
1
Motorola Bipolar Power Transistor Device Data
" !
These transistors are designed for high–voltage, high–speed switching of inductive
circuits where fall time and RBSOA are critical. They are particularly well–suited for
line–operated switchmode applications.
The M JE16004 is a h igh–gain version o f the MJE16002 and MJH16002 f or
applications where drive current is limited.
Typical Applications:
• Switching Regulators
• High Resolution Deflection Circuits
• Inverters
• Motor Drives
• Fast Switching Speeds
50 ns Inductive Fall Time @ 75_C (Typ)
70 ns Crossover Time @ 75_C (Typ)
• 100_C Performance Specified for:
Reverse–Biased SOA
Inductive Switching Times
Saturation Voltages
Leakage Currents
Collector–Emitter Voltage
Collector–Emitter Voltage
Collector Current — Continuous
— Peak (1)
Base Current — Continuous
— Peak (1)
Total Power Dissipation @ TC = 25_C
@ TC = 100_C
Derate above TC = 25_C
Operating and Storage Junction Temperature Range
Thermal Resistance, Junction to Case
Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 Seconds
_
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle v 10%.
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.
SEMICONDUCTOR TECHNICAL DATA
Order this document
by MJE16002/D
5.0 AMPERE
NPN SILICON
POWER TRANSISTORS
450 VOLTS
80 WATTS
*Motorola Preferred Device
CASE 221A–06
TO–220AB

2
Motorola Bipolar Power Transistor Device Data
ELECTRICAL CHARACTERISTICS (T
C
= 25_C unless otherwise noted)
Collector–Emitter Sustaining Voltage (Table 2)
(IC = 100 mA, IB = 0)
Collector Cutoff Current
(V
CEV
= 850 Vdc, V
BE(off)
= 1.5 Vdc)
(V
CEV
= 850 Vdc, V
BE(off)
= 1.5 Vdc, TC = 100_C)
Collector Cutoff Current
(VCE = 850 Vdc, RBE = 50 Ω, TC = 100_C)
Emitter Cutoff Current
(VEB = 6.0 Vdc, IC = 0)
Second Breakdown Collector Current with Base Forward Biased
Clamped Inductive SOA with Base Reverse Biased
Collector–Emitter Saturation Voltage
(IC = 1.5 Adc, IB = 0.2 Adc) MJE16002
(IC = 1.5 Adc, IB = 0.15 Adc) MJE16004
(IC = 3.0 Adc, IB = 0.4 Adc) MJE16002
(IC = 3.0 Adc, IB = 0.3 Adc) MJE16004
(IC = 3.0 Adc, IB = 0.4 Adc, TC = 100_C) MJE16002
(IC = 3.0 Adc, IB = 0.3 Adc, TC = 100_C) MJE16004
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Base–Emitter Saturation Voltage
(IC = 3.0 Adc, IB = 0.4 Adc) MJE16002
(IC = 3.0 Adc, IB = 0.3 Adc) MJE16004
(IC = 3.0 Adc, IS = 0.4 Adc, TC = 100_C) MJE16002
(IC = 3.0 Adc, IB = 0.3 Adc, TC = 100_C) MJE16004
DC Current Gain
(IC = 5.0 Adc, VCE = 5.0 Vdc) MJE16002
MJE16004
Output Capacitance
(VCB = 10 Vdc, IE = 0, f
test
= 1.0 kHz)
SWITCHING CHARACTERISTICS
Resistive Load (Table 1) MJE16002/MJH10002
C
= 3.0 Adc,
VCC = 250 Vdc,
(IB2 = 0.8 Adc,
RB2 = 8.0 Ω)
IB1 = 0.4 Adc,
PW = 30 µs,
PW = 30 µs,
Duty Cycle v 2.0%)
Resistive Load (Table 1) MJE16004/MJH16004
C
= 3.0 Adc,
VCC = 250 Vdc,
(IB2 = 0.6 Adc,
RB2 = 8.0 Ω)
IB1 = 0.3 Adc,
PW = 30 µs,
PW = 30 µs,
Duty Cycle v 2.0%)
(1) Pulse Test: PW = 300 µs, Duty Cycle v 2%.
*
β
f
=
I
C
I
B1
(IC = 3.0 Adc,
(I
(IC = 3.0 Adc,
(I
ns
ns

