Q6 and Q2 together to determine whether a sector is actively erasing or is erase sus­pended. When the de vice is actively erasing (that is, the Automatic Erase algorithm is in progress), Q6 toggling. When the device enters the Erase Suspend mode, Q6 stops toggling. Ho wever, the system must also use Q2 to determine which sectors are erasing or erase-sus­pended. Alternatively, the system can use Q7.
If a program address falls within a protected sector, Q6 toggles for approximately 2 us after the program com­mand sequence is written, then returns to reading array data.
Q6 also toggles during the erase-suspend-program mode, and stops toggling once the Automatic Program algo­rithm is complete.
Table 6 shows the outputs f or Toggle Bit I on Q6.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
13
Page 14
MX29LV040
Q2:Toggle Bit II
The "T oggle Bit II" on Q2, when used with Q6, indicates whether a particular sector is actively eraseing (that is, the Automatic Erase alorithm is in process), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE or CE, whichever happens first, in the command sequence.
Q2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use either OE or CE to control the read cycles.) But Q2 cannot distinguish whether the sector is actively erasing or is erase-suspended. Q6, by com­parison, indicates whether the device is actively eras­ing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus , both status bits are required for sectors and mode information. Refer to Table 6 to compare outputs for Q2 and Q6.
Reading Toggle Bits Q6/ Q2
Whenever the system initially begins reading toggle bit status, it must read Q7-Q0 at least twice in a row to determine whether a toggle bit is toggling. T ypically, the system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on Q7-Q0 on the following read cycle.
Howe v e r, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the sys­tem also should note whether the value of Q5 is high (see the section on Q5). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as Q5 went high. If the toggle bit is no longer toggling, the device has successfuly completed the program or erase opera­tion. If it is still toggling, the device did not complete the operation successfully, and the system must write the reset command to return to reading array data.
The remaining scenario is that system initially determines that the toggle bit is toggling and Q5 has not gone high. The system may continue to monitor the toggle bit and Q5 through successive read cycles, determining the sta­tus as described in the previous paragraph. Alterna­tively, it may choose to perform other system tasks. In
this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation.
Q5 Exceeded Timing Limits
Q5 will indicate if the program or erase time has ex­ceeded the specified limits(internal pulse count). Under these conditions Q5 will produce a "1". This time-out condition indicates that the program or erase cycle was not successfully completed. Data Polling and Toggle Bit are the only operating functions of the device under this condition.
If this time-out condition occurs during sector erase op­eration, it specifies that a particular sector is bad and it may not be reused. Howe ver , other sectors are still func­tional and may be used for the program or erase opera­tion. The device must be reset to use other sectors. Write the Reset command sequence to the device, and then execute prog ram or erase command sequence. This allows the system to continue to use the other active sectors in the device.
If this time-out condition occurs during the chip erase operation, it specifies that the entire chip is bad or com­bination of sectors are bad.
If this time-out condition occurs during the byte program­ming operation, it specifies that the entire sector con­taining that byte is bad and this sector maynot be re­used, (other sectors are still functional and can be re­used).
The time-out condition will not appear if a user tries to program a non blank location without erasing. Please note that this is not a device failure condition since the device was incorrectly used.
Q3 Sector Erase Timer
After the completion of the initial sector erase command sequence, the sector erase time-out will begin. Q3 will remain low until the time-out is complete. Data Polling and Toggle Bit are valid after the initial sector erase com­mand sequence.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
14
Page 15
MX29LV040
If Data Polling or the Toggle Bit indicates the device has been written with a valid erase command, Q3 may be used to determine if the sector erase timer window is still open. If Q3 is high ("1") the internally controlled erase cycle has begun; attempts to write subsequent commands to the device will be ignored until the erase operation is completed as indicated by Data Polling or Toggle Bit. If Q3 is low ("0"), the device will accept additional sector erase commands. To insure the com­mand has been accepted, the system software should check the status of Q3 prior to and following each sub­sequent sector erase command. If Q3 were high on the second status check, the command may not have been accepted.
DATA PROTECTION
The MX29L V040 is designed to off er protection against accidental erasure or programming caused by spurious system level signals that may exist during power transi­tion. During power up the device automatically resets the state machine in the Read mode. In addition, with its control register architecture, alteration of the memory contents only occurs after successful completion of spe­cific command sequences. The device also incorpo­rates sever al features to prev ent inadvertent write cycles resulting from VCC pow er-up and power-down transition or system noise.
WRITE PULSE "GLITCH" PROTECTION
Noise pulses of less than 5ns(typical) on CE or WE will not initiate a write cycle.
POWER-UP SEQUENCE
The MX29LV040 powers up in the Read only mode. In addition, the memory contents may only be altered after successful completion of the predefined command se­quences.
