Datasheet MKT 1813 Datasheet (VISHAY)

Page 1
DC Film Capacitor
MKT Axial Type
FEATURES
Ø d
Supplied loose in box, taped on ammopack or reel RoHS compliant
MKT 1813
Vishay Roederstein
40.0 ± 5.0 40.0 ± 5.0
LEAD DIAMETER
d (mm)
L
Max.
0.6 5.0
0.7 > 5.0 7.0
0.8 > 7.0 < 16.5
1.0 16.5
D (mm)
D
Max.
MAIN APPLICATIONS
Blocking, bypassing, filtering, timing, coupling and decoupling, interference suppression in low voltage applications
REFERENCE STANDARDS
IEC 60384-2
MARKING
C-value; tolerance; rated voltage; manufacturer’s type; code for dielectric material; manufacturer location; manufacturer’s logo; year and week
ENCAPSULATION
Plastic-wrapped, epoxy resin sealed, flame retardant
CLIMATIC TESTING CLASS ACC. TO IEC 60068-1
55/100/56
CAPACITANCE RANGE (E12 SERIES)
470 pF to 22 µF
CAPACITANCE TOLERANCE
± 20 %, ± 10 %, ± 5 %
LEADS
Tinned wire
MAXIMUM APPLICATION TEMPERATURE
100 °C
PULL TEST ON LEADS
Minimum 20 N in direction of leads according to IEC 60068-2-21
DIELECTRIC
Polyester film
BENT TEST ON LEADS
2 bends trough 90° combined with 10 N tensile strength
ELECTRODES
Metallized
CONSTRUCTION
Mono and internal series construction
RELIABILITY
Operational life > 300 000 h (40 °C/0.5 UR) Failure rate < 2 FIT (40 °C/0.5 U
)
R
DETAIL SPECIFICATION
RATED (DC) VOLTAGE
63 V, 100 V, 250 V, 400 V, 630 V, 1000 V
For more detailed data and test requirements contact: dc-film@vishay.com
RATED (AC) VOLTAGE
40 V, 63 V, 160 V, 200 V, 220 V
Document Number: 26013 For technical questions, contact: dc-film@vishay.com Revision: 08-Dec-08 17
www.vishay.com
Page 2
MKT 1813
Vishay Roederstein
COMPOSITION OF CATALOG NUMBER
MULTIPLIER
(nF)
0.1 2
13
10 4
100 5
MKT 1813 X XX 25 X X
TYPE
DC Film Capacitor
MKT Axial Type
CAPACITANCE
(numerically)
Example:
468 = 680 nF
Un = 06 = 63 V
Un = 01 = 100 V
Un = 25 = 250 V
Un = 40 = 400 V
Un = 63 = 630 V
Un = 10 = 1000 V
TOLERANCE
5 %
10 %
20 %
SPECIAL LETTER FOR TAPED
Bulk
R Reel
G Ammopack
Note
For detailed tape specifications refer to “Packaging Information” www.vishay.com/doc?28139
or end of catalog
SPECIFIC REFERENCE DATA
DESCRIPTION VALUE
Tangent of loss angle: at 1 kHz at 10 kHz at 100 kHz C = 0.1 µF
0.1 µF C = 1.0 µF C 1.0 µF
Capacitor length
(mm)
11 12 18 32 56 84 ­14 11 13 22 37 66 175 19 7 8 13 21 33 65
26.5 4 5 8 13 19 34
31.5 3 4 6 10 15 25
41.5 2 3 5 7 10 17
R between leads, for C ≤ 0.33 µF and U R between leads, for C ≤ 0.33 µF and U RC between leads, for C > 0.33 µF and U RC between leads, for C > 0.33 µF and U R between leads and case, 100 V; (foil method) > 30 000 MΩ Withstanding (DC) voltage (cut off current 10 mA); rise time 100 V/s 1.6 x U Maximum application temperature 100 °C
63 Vdc 100 Vdc 250 Vdc 400 Vdc 630 Vdc 1000 Vdc
If the maximum pulse voltage is less than the rated voltage higher dU/dt values can be permitted.