3
Motorola Bipolar Power Transistor Device Data
SWITCHING CHARACTERISTICS (continued)
Inductive Load (Table 2) MJE16002
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
(IC = 3.0 Adc,
IB1 = 0.4 Adc,
ОООООООО
ОООООООО
ОООООООО
IB1 = 0.4 Adc,
V
BE(off)
= 5.0 Vdc,
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Inductive Load (Table 2) MJE16004
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
(IC = 3.0 Adc,
IB1 = 0.3 Adc,
ОООООООО
ОООООООО
ОООООООО
IB1 = 0.3 Adc,
V
BE(off)
= 5.0 Vdc,
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
(1) Pulse Test: PW = 300 µs, Duty Cycle v 2%.
*
β
f
=
I
C
I
B1
V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
V
BE
, BASE–EMITTER VOLTAGE (VOLTS) V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMPS)
3.0
2.0
1.0
1.0
IC, COLLECTOR CURRENT (AMPS)
0.05
0.1
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMPS)
3.0
0.3 0.7 5.0 10
10
Figure 2. Collector Saturation Region
0.1
IB, BASE CURRENT (AMPS)
0.2 0.3
0.1
60
h
FE
, DC CURRENT GAIN
VCE = 5.0 V
0.5 0.7 1.0 2.0
Figure 3. Collector–Emitter Saturation Region Figure 4. Base–Emitter Voltage
2.0
0.3
TJ = 25°C
TJ = 100°C
20
0.5 2.0
1.0
0.070.03
0.3
0.5
25°C
– 55°C
2 A
IC = 1 A
5.0
0.2
1.0 3.0 7.0 3.0
0.1 2.0 100.50.2 1.0 5.0
0.7
1.5
50
30
7.0
0.5
0.7
0.2
0.05
β
f
= 10
TJ = 100
°
C
2.0
0.1
3.0
0.2
5.0
0.5
0.1 2.0 100.50.2 1.0 5.0
3 A 4 A 5 A
β
f
= 10
TJ = 25
°
C
β
f
= 5
TJ = 25
°
C
β
f
= 5
TJ = 25
°
C
β
f
= 10
TJ = 100
°
C
(TJ = 100
(TJ = 150
(TJ = 100
(TJ = 150
ns
ns

4
Motorola Bipolar Power Transistor Device Data
Figure 5. Collector Cutoff Region
10
4
VBE, BASE–EMITTER VOLTAGE (VOLTS)
10
–1
0–0.4
Figure 6. Capacitance
10000
VR, REVERSE VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
C
ib
0.1
, COLLECTOR CURRENT ( A)
µ
I
C
10
3
10
2
10
1
10
0
–0.2 +0.2 +0.4 +0.6
TJ = 150°C
125°C
100°C
75°C
REVERSE FORWARD
25°C
VCE = 250 Vdc
100
850
TJ = 25°C
1000
10
100101.0
C
ob
TYPICAL STATIC CHARACTERISTICS (continued)
, STORAGE TIME (ns)t
sv
, STORAGE TIME (ns)t
sv
IC, COLLECTOR CURRENT (AMPS)
10000
5000
2000
100
200
1000
500
0.7 1.0 2.00.5 5.0
Figure 7. Storage Time Figure 8. Storage Time
IC, COLLECTOR CURRENT (AMPS)
t
fi
, COLLECTOR CURRENT FALL TIME (ns)
1000
500
200
10
20
100
50
0.7 1.00.5 5.0
IC, COLLECTOR CURRENT (AMPS)
t
fi
, COLLECTOR CURRENT FALL TIME (ns)
1000
500
200
10
20
100
50
0.7 1.00.5 5.0
Figure 9. Collector Current Fall Time Figure 10. Collector Current Fall Time
IC, COLLECTOR CURRENT (AMPS)
10000
5000
2000
100
200
1000
500
0.7 1.0 3.00.5 5.0
β
f
= 5
TJ = 75
°
C
VCC = 20 V
V
BE(off)
= 0 V
–2.0 V
0 V
V
BE(off)
= 0 V
2.0 3.0
2.03.02.0 3.0
V
BE(off)
= 2.0 V
V
BE(off)
= 0 V
V
BE(off)
= 5.0 V
β
f
= 10
TJ = 75
°
C
VCC = 20 V
V
BE(off)
= 2.0 V
V
BE(off)
= 5.0 V
V
BE(off)
= 2.0 V
V
BE(off)
= –5.0 V
β
f
= 5
TJ = 75°C
VCC = 20 V
–5.0 V
–2.0 V
0 V
V
BE(off)
= 0 V
V
BE(off)
= 2.0 V
β
f
= 10
TJ = 75
°
C
VCC = 20 V
–5.0 V
V
BE(off)
= 5.0 V
TYPICAL DYNAMIC CHARACTERISTICS