SECTOR PROTECTION
The MX29LV040 features hardware sector protection. This feature will disable both program and erase opera­tions for these sectors protected. T o activ ate this mode, the programming equipment must force VID on address pin A9 and OE (suggest VID = 12V). Programming of the protection circuitry begins on the falling edge of the WE pulse and is terminated on the rising edge. Please refer to sector protect algorithm and waveform.
T o v erify programming of the protection circuitry , the pro­gramming equipment must force VID on address pin A9 ( with CE and OE at VIL and WE at VIH). When A1=VIH, A0=VIL, A6=VIL, it will produce a logical "1" code at device output Q0 f or a protected sector . Otherwise the device will produce 00H for the unprotected sector. In this mode, the addresses,except for A1, are don't care. Address locations with A1 = VIL are reserved to read manufacturer and device codes.(Read Silicon ID)
It is also possible to determine if the sector is protected in the system by writing a Read Silicon ID command. Perf orming a read operation with A1=VIH, it will produce a logical "1" at Q0 for the protected sector .
LOGICAL INHIBIT
Writing is inhibited by holding any one of OE = VIL, CE = VIH or WE = VIH. T o initiate a write cycle CE and WE must be a logical zero while OE is a logical one.
POWER SUPPLY DECOUPLING
In order to reduce power switching effect, each device should have a 0.1uF ceramic capacitor connected be­tween its VCC and GND .
P/N:PM0722
REV. 0.7, JUL. 12, 2001
15
Page 16
CHIP UNPROTECT
The MX29LV040 also features the chip unprotect mode, so that all sectors are unprotected after chip unprotect is completed to incorporate any changes in the code. It is recommended to protect all sectors before activating chip unprotect mode.
To activate this mode, the programming equipment must force VID on control pin OE and address pin A9. The CE pins must be set at VIL. Pins A6 must be set to VIH. Refer to chip unprotect algorithm and waveform for the chip unprotect algorithm. The unprotection mechanism begins on the falling edge of the WE pulse and is terminated on the rising edge.
It is also possible to determine if the chip is unprotected in the system by writing the Read Silicon ID command. Performing a read operation with A1=VIH, it will produce 00H at data outputs(Q0-Q7) for an unprotected sector.
MX29LV040
It is noted that all sectors are unprotected after the chip unprotect algorithm is completed.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
16
Page 17
MX29LV040
ABSOLUTE MAXIMUM RATINGS
Storage T emperature
Plastic Packages . . . . . . . . . . . . . ..... -65oC to +150oC
Ambient T emperature
with Power Applied. . . . . . . . . . . . . ....-65oC to +125oC
V oltage with Respect to Ground
VCC (Note 1) . . . . . . . . . . . . . . . . . -0.5 V to +4.0 V
A9, OE, and
RESET (Note 2) . . . . . . . . . . . ....-0.5 V to +12.5 V
All other pins (Note 1) . . . . . . . -0.5 V to VCC +0.5 V
Output Short Circuit Current (Note 3) . . . . . . 200 mA
Notes:
1. Minimum DC voltage on input or I/O pins is -0.5 V. During voltage transitions, input or I/O pins may over­shoot VSS to -2.0 V for periods of up to 20 ns. See Figure 6. Maximum DC voltage on input or I/O pins is VCC +0.5 V. During voltage transitions, input or I/O pins may ov ershoot to VCC +2.0 V f or periods up to 20 ns.
2. Minimum DC input voltage on pins A9, OE, and RESET is -0.5 V. During voltage transitions, A9, OE, and RESET may ov ershoot VSS to -2.0 V for periods of up to 20 ns. See Figure 6. Maximum DC input volt­age on pin A9 is +12.5 V which may overshoot to
14.0 V f or periods up to 20 ns.
3. No more than one output ma y be shorted to ground at a time. Duration of the shor t circuit should not be greater than one second.
OPERATING RATINGS
Commercial (C) Devices
Ambient Temperature (T
Industrial (I) Devices
Ambient Temperature (T
Extended (E) Devices
Ambient Temperature (T
V
CC Supply Voltages
V
CC for regulated voltage range . . . . . +3.0 V to 3.6 V
CC for full voltage range. . . . . . . . . . . +2.7 V to 3.6 V
V
Operating ranges define those limits between which the functionality of the device is guaranteed.