100 V > 15 000 MΩ
R
> 100 V > 30 000 MΩ
R
100 V > 5000 s
R
> 100 V > 10 000 s
R
Maximum pulse rise time (dU/dt)
100 x 10
80 x 10 80 x 10
-4
-4
-4
[V/µs]
R
150 x 10 150 x 10
-4
250 x 10
-4
-
--
, 1 min
Rdc
-4
www.vishay.com For technical questions, contact: dc-film@vishay.com 18 Revision: 08-Dec-08
Document Number: 26013
Page 3
MKT 1813
DC Film Capacitor
Vishay Roederstein
MKT Axial Type
VOLTAGE
CODE 63
630 Vdc/
220 Vac
(1)
CAPACITANCE
CAPACITANCE
CODE
VOLTAGE
CODE 06
63 Vdc/
40 Vac
VOLTAGE
CODE 01
100 Vdc/
63 Vac
VO LTAGE
CODE 25
250 Vdc/
160 Vac
VOLTAGE
CODE 40
400 Vdc/
200 Vac
DLDLDLDLDLDL
470 pF 147 --------5.011.0--
680 pF 168 --------5.011.0--
1000 pF 210 --------5.011.05.514.0
1500 pF 215 --------5.011.06.014.0
2200 pF 222 --------5.011.06.014.0
3300 pF 233 --------5.011.07.014.0
4700 pF 247 --------5.011.06.019.0
6800 pF 268 ------5.011.06.014.06.019.0
0.01 µF 310 ------5.011.06.014.06.519.0
0.015 µF 315 ----5.011.06.014.06.514.07.519.0
0.022 µF 322 ----5.011.06.014.07.514.09.019.0
0.033 µF 333 ----5.011.06.014.06.519.010.519.0
0.047 µF 347 ----6.014.07.014.07.519.012.019.0
0.068 µF 368 - - 5.0 11.0 6.0 14.0 8.0 14.0 8.5 19.0 11.0 26.5
0.1 µF 410
- - 5.0 11.0 6.0 14.0 7.0 19.0 10.5 19.0 13.0 26.5
--------9.5
19.0
0.15 µF 415 5.0 11.0 5.5 11.0 7.0 14.0 8.5 19.0 10.0 26.5 13.5 31.5
0.22 µF 422
0.33 µF 433
0.47 µF 447
0.68 µF 468
5.0 11.0 6.0 14.0 7.0 19.0 8.0 26.5 11.5 26.5 16.0 31.5
(2)
------8.0
19.0
----
6.0 14.0 6.0 19.0 8.0 19.0 9.5 26.5 13.5 26.5 16.0 41.5
(2)
------9.5
19.0
----
7.0 14.0 6.5 19.0 9.0 19.0 11.0 26.5 14.5 31.5 19.0 41.5
--------14.0
26.5
6.5 19.0 7.0 19.0 8.5 26.5 11.5 31.5 14.5 41.5 - -
(2)
----9.0
19.0
------
1.0 µF 510 7.5 19.0 8.5 19.0 10.0 26.5 13.5 31.5 16.5 41.5 - -
1.5 µF 515
2.2 µF 522
3.3 µF 533
4.7 µF 547
8.5 19.0 8.0 26.5 11.0 31.5 14.0 41.5 - - - -
- - 8.0 19.0
(2)
- - 13.0
31.5
(2)
----
8.5 26.5 9.5 26.5 13.0 31.5 16.5 41.5 - - - -
7.5 19.0
(2)
9.5
19.0
(2)
--------
10.0 26.5 11.5 26.5 15.5 31.5 - - - - - -
8.5 19.0
(2)
- - 14.0
26.5
(2)
------
11.5 26.5 12.0 31.5 15.5 41.5 - - - - - -
(2)
----14.5
31.5
------
6.8 µF 568 12.0 31.5 14.0 31.5 17.5 41.5 - - - - - -
10.0 µF 610
14.5 31.5 16.5 31.5 21.0 41.5 - - - - - -
(2)
- - 13.5
31.5
--------
15.0 µF 615 18.031.520.531.5--------
22.0 µF 622 17.541.5 ----------
Notes
• Pitch = L + 3.5
(1)
Not suitable for mains applications
(2)
For the smaller size please add “-M” at the end of the type designation (e.g. MKT 1813-510/255-M)
VOLTAGE
CODE 10
1000 Vdc/
220 Vac
(2)
--
(2)
--
(1)
Document Number: 26013 For technical questions, contact: dc-film@vishay.com
