Datasheet MMBT5087LT1 Datasheet (LRC)

Page 1
Low Noise T ransistor
LESHAN RADIO COMPANY, LTD.
PNP Silicon
3 COLLECTOR
1 BASE
2 EMITTER
MAXIMUM RATINGS
Rating Symbol Value Unit
Collector–Emitter Voltage V Collector–Base Voltage V Emitter–Base Voltage V Collector Current — Continuous I
CEO
CBO
EBO
C
DEVICE MARKING MMBT5087LT=2Q THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Total Device Dissipation RF-5 Board (1) P T A =25 °C Derate above 25°C 1.8 mW/°C
Thermal Resistance, Junction to Ambient R Total Device Dissipation P
Alumina Substrate, (2) T A = 25°C Derate above 25°C 2.4 mW/°C Thermal Resistance, Junction to Ambient R Junction and Storage Temperature T J , T
– 50 Vdc
– 50 Vdc
– 3.0 Vdc
– 50 mAdc
D
θJA
D
θJA
stg
225 mW
556 °C/W 300 mW
417 °C/W
–55 to +150
MMBT5087LT1
3
1
2
CASE 318–08, STYLE 6
SOT– 23 (TO–236AB)
°C
ELECTRICAL CHARACTERISTICS (T
= 2C unless otherwise noted)
A
Characteristic Symbol Min M ax Unit
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage V (I C = –1.0 mAdc, I B = 0) Collector–Base Breakdown Voltage V (I C = –100 µAdc, I E = 0) Collector Cutoff Current I (V
= –10 Vdc, I E= 0) –10
CB
(V
= –35 Vdc, I E= 0) –50
CB
1. FR–5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
(BR)CEO
(BR)CBO
CBO
– 50 Vdc
– 50 Vdc
n Adc
M17–1/6
Page 2
LESHAN RADIO COMPANY, LTD.
MMBT5087LT1
ELECTRICAL CHARACTERISTICS (T
= 25°C unless otherwise noted) (Continued)
A
Characteristic Symbol Min Ma x Unit
ON CHARACTERISTICS
DC Current Gain h (I C = –100µAdc, V (I C = –1.0 mAdc, V (I C = –10 mAdc, V
= –5.0 Vdc) 250 800
CE
= –5.0 Vdc) 250 ––
CE
= –5.0 Vdc) 250 ––
CE
Collector–Emitter Saturation Voltage (I C = –10 mAdc, I B = –1.0 mAdc) Base–Emitter Saturation Voltage
(I
= –10 mAdc, I B = –1.0 mAdc)
C
V
V
FE
CE(sat)
BE(sat)
–– – 0.3 V dc
–– – 0.85 Vdc
SMALL–SIGNAL CHARACTERISTICS
Current–Gain — Bandwidth Product (I C = –500 µAdc, V CE= –5.0 Vdc, f = 20 MHz) Output Capacitance (V CB= –5.0 Vdc, I E = 0, f = 1.0 MHz) Small–Signal Current Gain h (I C= –1.0mAdc, V
= –5.0Vdc, f = 1.0 kHz)
CE
Noise Figure N F dB (I C = –20 mAdc, V CE= –5.0 Vdc,Rs=10k, f = 1.0 kHz) 2.0
(I C = –100µAdc, V CE= –5.0 Vdc,Rs=3.0k, f = 1.0 kHz) 2.0
f
T
C
obo
fe
40 MHz
4.0 pF 250 900
––
M17–2/6
Page 3
TYPICAL NOISE CHARACTERISTICS
(V CE = – 5.0 Vdc, T A = 25°C)
10
BANDWIDTH = 1.0 Hz
7.0
IC=10 µA
5.0
30µA
3.0
1.0mA
2.0
, NOISE VOLTAGE (nV)
n
e
1.0 10 20 50 100 200 500 1.0k 2.0k 5.0k 10k
100µA
300µA
R S 0
LESHAN RADIO COMPANY, LTD.
MMBT5087LT1
10.0
~
~
7.0
5.0
3.0
2.0
IC=1.0mA
300µA
1.0
0.7
0.5
0.3
, NOISE CURRENT (pA)
n
0.2
I
0.1 10 20 50 100 200 500 1.0k 2.0k 5.0k 10k
100µA
30µA
10µA
BANDWIDTH = 1.0 Hz
~
8
R
~
S
f, FREQUENCY (Hz)
Figure 1. Noise Voltage
1.0M 500k
200k 100k
50k 20k
0.5 dB
10k
5.0k
2.0k
1.0k 500
, SOURCE RESIST ANCE ( Ω )
S
R
200 100
10 20 30 50 70 100 200 300 500 700 1.0K
1.0 dB
I C , COLLECTOR CURRENT (µA)
BANDWIDTH = 1.0 Hz
Figure 3. Narrow Band, 100 Hz
1.0M 500k
200k 100k
50k 20k 10k
5.0k
2.0k
1.0k 500
, SOURCE RESIST ANCE ( Ω )
S
200
R
100
10 20 30 50 70 100 200 300 500 700 1.0K
0.5dB
10 Hz to 15.7kHz
I C , COLLECTOR CURRENT (µA)
Figure 5. Wideband
NOISE FIGURE CONTOURS
(V CE = – 5.0 Vdc, T A = 25°C)
1.0M 500k
200k 100k
50k 20k 10k
5.0k
2.0k
2.0dB
3.0 dB
5.0 dB
1.0dB
2.0dB
3.0 dB
5.0 dB
1.0k 500
, SOURCE RESIST ANCE ( Ω )
S
R
200 100
10 20 30 50 70 100 200 300 500 700 1.0K
Noise Figure is Defined as:
NF = 20 log 10 (
e n= Noise Voltage of the Transistor referred to the input. (Figure 3) I
= Noise Current of the Transistor referred to the input. (Figure 4)
n
K = Boltzman’s Constant (1.38 x 10 T = Temperature of the Source Resistance (°K) R s= Source Resistance ( Ω )
f, FREQUENCY (Hz)
Figure 2. Noise Current
BANDWIDTH = 1.0 Hz
0.5 dB
1.0dB
2.0 dB
3.0 dB
5.0 dB
I C , COLLECTOR CURRENT (µA)
Figure 4. Narrow Band, 1.0 kHz
2
2 + 4KTRS + I
e
n
–––––––––––––––)
4KTR
2
R
1/ 2
n
S
S
–23
j/°K)
M17–3/6
Page 4
LESHAN RADIO COMPANY, LTD.