A ) . . . . . . . . . . . . 0°C to +70°C
A ) . . . . . . . . . . -4 0 °C to +85°C
A ) . . . . . . . . . -5 5 °C to +125°C
Stresses above those listed under "Absolute Maximum Rat-ings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those in­dicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maxi­mum rating conditions for extended periods may affect device reliability.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
17
Page 18
MX29LV040
Table 8. CAPACITANCE TA = 25oC, f = 1.0 MHz
SYMBOL PARAMETER MIN. TYP MAX. UNIT CONDITIONS
CIN1 Input Capacitance 8 pF VIN = 0V CIN2 Control Pin Capacitance 12 pF VIN = 0V COUT Output Capacitance 12 pF VOUT = 0V
READ OPERATION
T able 9. DC CHARA CTERISTICS TA = 0oC T O 70oC, VCC = 2.7V to 3.6V
Symbol PARAMETER MIN. TYP MAX. UNIT CONDITIONS
ILI Input Leakage Current ± 1 uA VIN = VSS to VCC ILIT A9 Input Leakage Current 35 uA VCC=VCC max; A9=12.5V ILO Output Leakage Current ± 1 uA VOUT = VSS to VCC, VCC=VCC max ICC1 VCC Active Read Currect 7 1 2 mA CE=VIL, OE=VIH @5MHz
2 4 mA @1MHz ICC2 VCC Active write Currect 1 5 30 mA CE=VIL, OE=VIH ICC3 VCC Standby Currect 0.2 5 uA CE;VCC ± 0.3V ICC4 VCC Standby Currect 0.2 5 uA CE; VCC ± 0.3V
During Reset ICC5 Automative sleep mode 0.2 5 uA VIH=VCC ± 0.3V;VIL=VSS ± 0.3V VIL Input Low Voltage(Note 1) -0.5 0.8 V VIH Input High Voltage 0.7xVCC VCC+ 0.3 V VID Voltage for Auto
Select and Temporar y 11.5 12.5 V VCC=3.3V
Sector Unprotect VOL Output Low Voltage 0.45 V IOL = 4.0mA, VCC= VCC min VOH1 Output High Voltage(TTL) 0.85xVCC IOH = -2mA, VCC=VCC min VOH2 Output High Voltage VCC-0.4 IOH = -100uA, VCC min
(CMOS) VLKO Low VCC Lock-out 2.3 2.5 V
Voltage
NOTES:
1.VIL min. = -1.0V for pulse width is equal to or less than 50 ns. VIL min. = -2.0V for pulse width is equal to or less than 20 ns.
2.VIH max. = VCC + 1.5V for pulse width is equal to or less than 20 ns If VIH is over the specified maximum value, read operation cannot be guaranteed.
3. Automatic sleep mode enable the low power mode when addresses remain stable for tACC +30ns.
P/N:PM0722
18
REV. 0.7, JUL. 12, 2001
Page 19
MX29LV040
AC CHARACTERISTICS TA = -40oC to 85oC, VCC = 2.7V~3.6V
(TA = 0oC to 70oC, VCC = 3.3V
Table 11. READ OPERATIONS
29LV040-55R 29LV040-70 29LV040-90
SYMBOL PARAMETER MIN. MAX. MIN. MAX. MIN. MAX. UNIT CONDITIONS
tRC Read Cycle Time (Note 1) 55 70 90 ns tACC Address to Output Delay 5 5 7 0 90 ns CE=OE=VIL tCE CE to Output Delay 55 7 0 90 ns OE=VIL tOE OE to Output Delay 30 30 35 ns CE=VIL tDF OE High to Output Float (Note1) 0 25 0 25 0 30 ns CE=VIL tOEH Output Enable Read 0 0 0 ns
Hold Time Toggle and 10 10 10 ns
Data Polling
tOH Address to Output hold 0 0 0 ns CE=OE=VIL
±±
±5% for MX29LV040-55R)
±±
TEST CONDITIONS:
• Input pulse levels: 0V/3.0V.
• Input rise and fall times is equal to or less than 5ns.
• Output load: 1 TTL gate + 100pF (Including scope and jig), for 29LV040-90. 1 TTL gate + 30pF (Including scope and jig) for 29LV040-70 & 29LV040-55R.
• Reference levels for measuring timing: 1.5V.
NOTE:
1. Not 100% tested.
2. tDF is defined as the time at which the output achieves the open circuit condition and data is no longer driven.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
19
Page 20
Figure 1. SWITCHING TEST CIRCUITS
MX29LV040
DEVICE UNDER
TEST
CL
CL=100pF Including jig capacitance CL=30pF for MX29LV040-70 & MX29LV040-55R
Figure 2. SWITCHING TEST WAVEFORMS
3.0V
0V
INPUT
6.2K ohm
TEST POINTS
2.7K ohm
DIODES=IN3064
OR EQUIVALENT
OUTPUT
+3.3V
1.5V1.5V
P/N:PM0722
AC TESTING: Inputs are driven at 3.0V for a logic "1" and 0V for a logic "0". Input pulse rise and fall times are < 5ns.