www.vishay.com
Revision: 08-Dec-08 19
Page 4
MKT 1813
Vishay Roederstein
DC Film Capacitor
MKT Axial Type
RECOMMENDED PACKAGING
PACKAGING CODE TYPE OF PACKAGING REEL DIAMETER (mm) ORDERING CODE EXAMPLES
G Ammo - MKT 1813-422-014-G x R Reel 350 MKT 1813-422-014-R x
- Bulk - MKT 1813-422-014 x
Note
• Attention: Capacitors with L > 31.5 mm only as bulk available
EXAMPLE OF ORDERING CODE
TYPE CAPACITANCE CODE VOLTAGE CODE TOLERANCE CODE
MKT 1813 410 06 5 G
Note
(1)
Tolerance Codes: 4 = 5 % (J); 5 = 10 % (K); 6 = 20 % (M)
MOUNTING
Normal Use
The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines. For detailed tape specifications refer to Packaging information: www.vishay.com/doc?28139
Specific Method of Mounting to Withstand Vibration and Shock
In order to withstand vibration and shock tests, it must be ensured that the capacitor body is in good contact with the printed-circuit board:
For L 19 mm capacitors shall be mechanically fixed by the leads
For larger pitches the capacitors shall be mounted in the same way and the body clamped
The maximum diameter and length of the capacitors are specified in the dimensions table
Eccentricity as shown in the drawing below
(1)
or end of catalog.
PACKAGING CODE
Space Requirements On Printed-Circuit Board
The maximum length and width of film capacitors is shown in the drawing:
Eccentricity as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.
Product height with seating plane as given by “IEC 60717” as reference: h
1 mm
h + 0.4 mm or h
max.
h' + 0.4 mm
max.
Storage Temperature
Storage temperature: T
= - 25 °C to + 40 °C with RH maximum 80 % without condensation
stg
Ratings and Characteristics Reference Conditions
Unless otherwise specified, all electrical values apply to an ambient temperature of 23 ± 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 ± 2 %.
For reference testing, a conditioning period shall be applied over 96 ± 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.
www.vishay.com For technical questions, contact: dc-film@vishay.com 20 Revision: 08-Dec-08
Document Number: 26013
Page 5
MKT 1813
CHARACTERISTICS
100
7
RMS
5
V
3
2
10
7
5
3
2
63 Vdc
1
2
10
2 3 5 7 10
Permissible AC Voltage vs. Frequency
100
7
RMS
5
V
3
2
10
7
5
3
2
100 Vdc
1
2
10
2 3 5 7 10
Permissible AC Voltage vs. Frequency
3
Capacitance in µF
0.15
0.33
0.47
22
15
3
2 3 5 7 104 2 3 5 7 10
0.068
1.0
10
4.7
2.2
Capacitance in µF
0.15
0.22
0.47
1.0
2.2
4.7
15
2 3 5 7 104 2 3 5 7 10
DC Film Capacitor
MKT Axial Type
1000
7
RMS
5
V
3
2
100
7 5
3
2
