The MX27C8000A is a 5V only, 8M-bit, ultraviolet Erasable Programmable Read Only Memory. It is organized
as 1M words by 8 bits per word, operates from a single +5
volt supply, has a static standby mode, and features fast
single address location programming. All programming
signals are TTL levels, requiring a single pulse. For
programming outside from the system, existing EPROM
PIN CONFIGURATIONS
32 PDIP/SOP
A19
A16
A15
A12
GND
A7
A6
A5
A4
A3
A2
A1
A0
Q0
Q1
Q2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
MX27C8000A
VCC
32
A18
31
A17
30
A14
29
A13
28
A8
27
A9
26
A11
25
OE/VPP
24
A10
23
CE
22
Q7
21
Q6
20
Q5
19
Q4
18
Q3
17
• Operating current: 60mA
• Standby current: 100uA
• Package type:
- 32 pin plastic DIP
- 32 pin PLCC
- 32 pin SOP
- 32 pin TSOP
programmers may be used. The MX27C8000A supports
a intelligent fast programming algorithm which can result
in programming time of less than two minutes.
This EPROM is packaged in industry standard 32 pin
dual-in-line packages, 32 lead PLCC, 32 lead SOP and 32
lead TSOP packages.
When the MX27C8000A is delivered, or it is erased, the
chip has all 8M bits in the "ONE" or HIGH state. "ZEROs"
are loaded into the MX27C8000A through the procedure
of programming.
For programming, the data to be programmed is applied
with 8 bits in parallel to the data pins.
Vcc must be applied simultaneously or before Vpp, and
removed simultaneously or after Vpp. When
programming an MXIC EPROM, a 0.1uF capacitor is
required across Vpp and ground to suppress spurious
voltage transients which may damage the device.
FAST PROGRAMMING
PROGRAM INHIBIT MODE
Programming of multiple MX27C8000As in parallel with
different data is also easily accomplished by using the
Program Inhibit Mode. Except for CE and OE, all like
inputs of the parallel MX27C8000A may be common. A
TTL low-level program pulse applied to an MX27C8000A
CE input with OE/VPP = 12.5 ± 0.5 Vwill program that
MX27C8000A. A high-level CE input inhibits the other
MX27C8000As from being programmed.
PROGRAM VERIFY MODE
Verification should be performed on the programmed bits
to determine that they were correctly programmed. The
verification should be performed with OE /VPPand CE,
at VIL, data should be verified tDV after the falling edge
of CE.
AUTO IDENTIFY MODE
The auto identify mode allows the reading out of a binary
code from an EPROM that will identify its manufacturer
and device type. This mode is intended for use by
programming equipment for the purpose of automatically
matching the device to be programmed with its
corresponding programming algorithm. This mode is
functional in the 25°C ± 5°C ambient temperature range
that is required when programming the MX27C8000A.
To activate this mode, the programming equipment must
force 12.0 ± 0.5 V on address line A9 of the device. Two
identifier bytes may then be sequenced from the device
outputs by toggling address line A0 from VIL to VIH. All
other address lines must be held at VIL during auto
identify mode.
The device is set up in the fast programming mode when
the programming voltage OE/VPP = 12.75V is applied,
with VCC = 6.25 V (Algorithm is shown in Figure 1). The
programming is achieved by applying a single TTL low
level 50us pulse to the CE input after addresses and data
line are stable. If the data is not verified, an additional
pulse is applied for a maximum of 25 pulses. This
process is repeated while sequencing through each
address of the device. When the programming mode is
completed, the data in all address is verified at VCC = 5V
± 10%.
P/N: PM00764
Byte 0 ( A0 = VIL) represents the manufacturer code, and
byte 1 (A0 = VIH), the device identifier code. For the
MX27C8000A, these two identifier bytes are given in the
Mode Select Table. All identifiers for manufacturer and
device codes will possess odd parity, with the MSB (Q7)
defined as the parity bit.
READ MODE
The MX27C8000A has two control functions, both of
which must be logically satisfied in order to obtain data
at the outputs. Chip Enable (CE) is the power control and
2
REV.1.2, JUL. 19, 2001
Page 3
MX27C8000A
should be used for device selection. Output Enable (OE)
is the output control and should be used to gate data to
the output pins, independent of device selection.