REV. 0.7, JUL. 12, 2001
20
Page 21
Figure 3. READ TIMING WAVEFORMS
MX29LV040
tRC
Addresses
CE
WE
OE
Outputs
RESET
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VOH
VOL
VIH VIL
HIGH Z
tOEH
tACC
tACC
ADD Valid
tCE
tOE
DAT A Valid
tDF
tOH
HIGH Z
P/N:PM0722
REV. 0.7, JUL. 12, 2001
21
Page 22
MX29LV040
AC CHARACTERISTICS TA = -40oC to 85oC, VCC = 2.7V~3.6V
(TA = 0oC to 70oC, VCC = 3.3V
Table 11. Erase/Program Operations
29LV040-55R 29LV040-70 29LV040-90
SYMBOL PARAMETER MIN. MAX. MIN. MAX. MIN. MAX. UNIT
tW C Write Cycle Time (Note 1) 5 5 70 9 0 ns tAS Address Setup Time 0 0 0 ns tAH Address Hold Time 45 4 5 4 5 ns tDS Data Setup Time 3 5 3 5 45 ns tD H Data Hold Time 0 0 0 ns tOES Output Enable Setup Time 0 0 0 ns tGHWL Read Recovery Time Before Write 0 0 0 ns
(OE High to WE Low)
tCS CE Setup Time 0 0 0 ns
±±
±5% for MX29LV040-55R)
±±
tC H CE Hold Time 0 0 0 ns tWP Write Pulse Width 3 5 3 5 3 5 ns tWPH Write Pulse Width High 3 0 30 3 0 ns tWHWH1 Programming Operation (Note 2) 9(TYP.) 9(TYP.) 9(TYP.) us tWHWH2 Sector Erase Operation (Note 2) 0.7(TYP.) 0.7(TYP.) 0.7(TYP.) sec tVCS VCC Setup Time (Note 1) 5 0 5 0 5 0 us tRB Recovery Time from RY/BY 0 0 0 ns tBUSY Program/Erase Vaild to RY/BY Delay 90 9 0 9 0 us
NOTES:
1. Not 100% tested.
2. See the "Er ase and Programming P erformance" section for more information.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
22
Page 23
MX29LV040
AC CHARACTERISTICS T A = -40
(T A = 0oC to 70oC, VCC = 3.3V
o
C to 85oC, VCC = 2.7V~3.6V
±±
±5% f or MX29LV004T/B-55R)
±±
Table 12. Alternate CE Controlled Erase/Program Operations
29LV040-55R 29LV040-70 29L V040-90
SYMBOL PARAMETER MIN. MAX. MIN. MAX. MIN. MAX. UNIT
tW C Write Cycle Time (Note 1) 5 5 70 70 ns tAS Address Setup Time 0 0 0 ns tAH Address Hold Time 45 45 45 ns tDS Data Setup Time 35 35 45 ns tDH Data Hold Time 0 0 0 ns tOES Output Enable Setup Time 0 0 0 ns tGHEL Read Recovery Time Before Write 0 0 0 ns tWS WE Setup Time 0 0 0 ns tWH WE Hold Time 0 0 0 ns tCP CE Pulse Width 3 5 35 35 ns tCPH CE Pulse Width High 30 30 30 ns tWHWH1 Programming Operation(note2) 9(T yp.) 9(T yp .) 9(T yp .) us tWHWH2 Sector Erase Operation (note2) 0.7(T yp .) 0.7(T yp .) 0.7(Typ .) sec
NOTE:
1. Not 100% tested.
2. See the "Er ase and Programming P erformance" section for more information.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
23
Page 24
Figure 4. COMMAND WRITE TIMING WAVEFORM
MX29LV040
VCC
Addresses
WE
CE
OE
Data
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
3V
ADD Valid
tAS
tOES
tCS tCH
tWP
tDS
tAH
tWPH
tCWC
tDH
DIN
P/N:PM0722
REV. 0.7, JUL. 12, 2001
24
Page 25
AUTOMATIC PROGRAMMING TIMING WAVEFORM
MX29LV040
One byte data is programmed. Verify in fast algorithm and additional verification by external control are not re­quired because these operations are executed automati­cally by internal control circuit. Programming comple-
after automatic programming starts. Device outputs DAT A during programming and DA TA after programming on Q7.(Q6 is for toggle bit; see toggle bit, D ATA polling, timing waveform)
tion can be verified by D A T A polling and toggle bit checking
Figure 5. AUTOMATIC PROGRAMMING TIMING WAVEFORM
Address
CE
OE
tWC
555h
tGHWL
tWP
tAS
PA
tAH
tCH
Read Status Data (last two cycle)Program Command Sequence(last two cycle)
PA PA
tWHWH1
WE
Data
RY/BY
VCC
tCS tWPH
tDS tDH
A0h
tVCS
NOTES:
1.PA=Program Address, PD=Program Data, DOUT is the true data the program address
PD
tBUSY
Status
DOUT
tRB
P/N:PM0722
REV. 0.7, JUL. 12, 2001
25
Page 26
Figure 6. AUTOMATIC PROGRAMMING ALGORITHM FLOWCHART
START
Write Data AAH Address 555H
Write Data 55H Address 2AAH
Write Data A0H Address 555H
Write Program Data/Address
MX29LV040
Increment Address
No
No
Verify Word Ok ?