5
f [Hz]
5
f [Hz]
10
2
10
Permissible AC Voltage vs. Frequency
1000
7
RMS
5
V
3
2
100
7 5
3
2
10
2
10
Permissible AC Voltage vs. Frequency
400 Vdc
2 3 5 7 10
630 Vdc
2 3 5 7 10
Vishay Roederstein
Capacitance in µF
0.0068
0.022
2.2
1.0
3
2 3 5 7 104 2 3 5 7 10
Capacitance in pF and µF
0.01
3
2 3 5 7 104 2 3 5 7 10
0.47
0.033
0.22
0.0047
0.1
1.0
0.047
0.1
470
0.0022
0.22
5
f [Hz]
0.001
5
f [Hz]
1000
7
RMS
5
V
3
2
100
7
5
3
10
4.7
2.2
2
250 Vdc
10
2
10
2 3 5 7 10
3
2 3 5 7 104 2 3 5 7 10
Permissible AC Voltage vs. Frequency
1.0
Capacitance in µF
0.015
0.047
0.33
0.15
5
f [Hz]
1000
7
RMS
5
V
3
2
100
7 5
3
2
1000 Vdc
10
2
10
2 3 5 7 10
3
2 3 5 7 104 2 3 5 7 10
Permissible AC Voltage vs. Frequency
Capacitance in pF and µF
0.1
0.047
0.22
0.022
0.47
1000
2000
0.01 4700
5
f [Hz]
Document Number: 26013 For technical questions, contact: dc-film@vishay.com
www.vishay.com
Revision: 08-Dec-08 21
Page 6
MKT 1813
Vishay Roederstein
Nominal voltage (AC and DC) as a function of temperature
U = f(T
), TLL TA T
A
1.2
factor
1.0
0.8
0.6
0.4
0.2
0.0
- 60 - 20 20 60 100
Capacitance as function of frequency
ΔC/C = f(f), 100 Hz f 1 MHz
2
= (%)
1
C
ΔC
0
- 1
- 2
- 3
- 4
- 5
- 6
2
10
2 3 5 7 10
Capacitance Change vs. Frequency
3
2 3 5 7 104 2 3 5 7 10
ΔC
= f (f)
C
Insulation resistance as a function of temperature
R
= f(TA), TLL TA T
is
UL
T
UL
DC Film Capacitor
MKT Axial Type
= (%)
ΔC
(°C)
amb
5
f (Hz)
Capacitance vs. Temperature ΔC/C = f (ϑ)
-3
Dissipation Factor (1 kHz) vs. Temperature tan δ = f (ϑ)
Capacitance as a function of temperature
ΔC/C = f(T
12
10 C
8
6
4
2
0
- 2
- 4
- 6
- 8
- 60 - 40 - 20 0 20 40 60 80 100 120 140
), TLL TA T
A
UL
T
amb
Dissipation factor as function of temperature
Δtan δ/tan δ = f(T
16
14
tan δ = 10
12
10
8
6
4
2
0
- 60 - 40 - 20 0 20 40 60 80 100 120 140
), TLL TA T
A
UL
T
amb
Dissipation factor as a function of frequency
Δtan δ/tan δ = f(f), 100 Hz f 1 MHz
L
(°C)
(°C)
5
10
RC (s)
4
10
3
10
2
10
100
4
tan δ x 10
7 5
3 2
10
7 5
3 2
1
1
10
0
10
20 40 60 80 100 125
T
(°C)
amb
7 5
3 2
0.1
10
2
2 3 5 7 10
3
2 3 5 7 104 2 3 5 7 10
Dissipation Factor vs. Frequency tan δ = f (f)
f (Hz)
www.vishay.com For technical questions, contact: dc-film@vishay.com
Document Number: 26013
22 Revision: 08-Dec-08
5
Page 7
MKT 1813
DC Film Capacitor
Vishay Roederstein
MKT Axial Type
Maximum allowed component temperature rise (ΔT) as a function of the ambient temperature (T
16
ΔT (°C)
12
8
4
0
- 60 - 20 20 60 100
(°C)
T
amb
HEAT CONDUCTIVITY (G) AS A FUNCTION OF (ORIGINAL) PITCH AND CAPACITOR BODY THICKNESS IN mW/°C
D
max.