Assuming that addresses are stable, address access
time (tACC) is equal to the delay from CE to output (tCE).
Data is available at the outputs tOE after the falling edge
of OE's, assuming that CE has been LOW and
addresses have been stable for at least tACC - tOE.
STANDBY MODE
The MX27C8000A has a CMOS standby mode which
reduces the maximum VCC current to 100 uA. It is
placed in CMOS standby when CE is at VCC ± 0.3 V. The
MX27C8000A also has a TTL-standby mode which
reduces the maximum VCC current to 1.5 mA. It is
placed in TTL-standby when CE is at VIH. When in
standby mode, the outputs are in a high-impedance
state, independent of the OE input.
TWO-LINE OUTPUT CONTROL FUNCTION
To accommodate multiple memory connections, a twoline control function is provided to allow for:
1. Low memory power dissipation,
2. Assurance that output bus contention will not
occur.
It is recommended that CE be decoded and used as the
primary device-selecting function, while OE be made a
common connection to all devices in the array and
connected to the READ line from the system control bus.
This assures that all deselected memory devices are in
their low-power standby mode and that the output pins
are only active when data is desired from a particular
memory device.
SYSTEM CONSIDERATIONS
During the switch between active and standby
conditions, transient current peaks are produced on the
rising and falling edges of Chip Enable. The magnitude
of these transient current peaks is dependent on the
output capacitance loading of the device. At a minimum,
a 0.1 uF ceramic capacitor (high frequency, low inherent
inductance) should be used on each device between
VCC and GND to minimize transient effects. In addition,
to overcome the voltage drop caused by the inductive
effects of the printed circuit board traces on EPROM
arrays, a 4.7 uF bulk electrolytic capacitor should be
used between VCC and GND for each eight devices. The
location of the capacitor should be close to where the
power supply is connected to the array.
MODE SELECT TABLE
PINS
MODECEOE/VPPA0A9OUTPUTS
ReadVI LVILXXDOUT
Output DisableVILVIHXXHigh Z
Standby (TTL)VIHXXXHigh Z
Standby (CMOS)VCC ±0.3VXXXHigh Z
ProgramVILVPPXXDIN
Program VerifyVILVILXXDOUT
Program InhibitVIHVPPXXHigh Z
Manufacturer Code(3)VILVILVILVHC2 H
Device Code(3)VILVILVIHVH02 H
NOTES:
1. VH = 12.0 V ± 0.5 V
2. X = Either VIH or VIL
3. A1 - A8 = A10 - A19 = VIL (For auto select)
4. See DC Programming Characteristics for VPP voltage during programming
P/N: PM00764
3
REV.1.2, JUL. 19, 2001
Page 4
FIigure 1. FAST PROGRAMMING FLOW CHART
ADDRESS = FIRST LOCATION
VCC = 6.25V
OE/VPP = 12.75V
PROGRAM ONE 50 us PULSE
MX27C8000A
START
INCREMENT ADDRESS
INCREMENT ADDRESS
NO
LAST
ADDRESS ?
YES
PASS
NO
ADDRESS = FIRST LOCATION
PROGRAM ONE 50us PULSE
LAST
ADDRESS ?
X = 0
VERIFY BYTE
VCC = 5.25V
OE/VPP = VIL
COMPARE
ALL BYTES
TO ORIGINAL
DATA
DEVICE PASSED
YES
PASS
FAIL
NO
FAIL
INCREMENT X
X = 25 ?
YES
DEVICE FAILED
P/N: PM00764
4
REV.1.2, JUL. 19, 2001
Page 5
SWITCHING TEST CIRCUITS
MX27C8000A
DEVICE
UNDER
TEST
SWITCHING TEST WAVEFORMS
AC driving levels
AC TESTING: AC driving levels are 2.4V/0.4V for commercial grade.
CL
6.2K ohm
CL = 100 pF including jig capacitance
2.0V
TEST POINTS
0.8V
INPUT
Input pulse rise and fall times are < 10ns.