Last Address ?
Auto Program Completed
Data Poll from system
YES
YES
P/N:PM0722
REV. 0.7, JUL. 12, 2001
26
Page 27
Figure 7. CE CONTROLLED PR OGRAM TIMING W A VEFORM
MX29LV040
Address
WE
OE
CE
Data
555 for program 2AA for erase
tWC
tWH
tGHEL
tWS
tRH
tCP
tDS
tDH
PA for program SA for sector erase 555 for chip erase
tAS
tAH
tCPH
A0 for program 55 for erase
Data Polling
tBUSY
PD for program 30 for sector erase 10 for chip erase
tWHWH1 or 2
PA
DQ7
DOUT
RESET
RY/BY
NOTES:
1.PA=Program Address, PD=Program Data, DOUT=Data Out, DQ7=complement of data written to device.
2.Figure indicates the last two bus cycles of the command sequence.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
27
Page 28
AUTOMATIC CHIP ERASE TIMING WAVEFORM
MX29LV040
All data in chip are erased. External erase verification is not required because data is verified automatically by internal control circuit. Erasure completion can be veri-
matic erase starts. Device outputs 0 during erasure and 1 after erasure on Q7.(Q6 is for toggle bit; see toggle bit, DATA polling, timing w avef orm)
fied by DAT A polling and toggle bit checking after auto-
Figure 8. AUTOMATIC CHIP ERASE TIMING WAVEFORM
Address
tWC
2AAh
CE
tGHWL
OE
tWP
tAS
555h
tAH
tCH
Read Status Data Erase Command Sequence(last two cycle)
VA VA
tWHWH2
WE
Data
RY/BY
VCC
tCS tWPH
tDS tDH
In
Progress
Complete
tRB
tVCS
55h
10h
tBUSY
NOTES:
SA=sector address(for Sector Erase), VA=Valid Address for reading status data(see "Write Operation Status").
P/N:PM0722
REV. 0.7, JUL. 12, 2001
28
Page 29
Figure 9. AUTOMATIC CHIP ERASE ALGORITHM FLOWCHART
START
Write Data AAH Address 555H
Write Data 55H Address 2AAH
Write Data 80H Address 555H
Write Data AAH Address 555H
Write Data 55H Address 2AAH
Write Data 10H Address 555H
MX29LV040
NO
Data Pall from System
Data=FFh ?
YES
Auto Chip Erase Completed
P/N:PM0722
REV. 0.7, JUL. 12, 2001
29
Page 30
AUTOMATIC SECTOR ERASE TIMING WAVEFORM
MX29LV040
Sector indicated by A13 to A18 are erased. External erase verify is not required because data are verified automatically by internal control circuit. Erasure comple-
ing after automatic erase starts. De vice outputs 0 dur­ing erasure and 1 after erasure on Q7.(Q6 is for toggle bit; see toggle bit, D ATA polling, timing w avef orm)
tion can be verified by DAT A polling and toggle bit check-
Figure 10. AUTOMATIC SECTOR ERASE TIMING WAVEFORM
Read Status Data Erase Command Sequence(last two cycle)
Address
tWC
2AAh
CE
tGHWL
OE
tWP
tAS
SA
tAH
tCH
tWHWH2
VA VA
WE
Data
RY/BY
VCC
tCS tWPH
tDS tDH
In
Progress
Complete
tRB
tVCS
55h
30h
tBUSY
NOTES:
SA=sector address(for Sector Erase), VA=Valid Address for reading status data(see "Write Operation Status").
P/N:PM0722
REV. 0.7, JUL. 12, 2001
30
Page 31
MX29LV040
Figure 11. AUTOMATIC SECTOR ERASE ALGORITHM FLOWCHART
START
Write Data AAH Address 555H
Write Data 55H Address 2AAH
Write Data 80H Address 555H
Write Data AAH Address 555H
Write Data 55H Address 2AAH
Write Data 30H Sector Address
Last Sector to Erase
YES
Data Poll from System
Data=FFh
YES
Auto Sector Erase Completed
NO
NO
P/N:PM0722
REV. 0.7, JUL. 12, 2001
31
Page 32
Figure 12. ERASE SUSPEND/ERASE RESUME FLOWCHART
START
Write Data B0H
MX29LV040
Toggle Bit checking Q6
not toggled
YES
Read Array or
Program
Reading or
Programming End
YES
Write Data 30H
Continue Erase
Another
Erase Suspend ?