(mm)
5.02-----
5.523----
6.0-34---
6.5-35---
7.0-45---
7.5--6---
8.0-4-8--
8.5 - - 6 9 - -
9.0--7---
9.5 - - - 10 - -
10.0 - - - 11 - -
10.5 - - 8 - - -
11.0 - - - 12 14 -
11.5 - - - 13 15 -
12.0 - - 9 - 16 -
12.5------
13.0 - - - 14 17 -
13.5 - - - 15 18 -
14.0 - - - 16 19 -
14.5 - - - - 19 -
15.0------
15.5 - - - - 21 -
16.0 - - - - - 29
16.5 - - - - 22 30
17.0------
17.5 - - - - - 31
18.0 - - - - 24 -
18.5------
19.0 - - - - - 34
20.0------
20.5 - - - - 28 -
21.0 - - - - - 38
Document Number: 26013 For technical questions, contact: dc-film@vishay.com Revision: 08-Dec-08 23
L = 11 mm L = 14 mm L = 19 mm L = 26.5 mm L = 31.5 mm L = 41.5 mm
HEAT CONDUCTIVITY (mW/°C)
amb
)
www.vishay.com
Page 8
MKT 1813
Vishay Roederstein
DC Film Capacitor
MKT Axial Type
POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE
The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free ambient temperature. The power dissipation can be calculated according type detail specification “HQN-384-01/101: Technical Information Film Capacitors”. The component temperature rise (ΔT) can be measured (see section “Measuring the component temperature” for more details) or calculated by ΔT = P/G:
•ΔT = Component temperature rise (°C)
P = Power dissipation of the component (mW)
G = Heat conductivity of the component (mW/°C)
MEASURING THE COMPONENT TEMPERATURE
A thermocouple must be attached to the capacitor body as in:
Thermocouple
The temperature is measured in unloaded (T The temperature rise is given by ΔT = T
C
) and maximum loaded condition (TC).
amb
- T
.
amb
To avoid radiation or convection, the capacitor should be tested in a wind-free box.
APPLICATION NOTE AND LIMITING CONDITIONS
These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.
To select the capacitor for a certain application, the following conditions must be checked:
1. The peak voltage (U
2. The peak-to-peak voltage (U
3. The voltage peak slope (dU/dt) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U divided by the applied voltage.
For all other pulses following equation must be fulfilled:
T
2
dU
⎛⎞
--------
2
⎝⎠
dt
0
T is the pulse duration The rated voltage pulse slope is valid for ambient temperatures up to 85 °C. For higher temperatures a derating factor of 3 % per K shall be applied.
4. The maximum component surface temperature rise must be lower than the limits (see figure max. allowed component temperature rise).
) shall not be greater than the rated DC voltage (U
P
) shall not be greater than 22 x U
P-P
dU
⎛⎞
Rdc
--------
×<××
⎝⎠
dt
rated
dt U
)
Rdc
to avoid the ionisation inception level
Rac
Rdc
and
www.vishay.com For technical questions, contact: dc-film@vishay.com 24 Revision: 08-Dec-08
Document Number: 26013
Page 9
MKT 1813
DC Film Capacitor
Vishay Roederstein
MKT Axial Type
5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: “Heat conductivity”
6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).
Voltage Conditions for 6 Above
85 °C 85 °C < T
ALLOWED VOLTAGES
Maximum continuous RMS voltage U
Maximum temperature RMS-overvoltage (< 24 h) 1.25 x U
Maximum peak voltage (V
O-P
) (< 2 s)
T
amb
1.6 x U
Rac
Rac
Rdc
EXAMPLE
C = 3300 nF - 100 V used for the voltage signal shown in next figure. U
= 80 V; UP = 70 V; T1 = 0.5 ms; T2 = 1 ms
P-P
The ambient temperature is 35 °C
Checking conditions:
1. The peak voltage U
2. The peak-to-peak voltage 80 V is lower than 22 x 63 Vac = 178 U
3. The voltage pulse slope (dU/dt) = 80 V/500 µs = 0.16 V/µs This is lower than 8 V/µs (see specific reference data for each version)
4. The dissipated power is 60 mW as calculated with fourier terms The temperature rise for W This is lower than 15 °C temperature rise at 35 °C, according figure max. allowed component temperature rise
5. Not applicable
6. Not applicable
= 70 V is lower than 100 Vdc
P
= 11.5 mm and pitch = 26.5 mm will be 60 mW/13 mW/°C = 4.6 °C
max.