1.8K ohm
+5V
DIODES = IN3064
OR EQUIVALENT
2.0V
0.8V
OUTPUT
P/N: PM00764
5
REV.1.2, JUL. 19, 2001
Page 6
MX27C8000A
ABSOLUTE MAXIMUM RATINGS
RATINGVALUE
Ambient Operating Temperature-40oC to 85oC
Storage Temperature-65oC to 125oC
Applied Input Voltage-0.5V to 7.0V
Applied Output Voltage-0.5V to VCC + 0.5V
VCC to Ground Potential-0.5V to 7.0V
A9 & VPP-0.5V to 13.5V
NOTICE:
Stresses greater than those listed under ABSOLUTE
MAXIMUM RATINGS may cause permanent damage to the
device. This is a stress rating only and functional operation
of the device at these or any other conditions above those
indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for
extended period may affect reliability.
NOTICE:
Specifications contained within the following tables are subject to change.
DC/AC OPERATING CONDITION FOR READ OPERATION
MX27C8000A
-90-10-12-15
Operating Temperature Industrial -40°C to 85°C -40°C to 85°C -40°C to 85°C -40°C to 85°C
Vcc Power Supply 5V ± 10% 5V ± 10%5V ± 10% 5V ± 10%
Symbol PARAMETERMIN.MAX. MIN.MAX. MIN.MAX.MIN.MAX. Unit Conditions
tACCAddress to Output Delay901 0 01201 5 0n sCE=OE=VIL
tCEChip Enable to Output Delay9 01 0012 015 0nsOE=VIL
tOEOutput Enable to Output Delay40405 06 5nsCE=VIL
tDFOE High to Output Float, 030030035050ns
or CE High to Output Float
tOHOutput Hold from Address,CE or0000n s
OE which ever occurred first
o
DC PROGRAMMING CHARACTERISTICS TA = 25
SYMBOLPARAMETERMIN.MAX.UNITCONDITIONS
VOHOutput High Voltage2.4VIOH = -0.40mA
VOLOutput Low Voltage0.4VIOL = 2.1mA
VIHInput High Voltage2.0VCC + 0.5V
VILInput Low Voltage-0.30.8V
ILIInput Leakage Current-1010uAVIN = 0 to 5.5V
VHA9 Auto Select Voltage11.512.5V
ICC3VCC Supply Current (Program & Verify)5 0mA
IPP2VPP Supply Current(Program)30mACE = VIL
VCC1Fast Programming Supply Voltage6.006.50V
VPP1Fast Programming Voltage12.513.0V
C
±±
± 5oC
±±
o
AC PROGRAMMING CHARACTERISTICS TA = 25
C
±±
± 5oC
±±
SYMBOLPARAMETERMIN.TYP.MAX.UNIT
tASAddress Setup Time2.0us
tDSData Setup Time2.0us
tAHAddress Hold Time0us
tD HData Hold Time2.0us
tDFPChip Enable to Output Float Delay013 0ns
tVPSVPP Setup Time2.0us
tPWCE Program Pulse Width105 0us
tVCSVCC Setup Time2.0us
tDVData Valid from CE15 0ns
tOEHOE/VPP Hold Time2.0us
tVROE/VPP Recovery Time2.0us
P/N: PM00764
7
REV.1.2, JUL. 19, 2001
Page 8
WAVEFORMS
READ CYCLE
MX27C8000A
ADDRESS
INPUTS
tACC
DATA ADDRESS
CE
tCE
OE
DATA
OUT
tOE
FAST PROGRAMMING ALGORITHM WAVEFORMS
PROGRAM
Addresses
VIH
VIL
tAS
tDF
VALID DATA
tOH
PROGRAM VERIFY
Hi-z
OE/VPP
P/N: PM00764
DATA
CE
VCC
VPP1
VIL
VIH
VIL
VCC1
VCC
tDS
tVPS
tVCS
tPW
tDH
tVPS
tDV
tVR
8
DATA OUT VALID
tDFP
tAH
REV.1.2, JUL. 19, 2001
Page 9
MX27C8000A
ORDERING INFORMATION
PLASTIC PACKAGE
PART NO.ACCESS TIMEOPERATINGSTANDBYOPERATINGPACKAGE
(ns)Current MAX.(mA) Current MAX.(uA)TEMPERATURE
MX27C8000APC-9090301000°C to 70°C32 Pin DIP