YES
NO
NO
NO
ERASE SUSPEND
ERASE RESUME
P/N:PM0722
REV. 0.7, JUL. 12, 2001
32
Page 33
MX29LV040
Figure 13. TIMING WAVEFORM FOR SECTOR PROTECT/UNPROTECT
VID
RESET
SA, A6
A1, A0
Data
CE
WE
OE
VIH
Valid*
Sector Protect or Sector Unprotect
Valid* Valid*
Verify
40h60h60h
1us
Sector Protect =150us Sector Unprotect =15ms
Note: When sector protect, A6=0, A1=1, A0=0. When sector unprotect, A6=1, A1=1, A0=0.
Status
P/N:PM0722
REV. 0.7, JUL. 12, 2001
33
Page 34
Figure 14. IN-SYSTEM SECTOR PROTECTION ALGORITHM
START
PLSCNT=1
RESET=VID
Wait 1us
MX29LV040
Increment PLSCNT
No
PLSCNT=25?
Yes
Device failed
First Write Cycle=60H
Yes
Set up sector address
Write 60H to sector address
with A6=0, A1=1, A0=0
Wait 150us
Verify sector protect :
write 40H with A6=0,
A1=1, A0=0
Read from sector address
No
Data=01H
Yes
Protect another
sector?
No
?
Yes
Temporary Sector Unprotect Mode
Reset PLSCNT=1
P/N:PM0722
No
Remove VID from RESET
Write reset command
Sector protect complete
REV. 0.7, JUL. 12, 2001
34
Page 35
Figure 15. IN-SYSTEM SECTOR UNPROTECTION ALGORITHM
START
PLSCNT=1
RESET=VID
Wait 1us
MX29LV040
Increment PLSCNT
No
PLSCNT=1000?
First Write
Cycle=60H ?
All sector
protected?
Set up first sector address
Sector unprotect :
write 60H with
A6=1, A1=1, A0=0
Wait 50ms
Verify sector unprotect
write 40H to sector address
with A6=1, A1=1, A0=0
Read from sector address
with A6=1, A1=1, A0=0
No
Data=00H
Yes
Yes
No
No
?
Temporary Sector Unprotect Mode
Protect all sectors
Set up next sector address
P/N:PM0722
Yes
Device failed
Yes
Last sector
verified?
No
Remove VID from RESET
Write reset command
Sector unprotect complete
35
Yes
REV. 0.7, JUL. 12, 2001
Page 36
Figure 16. TIMING WAVEFORM FOR CHIP UNPROTECTION
A1
12V
3V
A9
tVLHT
A6
MX29LV040
12V
3V
OE
tVLHT
tWPP 2
WE
tOESP
CE
Data
A17-A12
Notes: tWPP1 (Write pulse width for sector protect)=100ns min.
tWPP2 (Write pulse width for sector unprotect)=100ns min.
tVLHT
tOE
Sector Address
Verify
00H
F0H
P/N:PM0722
REV. 0.7, JUL. 12, 2001
36
Page 37
Figure 17. CHIP UNPROTECTION ALGORITHM
START
Protect All Sectors
PLSCNT=1
Set OE=A9=VID CE=VIL,A6=1
Activate WE Pulse
MX29LV040
Increment
Sector Addr
Set Up First Sector Addr
Read Data from Device
No
Remove VID from A9
Write Reset Command
Time Out 50ms
Set OE=CE=VIL
A9=VID,A1=1
Data=00H?
Yes
All sectors have
been verified?
Yes
Chip Unprotect
Complete
No
Increment
PLSCNT
No
PLSCNT=1000?
Yes
Device Failed
P/N:PM0722
* It is recommended before unprotect whole chip, all sectors should be protected in advance.
REV. 0.7, JUL. 12, 2001
37
Page 38
WRITE OPERATION STATUS
Figure 18. DATA POLLING ALGORITHM
Start
Read Q7~Q0
Add.=VA(1)
MX29LV040
Q7 = Data ?
No
No
NOTE : 1.VA=Valid address for programming
2.Q7 should be re-checked even Q5="1" because Q7 may change simultaneously with Q5.
Q5 = 1 ?
Yes
Read Q7~Q0
Add.=VA
Q7 = Data ?
No
FAIL
(2)
Yes
Yes
Pass
P/N:PM0722
REV. 0.7, JUL. 12, 2001
38
Page 39
Figure 19. TOGGLE BIT ALOGRITHM
Start
Read Q7-Q0
MX29LV040
Read Q7-Q0
Toggle Bit Q6 =
Toggle ?
YES
NO
Program/Erase Operation
Note:1.Read toggle bit twice to determine whether or not it is toggling.
2. Recheck toggle bit because it may stop toggling as Q5 change to "1".
Q5= 1?
YES
Read Q7~Q0 Twice
Toggle bit Q6=
Toggle?