5
Motorola Bipolar Power Transistor Device Data
IC, COLLECTOR CURRENT (AMPS)
1000
500
200
10
20
100
50
0.7 1.00.5 5.0
IC, COLLECTOR CURRENT (AMPS)
t
c
, CROSSOVER TIME (ns)
1000
500
200
10
20
100
50
0.7 1.00.5 5.0
Figure 11. Crossover Time Figure 12. Crossover Time
2.0
3.02.0
3.0
t
c
, CROSSOVER TIME (ns)
–2.0 V
0 V
V
BE(off)
= 0 V
V
BE(off)
= 2.0 V
β
f
= 5
TJ = 75°C
VCC = 20 V
–5.0 V
V
BE(off)
= 5.0 V
–2.0 V
0 V
V
BE(off)
= 0 V
V
BE(off)
= 2.0 V
β
f
= 10
TJ = 75°C
VCC = 20 V
–5.0 V
V
BE(off)
= 5.0 V
TYPICAL DYNAMIC CHARACTERISTICS (continued)
TIME
V
CE
90% I
B1
t
sv
IC pk
V
CE(pk)
90% V
CE(pk)
90% I
C(pk)
t
c
10% V
CE(pk)
10%
IC pk
V
BE(off)
, REVERSE BASE VOLTAGE (VOLTS)
0 5.04.0 7.0 8.02.0
0
2.0
1.0
5.0
4.0
3.0
1.0 3.0 6.0
Figure 13. Inductive Switching Measurements Figure 14. Peak Reverse Base Current
IB1 = 0.6 A
IC = 3.0 A
TJ = 25
°
C
I
B2
, REVERSE BASE CURRENT (AMPS)
Figure 15. Thermal Response (MJE16002 and MJE16004)
t, TIME (ms)
1
0.01
0.01
0.2
0.1
0.05
0.02
0.05 1 2 5 10 20 50 100 200 500
R
θ
JC
(t) = r(t) R
θ
JC
R
θ
JC
= 156
°
C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t
1
T
J(pk)
– TC = P
(pk)
R
θ
JC
(t)
P
(pk)
t
1
t
2
DUTY CYCLE, D = t1/t
2
D = 0.5
0.2
0.05
0.02
0.01
SINGLE PULSE
0.1
0.1 0.50.2
r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED)
0.5
0.3
0.03
0.02 1 k
0.7
0.07
I
C
I
B
2% I
C
t
rv
t
fi
t
ti
IB1 = 0.3 A
TYPICAL ELECTRICAL CHARACTERISTICS

6
Motorola Bipolar Power Transistor Device Data
I
C
, COLLECTOR CURRENT (AMPS)
, COLLECTOR CURRENT (AMPS)I
C(pk)
10
0
1000100 500
β
f
≥
4
TJ
≤
100°C
850
V
BE(off)
= 1.0 to 5.0 V
0
V
CE(pk)
, PEAK COLLECTOR–EMITTER VOLTAGE (VOLTS)
200 700
V
BE(off)
= 0 V
10 µs
1.0 ms
dc
10
7.0
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
10 450
2.0
1.0
5.0
0.5
0.05
0.02
BONDING WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
30 70 100 200
TC = 25°C
0.2
0.01
Figure 16. Maximum Rated Forward Bias
Safe Operating Area (MJE16002 and MJE16004)
3005.0 20 50
Figure 17. Maximum Rated Reverse Bias
Safe Operating Area
9.0
6.0
7.0
8.0
3.0
4.0
5.0
1.0
2.0
TC, CASE TEMPERATURE (
°
C)
0
40 120 160
0.6
POWER DERATING FACTOR
SECOND BREAKDOWN
DERATING
1.0
0.8
0.4
0.2
60 100 14080
THERMAL
DERATING
20
Figure 18. Power Derating
0.1
SAFE OPERATING AREA INFORMATION