TYPICAL ST A TIC CHARACTERISTICS
MMBT5087LT1
1.0
0.8
0.6
0.4
0.2
0
, COLLECTOR– EMITTER VOL T AGE (VOLTS)
CE
0.002 0.0050.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20
V
I C= 1.0 mA
10 mA
50 mA
100 mA
I B , BASE CURRENT (mA)
Figure 6. Collector Saturation Region
1.4
T J=25°C
1.2
1.0
0.8
V
@ I C /I B = 10
BE(sat)
0.6
0.4
V
BE(on)
@ V CE= 1.0 V
V, VOLTAGE (VOLTS)
0.2
V
@ I C /I B = 10
CE(sat)
0
0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
I C , COLLECTOR CURRENT (mA)
Figure 10. “On” Voltages
T A= 25°C
100
T A = 25°C PULSE WIDTH =300 µs
80
DUTY CYCLE<2.0%
350µA
I B= 400 µA
300µA
60
40
20
, COLLECTOR CURRENT (mA)
C
I
0
0 5.0 10 15 20 25 30 35 40
200 µA
100 µA
V CE , COLLECTOR–EMITTER VOL T AGE (VOL TS)
Figure 7. Collector Characteristics
1.6
*APPLIES for I C / I B<
0.8
∗ θ VC for V
0
CE(sat)
h
/ 2
FE
25°C to 125°C
–55°C to 25°C
–0.8
25°C to 125°C
–1.6
θ VB for V
–2.4
, TEMPERATURE COEFFICIENTS (mV/°C)
V
0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
θ
BE
–55°C to 25°C
I C , COLLECTOR CURRENT (mA)
Figure 11. Temperature Coefficients
250 µA
150 µA
50µA
M17–4/6
Page 5
LESHAN RADIO COMPANY, LTD.
TYPICAL DYNAMIC CHARACTERISTICS
MMBT5087LT1
500 300 200
100
70 50
30
t, TIME (ns)
20
10
7.0
5.0
1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100
td @ V
BE(off)
= 0.5 V
t
r
V CC= 3.0 V IC /I B= 10 T J= 25°C
I C , COLLECTOR CURRENT (mA)
Figure 10. Turn–On T ime
500
T J = 25°C
300
200
V CE=20 V
5.0 V
1000
700 500
300 200
100
70
t, TIME (ns)
50
30 20
10
–1.0 –2.0 –3.0 –5.0 –7.0 –1 0 –20 –30 –50 –70 –100
t
s
t
f
I C , COLLECTOR CURRENT (mA)
Figure 11. Turn–Off Time
10.0
7.0
5.0
3.0
C
ib
VCC= –3.0 V IC /I B= 10 IB1=I
B2
T J= 25°C
T J= 25°C
100
70
50
, CURRENT– GAIN — BANDWIDTH PRODUCT (MHz)
T
f
0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50
I C , COLLECTOR CURRENT (mA)
Figure 12. Current–Gain — Bandwidth Product
1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.01
0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1.0k 2.0k 5.0k 10k 20k 50k 100k
r ( t ) TRANSIENT THERMAL RESISTANCE(NORMALIZED)
D = 0.5
0.2
0.1
0.05
0.02
0.01 SINGLE PULSE
2.0
C, CAPACITANCE (pF)
1.0
0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50
V R , REVERSE VOL TAGE (VOL TS)
Figure 13. Capacitance
P
(pk)
FIGURE 16
t
1
t
DUTY CYCLE, D = t D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t 1 (SEE AN–569)
= r(t) • R
Z
2
θJA(t)
T
J(pk)
– T A = P
1
θJA
(pk) Z θJA(t)
t, TIME (ms)
Figure 14. Thermal Response
/ t
C
ob
2
M17–5/6
Page 6
4
10
V
= 30 V
CC
3
10
I
2
10
1
10
CEO
I
CBO
AND
0
10
–1
, COLLECTOR CURRENT (nA)
10
C
I
–2
10
–4 –2 0 +20 +40 +60 +80 +100 +120 +140 +160
I
@ V
BE(off)
= 3.0 V
CEX
T J , JUNCTION TEMPERATURE (°C)
Figure 15. Typical Collector Leakage Current
LESHAN RADIO COMPANY, LTD.
MMBT5087LT1
DESIGN NOTE: USE OF THERMAL RESPONSE DAT A
A train of periodical power pulses can be represented by the model as shown in Figure 16. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 14 was calculated for various duty cycles. To find Z the steady state value R Example: Dissipating 2.0 watts peak under the following conditions: t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2) Using Figure 16 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22. The peak rise in junction temperature is therefore T = r(t) x P For more information, see AN–569.
, multiply the value obtained from Figure 14 by
θJA(t)
(pk)
x R
.
θJA
= 0.22 x 2.0 x 200 = 88°C.
θJA
M17–6/6
Loading...