YES
Not Complete,Write
Reset Command
(Note 1)
NO
(Note 1,2)
NO
Program/Erase
operation Complete
P/N:PM0722
REV. 0.7, JUL. 12, 2001
39
Page 40
MX29LV040
Figure 20. DATA POLLING TIMINGS (DURING AUTOMATIC ALOGRITHMS)
tRC
Address
tACC
tCE
VAVAVA
CE
tCH
tOE
OE
tOEH
tDF
WE
tOH
DQ7
Q0-Q6
Complement
Status Data
tBUSY
Complement
Status Data
Valid DataTrue
Valid DataTrue
RY/BY
NOTES:
VA=Valid address. Figure shows are first status cycle after command sequence, last status read cycle, and array data read cycle.
High Z
High Z
P/N:PM0722
REV. 0.7, JUL. 12, 2001
40
Page 41
MX29LV040
Figure 21. TOGGLE BIT TIMING WAVEFORMS (DURING AUTOMATIC ALOGRITHMS)
tRC
Address
CE
OE
WE
Q6/Q2
RY/BY
tCH
tBUSY
tOEH
High Z
tACC
VA
tCE
tOE
tDF
tOH
Valid Status
(first raed)
VA
Valid Status
(second read) (stops toggling)
VA
Valid Data
VA
Valid Data
P/N:PM0722
NOTES:
VA=Valid address; not required for Q6. Figure shows first two status cycle after command sequence, last status read cycle, and array data read cycle.
REV. 0.7, JUL. 12, 2001
41
Page 42
MX29LV040
Table 13. AC CHARACTERISTICS
Parameter Std Description Test Setup All Speed Options Unit
tREAD Y1 RESET PIN Low (During Automatic Algorithms) MAX 20 us
to Read or Write (See Note)
tREAD Y2 RESET PIN Low (NOT During Automatic MAX 5 00 ns
Algorithms) to Read or Write (See Note) tRP RESET Pulse Width (During Automatic Algorithms) MIN 500 ns tR H RESET High Time Before Read(See Note) MIN 50 ns tRB RY/BY Recov ery Time(to CE, OE go lo w) MIN 0 ns
Note:Not 100% tested
Figure 22. RESET TIMING WAVFORM
RY/BY
CE, OE
RESET
RY/BY
CE, OE
tRH
tRP
tReady2
Reset Timing NOT during Automatic Algorithms
tReady1
tRB
RESET
P/N:PM0722
tRP
Reset Timing during Automatic Algorithms
REV. 0.7, JUL. 12, 2001
42
Page 43
MX29LV040
Table 14. TEMPORARY SECTOR UNPROTECT
Parameter Std. Description T est Setup AllSpeed Options Unit tVIDR VID Rise and Fall Time (See Note) Mi n 5 00 ns tRSP RESET Setup Time for T empor ary Sector Unprotect Min 4 us
Note: Not 100% tested
Figure 23. TEMPORARY SECTOR UNPROTECT TIMING DIAGRAM
12V
RESET
0 or Vcc
tVIDR
CE
WE
tRSP
RY/BY
Program or Erase Command Sequence
Figure 24. Q6 vs Q2 for Erase and Erase Suspend Operations
Enter Embedded
Erasing
WE
Q6
Erase
Erase
Suspend
Enter Erase
Suspend Program
Erase
Suspend
Program
Erase Suspend
Read
Erase
Resume
tVIDR
Erase
0 or Vcc
Erase
Complete
Q2
P/N:PM0722
NOTES:
The system can use OE or CE to toggle Q2/Q6, Q2 toggles only when read at an address within an erase-suspended
REV. 0.7, JUL. 12, 2001
43
Page 44
Figure 25. TEMPORAR Y SECT OR UNPROTECT ALGORITHM
Start
RESET = VID (Note 1)
Perform Erase or Program Operation
Operation Completed
RESET = VIH
Temporary Sector Unprotect Completed(Note 2)
MX29LV040
Note : 1. All protected sectors are temporary unprotected.
2. All previously protected sectors are protected again.
VID=11.5V~12.5V
P/N:PM0722
REV. 0.7, JUL. 12, 2001
44
Page 45
Figure 26. ID CODE READ TIMING WAVEFORM
MX29LV040
VCC
ADD
A9
ADD
A0
A1
ADD
A2-A8
A10-A17
CE
WE
OE
VIH
VIL
VIH
VIL
VIH
VIH
VIH
VIL
VIL
VIL
VIH
VIL
3V
VID VIH
VIL
tACC
tACC
tCE
tOE
tDF
DATA
Q0-Q15
VIH
VIL
DATA OUT
C2H/00C2H
tOH
tOH
DATA OUT
B9H/BAH (Byte) 22B9H/22BAH (Word)
P/N:PM0722
REV. 0.7, JUL. 12, 2001
45
Page 46
MX29LV040
Table 15. ERASE AND PROGRAMMING PERFORMANCE(1)
LIMITS
PARAMETER MIN. TYP.(2) MAX.(3) UNITS
Sector Erase Time 0.7 15 sec Chip Erase Time 11 sec Byte Programming Time 9 30 0 us Chip Programming Time 4.5 13.5 sec Erase/Program Cycles 100,000 Cycles
Note: 1.Not 100% Tested, Excludes external system level o ver head.