MX27C8000AQC-90903 01000°C to 70°C32 Pin PLCC
MX27C8000AMC-9090301000°C to 70°C32 Pin SOP
MX27C8000ATC-9090301000°C to 70°C32 Pin TSOP
MX27C8000APC-101 0 0301000°C to 70°C32 Pin DIP
MX27C8000AQC-10100301000°C to 70°C32 Pin PLCC
MX27C8000AMC-10100301000°C to 70°C32 Pin SOP
MX27C8000ATC-10100301000°C to 70°C32 Pin TSOP
MX27C8000APC-121 2 0301000°C to 70°C32 Pin DIP
MX27C8000AQC-12120301000°C to 70°C32 Pin PLCC
MX27C8000AMC-12120301000°C to 70°C32 Pin SOP
MX27C8000ATC-12120301000°C to 70°C32 Pin TSOP
MX27C8000APC-151 5 0301000°C to 70°C32 Pin DIP
MX27C8000AQC-15150301000°C to 70°C32 Pin PLCC
MX27C8000AMC-15150301000°C to 70°C32 Pin SOP
MX27C8000ATC-15150301000°C to 70°C32 Pin TSOP
MX27C8000API-9090301 00-40°C to 85°C32 Pin DIP
MX27C8000AQI-909030100-40°C to 85°C32 Pin PLCC
MX27C8000AMI-909 03 010 0-40°C to 85°C32 Pin SOP
MX27C8000ATI-90903 0100-40°C to 85 °C32 Pin TSOP
MX27C8000API-10100301 00-40°C to 85°C32 Pin DIP
MX27C8000AQI-1010030100-40°C to 85°C32 Pin PLCC
MX27C8000AMI-1010 0301 00-40°C to 85°C32 Pin SOP
MX27C8000ATI-1010 030100-40°C to 85 °C32 Pin TSOP
MX27C8000API-12120301 00-40°C to 85°C32 Pin DIP
MX27C8000AQI-1212030100-40°C to 85°C32 Pin PLCC
MX27C8000AMI-1212 0301 00-40°C to 85°C32 Pin SOP
MX27C8000ATI-1212 030100-40°C to 85 °C32 Pin TSOP
MX27C8000API-15150301 00-40°C to 85°C32 Pin DIP
MX27C8000AQI-1515030100-40°C to 85°C32 Pin PLCC
MX27C8000AMI-1515 0301 00-40°C to 85°C32 Pin SOP
MX27C8000ATI-1515 030100-40°C to 85 °C32 Pin TSOP
P/N: PM00764
9
REV.1.2, JUL. 19, 2001
Page 10
PACKAGE INFORMATION
32-PIN PLASTIC DIP(600 mil)
MX27C8000A
P/N: PM00764
10
REV.1.2, JUL. 19, 2001
Page 11
32-PIN PLASTIC LEADED CHIP CARRIER (PLCC)
MX27C8000A
P/N: PM00764
11
REV.1.2, JUL. 19, 2001
Page 12
32-PIN PLASTIC SOP (450 mil)
MX27C8000A
P/N: PM00764
12
REV.1.2, JUL. 19, 2001
Page 13
32-PIN PLASTIC TSOP
MX27C8000A
P/N: PM00764
13
REV.1.2, JUL. 19, 2001
Page 14
MX27C8000A
REVISION HISTORY
Revision No. DescriptionPageDate
1.1To change data sheet title to Advance InformationP 1MAR/15/2001
To added access time 90ns and 32SOP/TSOP type packageP1,6,7,9,11
To changed ID Code from 35H to 02HP6
1.2To modify Package InformationP10~13JUL/19/2001
P/N: PM00764
14
REV.1.2, JUL. 19, 2001
Page 15
MX27C8000A
MACRONIX INTERNATIONAL CO., LTD.
HEADQUARTERS:
TEL:+886-3-578-6688
FAX:+886-3-563-2888
EUROPE OFFICE:
TEL:+32-2-456-8020
FAX:+32-2-456-8021
JAPAN OFFICE:
TEL:+81-44-246-9100
FAX:+81-44-246-9105
SINGAPORE OFFICE:
TEL:+65-348-8385
FAX:+65-348-8096
TA IPEI OFFICE:
TEL:+886-2-2509-3300
FAX:+886-2-2509-2200
MACRONIX AMERICA, INC.
TEL:+1-408-453-8088
FAX:+1-408-453-8488
CHICAGO OFFICE:
TEL:+1-847-963-1900
FAX:+1-847-963-1909
http : //www.macronix.com
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.
15
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.