7
Motorola Bipolar Power Transistor Device Data
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of
the transistor that must be observed for reliable operation;
i.e., the transistor must not be subjected to greater dissipation than the curves indicate.
The data of Figure 16 is based on TC = 25_C; T
J(pk)
is variable depending on power level. Second breakdown pulse
limits are valid for duty cycles to 10% but must be derated
when TC ≥ 25_C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the
voltages shown on Figures 17 and 18 may be found at any
case temperature by using the appropriate curve on Figure
20.
T
J(pk)
may be calculated from the data in Figure 15. At
high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by second breakdown.
REVERSE BIAS
For inductive loads, high voltage and high current must be
sustained simultaneously during turn–off, in most cases, with
the base–to–emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished by several means such as active clamping,
RC snubbing, load line shaping, etc. The safe level for these
devices is specified as Reverse Bias Safe 0perating Area
and represents the voltage–current condition allowable pulling reverse biased turn–off. This rating is verified under
clamped conditions so that the device is never subjected to
an avalanche mode. Figure 17 gives the RBSOA characteristics.
H.P. 214
or Equiv.
P.G.
50
RB = 33
Ω
*I
B
*I
C
T.U.T.
R
L
V
CC
VCC = 250 Vdc
RL = 83
Ω
IC = 3.0 Adc
IB = 0.3 Adc
*Tektronix
*P–6042 or
*Equivalent
V
in
0 V
≈
11 V
tr
≤
15 ns
H.P. 214
or Equiv.
P.G.
0 V
≈
–35 V
ts and t
f
td and t
r
50
500
1.0
µ
F
10 µF
+
–
100
20
+Vdc
≈
11 Vdc
0.02
µ
F
A
R
B1
R
B2
2N5337
2N6191
–V
100
0.02
µ
F
R
L
V
CC
T.U.T.
*I
C
*I
B
A
0 V
+V
–5 V
VCC = 250
RL = 83
Ω
IC = 3.0 Adc
Note: Adjust –V to obtain desired V
BE(off)
at Point A.
IB1 = 0.3 Adc
IB2 = 0.6 Adc
For V
BE(off)
= 5.0 V
RB1 = 33
Ω
RB2 = 8.0
Ω
RB2 = 0
Ω
50
Table 1. Resistive Load Switching

8
Motorola Bipolar Power Transistor Device Data
H.P. 214
or Equiv.
P.G.
≈
–35 V
0
50
500
0.02
µ
F
1.0
µ
F
100
2N5337
R
B1
R
B2
A
2N6191
+V
≈
11 V
100
0.02
µ
F
20
+
–
10
µ
F
T
1
+V
–V
0 V
A
*I
B
*I
C
T.U.T.
L
V
CC
V
clamp
MR856
V
CE
I
C
I
B
I
B1
I
B2
I
C(pk)
V
CE(pk)
Scope — Tektronix
7403 or
Equivalent
T1[
L
coil(ICpk
)
V
CC
Note: Adjust –V to obtain desired V
BE(off)
at Point A.
T1 adjusted to obtain I
C(pk)
V
CEO(sus)
L = 10 mH
RB2 = ∞
VCC = 20 Volts
Inductive Switching
L = 200 µH
RB2 = 0
VCC = 20 Volts
RB1 selected for desired I
B1
RBSOA
L = 200 µH
RB2 = 0
VCC = 20 Volts
RB1 selected for desired I
B1
*Tektronix
*P–6042 or
*Equivalent
–V
50
+ –
Table 2. Inductive Load Switching
t
sv
tfi, t
c
I
C(pk)
= 3.0 Amps
IB1 = 0.3 Amp
V
BE(off)
= 5.0 Volts
V
CE(pk)
= 300 Volts
TC = 25°C
Time Base =
20 ns/cm
I
C(pk)
= 3.0 Amps
IB1 = 0.3 Amp
V
BE(off)
= 5.0 Volts
V
CE(pk)
= 300 Volts
TC = 25°C
Time Base =
20 ns/cm
TYPICAL INDUCTIVE SWITCHING WAVEFORMS

9
Motorola Bipolar Power Transistor Device Data
PACKAGE DIMENSIONS
CASE 221A–06
TO–220AB
ISSUE Y
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.570 0.620 14.48 15.75
B 0.380 0.405 9.66 10.28
C 0.160 0.190 4.07 4.82
D 0.025 0.035 0.64 0.88
F 0.142 0.147 3.61 3.73
G 0.095 0.105 2.42 2.66
H 0.110 0.155 2.80 3.93
J 0.018 0.025 0.46 0.64
K 0.500 0.562 12.70 14.27
L 0.045 0.060 1.15 1.52
N 0.190 0.210 4.83 5.33
Q 0.100 0.120 2.54 3.04
R 0.080 0.110 2.04 2.79
S 0.045 0.055 1.15 1.39
T 0.235 0.255 5.97 6.47
U 0.000 0.050 0.00 1.27
V 0.045 ––– 1.15 –––
Z ––– 0.080 ––– 2.04
B
Q
H
Z
L
V
G
N
A
K
F
1 2 3
4
D
SEATING
PLANE
–T–
C
S
T
U
R
J

10
Motorola Bipolar Power Transistor Device Data
How to reach us:
USA /EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters can and do vary in different
applications. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MJE16002/D
*MJE16002/D*
◊