2.Typical values measured at 25°C, 3V.
3.Maximum values measured at 25°C, 2.7V.
Table 16. LATCHUP CHARACTERISTICS
MIN. MAX.
Input Voltage with respect to GND on all pins except I/O pins -1.0V 12.5V Input Voltage with respect to GND on all I/O pins -1.0V Vcc + 1.0V Current -100mA +100mA Includes all pins except Vcc. Test conditions: Vcc = 3.0V, one pin at a time.
P/N:PM0722
REV. 0.7, JUL. 12, 2001
46
Page 47
MX29LV040
ORDERING INFORMATION
PLASTIC P ACKA GE
P ART NO . A CCESS TIME OPERA TING CURRENT ST ANDBY CURRENT P A CK AGE
(ns) MAX.(mA) MAX.(uA)
MX29L V040TC-55 55 3 0 5 32 Pin TSOP MX29L V040TC-70 70 3 0 5 32 Pin TSOP MX29L V040TC-90 90 3 0 5 32 Pin TSOP MX29L V040QC-55 55 30 5 32 Pin PLCC MX29L V040QC-70 70 3 0 5 32 Pin PLCC MX29L V040QC-90 90 3 0 5 32 Pin PLCC MX29L V040TI-70 70 30 5 32 Pin TSOP MX29L V040TI-90 90 30 5 32 Pin TSOP MX29L V040QI-70 70 30 5 32 Pin PLCC MX29L V040QI-90 90 3 0 5 32 Pin PLCC
P/N:PM0722
REV. 0.7, JUL. 12, 2001
47
Page 48
PACKAGE INFORMATION
32-PIN PLASTIC LEADED CHIP CARRIER (PLCC)
MX29LV040
P/N:PM0722
REV. 0.7, JUL. 12, 2001
48
Page 49
32-PIN PLASTIC TSOP
MX29LV040
P/N:PM0722
REV. 0.7, JUL. 12, 2001
49
Page 50
MX29LV040
Revision History
Revision No. Description Page Date
0.1 Added Read cycle time and Output enable hold time to READ P15 JUN/21/2000
Operation Modify Erase/Program Operation table and timing waveform P17,21,23,25 Modify Program/Erase Algorithm flowchart P22,24,26 To added write operation status P 32
0.2 Modify Feature--10,000 minimum erase/program cycles-->100,000-- P1 JUL/18/2000
Modify General Description--even after 10,000 --->100,000 erase-- P1 Del Package type: 32-pin PDIP P1,2 Modify AC Characteristics tWHWH1 9/11(Typ.)-->9(Typ.) P21 Del Chip Programming Time--Word Mode P45 Modify Erase/Program Cycle:10,000-->100,000 P45
0.3 Delete Unlock Bypass Command Definitions P6 JAN/10/2001
Delete Unlock Bypass Command Sequence P13 Modify Table 10. DC Characteristics VCC=3V±10%-->2.7V to 3.6V P17
0.4 Modify Timing Waveform P25,27,28,30 FEB/07/2001
Modify Automatic Programming Algorithm Flowchart P26 Delete Figure 21. Toggle Bit Timings(During Embedded Algorithms) P4 1 Add Figure 19. Toggle Bit Alogrithm P39 Modify Absolute Maximum Ratings P17 Add Ordering Information--Industrial Grade P47
0.5 Change tBUSY spec. from 90ns to 90us P22 MAR/07/2001
0.6 Correct typing error P22 JUN/29/2001
Add tWPP1/tWPP2=100ns P36 To modify Package Information P48,49
0.7 Add 55ns spec P1,19,20,22 JUL/12/2001
P23,47
P/N:PM0722
REV. 0.7, JUL. 12, 2001
50
Page 51
MX29LV040
MACRONIX INTERNATIONAL CO., LTD.
HEADQUARTERS:
TEL:+886-3-578-6688 FAX:+886-3-563-2888
EUROPE OFFICE:
TEL:+32-2-456-8020 FAX:+32-2-456-8021
JAPAN OFFICE:
TEL:+81-44-246-9100 FAX:+81-44-246-9105
SINGAPORE OFFICE:
TEL:+65-348-8385 FAX:+65-348-8096
TAIPEI OFFICE:
TEL:+886-2-2509-3300 FAX:+886-2-2509-2200
MACRONIX AMERICA, INC.
TEL:+1-408-453-8088 FAX:+1-408-453-8488
CHICAGO OFFICE:
TEL:+1-847-963-1900 FAX:+1-847-963-1909
http : //www.macronix.com
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.
51
Loading...