P-P
amb
0.8 x U
U
Rac
1.3 x U
100 °C
Rac
Rdc
Volta g e Sign a l
Voltage
U
P
U
P-P
T
1
T
2
Document Number: 26013 For technical questions, contact: dc-film@vishay.com Revision: 08-Dec-08 25
Time
www.vishay.com
Page 10
MKT 1813
Vishay Roederstein
DC Film Capacitor
MKT Axial Type
INSPECTION REQUIREMENTS
General Notes:
Sub-clause numbers of tests and performance requirements refer to the “Sectional Specification, Publication IEC 60384-2 and Specific Reference Data”.
Group C Inspection Requirements
SUB-CLAUSE NUMBER AND TEST CONDITIONS PERFORMANCE REQUIREMENTS
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1
4.1 Dimensions (detail) As specified in Chapters “General data” of
4.3.1 Initial measurements Capacitance Tangent of loss angle:
For C 470 nF at 100 kHz or for C > 470 nF at 10 kHz
4.3 Robustness of terminations Tensile: Load 10 N; 10 s Bending: Load 5 N; 4 x 90°
4.4 Resistance to soldering heat Method: 1A
Solder bath: 280 °C ± 5 °C Duration: 10 s
4.14 Component solvent resistance Isopropylalcohol at room temperature Method: 2
Immersion time: 5 ± 0.5 min Recovery time: Min. 1 h, max. 2 h
4.4.2 Final measurements Visual examination No visible damage
Capacitance C/C| 2 % of the value measured initially Tangent of loss angle Increase of tan δ
SUB-GROUP C1B PART OF SAMPLE OF SUB-GROUP C1
4.6.1 Initial measurements Capacitance Tangent of loss angle:
For C 470 nF at 100 kHz or for C > 470 nF at 10 kHz
4.6 Rapid change of temperature θA = - 55 °C θB = + 100 °C 5 cycles Duration t = 30 min Visual examination No visible damage
4.7 Vibration Mounting: See section “Mounting” of this specification Procedure B4
Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or Acceleration 98 m/s² (whichever is less severe) Total duration 6 h
4.7.2 Final inspection Visual examination No visible damage
www.vishay.com For technical questions, contact: dc-film@vishay.com 26 Revision: 08-Dec-08
this specification
No visible damage
Legible marking
0.005 for: C 100 nF or 0.010 for: 100 nF < C 220 nF or 0.015 for: 220 nF < C 470 nF and 0.003 for: C > 470 nF
Compared to values measured in 4.3.1
Document Number: 26013
Page 11
MKT 1813
DC Film Capacitor
Vishay Roederstein
MKT Axial Type
SUB-CLAUSE NUMBER AND TEST CONDITIONS PERFORMANCE REQUIREMENTS
4.9 Shock Mounting:
4.9.3 Final measurements Visual examination No visible damage
SUB-GROUP C1 COMBINED SAMPLE OF SPECIMENS OF SUB-GROUPS C1A AND C1B
4.10 Climatic sequence
4.10.2 Dry heat Temperature: + 100 °C
4.10.3 Damp heat cyclic Test Db, first cycle
4.10.4 Cold Temperature: - 55 °C
4.10.6 Damp heat cyclic Test Db, remaining cycles
4.10.6.2 Final measurements Voltage proof = U
SUB-GROUP C2
4.11 Damp heat steady state 56 days, 40 °C, 90 % to 95 % RH
4.11.1 Initial measurements Capacitance
Document Number: 26013 For technical questions, contact: dc-film@vishay.com Revision: 08-Dec-08 27
See section “Mounting” of this specification Pulse shape: Half sine Acceleration: 490 m/s² Duration of pulse: 11 ms
Capacitance C/C| 3 % of the value measured in 4.6.1 Tangent of loss angle Increase of tan δ
0.005 for: C 100 nF or 0.010 for: 100 nF < C 220 nF or 0.015 for: 220 nF < C 470 nF and 0.003 for: C > 470 nF
Compared to values measured in 4.6.1
Insulation resistance As specified in section “Insulation
Resistance” of this specification
Duration: 16 h
Duration: 2 h
for 1 min within 15 min
after removal from testchamber
Visual examination No visible damage
Capacitance C/C| 5 % of the value measured in
Tangent of loss angle Increase of tan δ
Insulation resistance 50 % of values specified in section
Tangent of loss angle at 1 kHz
Rdc
No breakdown of flash-over
Legible marking
4.4.2 or 4.9.3
0.007 for: C 100 nF or 0.010 for: 100 nF < C 220 nF or 0.015 for: 220 nF < C 470 nF and 0.005 for: C > 470 nF
Compared to values measured in
4.3.1 or 4.6.1
“Insulation resistance” of this specification
www.vishay.com
Page 12
MKT 1813
Vishay Roederstein
DC Film Capacitor
MKT Axial Type
SUB-CLAUSE NUMBER AND TEST CONDITIONS PERFORMANCE REQUIREMENTS
4.11.3 Final measurements Voltage proof = U
SUB-GROUP C3
4.12 Endurance Duration: 2000 h
4.12.1 Initial measurements Capacitance
4.12.5 Final measurements Visual examination No visible damage
SUB-GROUP C4
4.13 Charge and discharge 10 000 cycles
4.13.1 Initial measurements Capacitance
4.13.3 Final measurements Capacitance |ΔC/C| ≤ 3 % compared to values measured
www.vishay.com For technical questions, contact: dc-film@vishay.com 28 Revision: 08-Dec-08
after removal from testchamber
Visual examination No visible damage
Capacitance |ΔC/C| 5 % of the value measured in
Tangent of loss angle Increase of tan δ ≤ 0.005
Insulation resistance ≥ 50 % of values specified in section
1.25 x U
1.0 x U
Tangent of loss angle:
For C 470 nF at 100 kHz or for C > 470 nF at 10 kHz
Capacitance |ΔC/C| 5 % compared to values measured
Tangent of loss angle Increase of tan δ
Insulation resistance ≥ 50 % of values specified in section
Charged to U Discharge resistance:
Tangent of loss angle:
For C 470 nF at 100 kHz or for C > 470 nF at 10 kHz
Tangent of loss angle Increase of tan δ
Insulation resistance ≥ 50 % of values specified in section
at 85 °C
Rdc
at 100 °C
Rdc
=
R
for 1 min within 15 min
Rdc
Rdc
U
-------------------------------------------------­C 2.5 dU dt()
R
××
R
No breakdown of flash-over
Legible marking
4.11.1.
Compared to values measured in 4.11.1
“Insulation resistance” of this specification
Legible marking
in 4.12.1
0.005 for: C 100 nF or 0.010 for: 100 nF < C 220 nF or 0.015 for: 220 nF < C 470 nF and 0.003 for: C > 470 nF
Compared to values measured in 4.12.1
“Insulation resistance” of this specification
in 4.13.1
0.005 for: C 100 nF or 0.010 for: 100 nF < C 220 nF or 0.015 for: 220 nF < C 470 nF and 0.003 for: C > 470 nF
Compared to values measured in 4.13.1
“Insulation resistance” of this specification
Document Number: 26013
Page 13
Legal Disclaimer Notice
Vishay

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000 www.vishay.com Revision: 18-Jul-08 1
Loading...