Datasheet MJE16004, MJE16002 Datasheet (Motorola)

Page 1
1
Motorola Bipolar Power Transistor Device Data
  
    "   !
These transistors are designed for high–voltage, high–speed switching of inductive circuits where fall time and RBSOA are critical. They are particularly well–suited for line–operated switchmode applications.
The M JE16004 is a h igh–gain version o f the MJE16002 and MJH16002 f or applications where drive current is limited. Typical Applications:
Switching Regulators
High Resolution Deflection Circuits
Inverters
Motor Drives
Fast Switching Speeds
50 ns Inductive Fall Time @ 75_C (Typ) 70 ns Crossover Time @ 75_C (Typ)
100_C Performance Specified for:
Reverse–Biased SOA Inductive Switching Times Saturation Voltages Leakage Currents
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector–Emitter Voltage
V
CEO(sus)
450
Vdc
Collector–Emitter Voltage
V
CEV
850
Vdc
Emitter–Base Voltage
V
EB
6.0
Vdc
Collector Current — Continuous
— Peak (1)
I
C
I
CM
5.0 10
Adc
Base Current — Continuous
— Peak (1)
I
B
I
BM
4.0
8.0
Adc
Total Power Dissipation @ TC = 25_C
@ TC = 100_C Derate above TC = 25_C
P
D
80 32
0.64
Watts
W/_C
Operating and Storage Junction Temperature Range
TJ, T
stg
–65 to +150
_
C
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Case
R
θJC
1.56
_
C/W
Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 Seconds
T
L
275
_
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle v 10%.
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
Preferred devices are Motorola recommended choices for future use and best overall value. Designer’s and SWITCHMODE are trademarks of Motorola, Inc.

SEMICONDUCTOR TECHNICAL DATA
Order this document
by MJE16002/D
Motorola, Inc. 1995
 
5.0 AMPERE
NPN SILICON
POWER TRANSISTORS
450 VOLTS
80 WATTS
*Motorola Preferred Device
CASE 221A–06
TO–220AB
REV 2
Page 2
 
2
Motorola Bipolar Power Transistor Device Data
ELECTRICAL CHARACTERISTICS (T
C
= 25_C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
ÎÎÎ
ÎÎÎ
ÎÎÎ
Unit
OFF CHARACTERISTICS (1)
Collector–Emitter Sustaining Voltage (Table 2)
(IC = 100 mA, IB = 0)
V
CEO(sus)
450
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Collector Cutoff Current
(V
CEV
= 850 Vdc, V
BE(off)
= 1.5 Vdc)
(V
CEV
= 850 Vdc, V
BE(off)
= 1.5 Vdc, TC = 100_C)
I
CEV
— —
— —
0.25
1.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
Collector Cutoff Current
(VCE = 850 Vdc, RBE = 50 , TC = 100_C)
I
CER
2.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
Emitter Cutoff Current
(VEB = 6.0 Vdc, IC = 0)
I
EBO
1.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
SECOND BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased
I
S/b
See Figure 17 or 18
Clamped Inductive SOA with Base Reverse Biased
RBSOA
See Figure 19
ON CHARACTERISTICS (1)
Collector–Emitter Saturation Voltage
(IC = 1.5 Adc, IB = 0.2 Adc) MJE16002 (IC = 1.5 Adc, IB = 0.15 Adc) MJE16004 (IC = 3.0 Adc, IB = 0.4 Adc) MJE16002 (IC = 3.0 Adc, IB = 0.3 Adc) MJE16004 (IC = 3.0 Adc, IB = 0.4 Adc, TC = 100_C) MJE16002 (IC = 3.0 Adc, IB = 0.3 Adc, TC = 100_C) MJE16004
V
CE(sat)
— — — — — —
— — — — — —
1.0
1.0
2.5
2.5
2.5
2.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Base–Emitter Saturation Voltage
(IC = 3.0 Adc, IB = 0.4 Adc) MJE16002 (IC = 3.0 Adc, IB = 0.3 Adc) MJE16004 (IC = 3.0 Adc, IS = 0.4 Adc, TC = 100_C) MJE16002 (IC = 3.0 Adc, IB = 0.3 Adc, TC = 100_C) MJE16004
V
BE(sat)
— — — —
— — — —
1.5
1.5
1.5
1.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
DC Current Gain
(IC = 5.0 Adc, VCE = 5.0 Vdc) MJE16002
MJE16004
h
FE
5.0
7.0
— —
— —
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 10 Vdc, IE = 0, f
test
= 1.0 kHz)
C
ob
200
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
pF
SWITCHING CHARACTERISTICS
Resistive Load (Table 1) MJE16002/MJH10002
Delay Time
t
d
30
100
ÎÎÎ
ÎÎÎ
ÎÎÎ
Rise Time
B2
= 0.8 Adc,
t
r
100
300
ÎÎÎ
ÎÎÎ
ÎÎÎ
Storage Time
C
= 3.0 Adc,
VCC = 250 Vdc,
(IB2 = 0.8 Adc, RB2 = 8.0 )
t
s
1000
3000
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
IB1 = 0.4 Adc, PW = 30 µs,
t
f
60
300
ÎÎÎ
ÎÎÎ
ÎÎÎ
Storage Time
PW = 30 µs, Duty Cycle v 2.0%)
t
s
400
ÎÎÎ
ÎÎÎ
Fall Time
v
2.0%)
(V
BE(off)
= 5.0 Vdc)
t
f
130
ÎÎÎ
ÎÎÎ
ÎÎÎ
Resistive Load (Table 1) MJE16004/MJH16004
Delay Time
t
d
30
100
ÎÎÎ
ÎÎÎ
ÎÎÎ
Rise Time
B2
= 0.6 Adc,
t
r
130
300
ÎÎÎ
ÎÎÎ
ÎÎÎ
Storage Time
C
= 3.0 Adc,
VCC = 250 Vdc,
(IB2 = 0.6 Adc, RB2 = 8.0 )
t
s
800
2700
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
IB1 = 0.3 Adc, PW = 30 µs,
t
f
80
350
ÎÎÎ
ÎÎÎ
ÎÎÎ
Storage Time
PW = 30 µs, Duty Cycle v 2.0%)
t
s
250
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
v
2.0%)
(V
BE(off)
= 5.0 Vdc)
t
f
60
ÎÎÎ
ÎÎÎ
ÎÎÎ
(1) Pulse Test: PW = 300 µs, Duty Cycle v 2%.
*
β
f
=
I
C
I
B1
(IC = 3.0 Adc,
(I
(IC = 3.0 Adc,
(I
ns
ns
Page 3
 
3
Motorola Bipolar Power Transistor Device Data
SWITCHING CHARACTERISTICS (continued)
Characteristics
Symbol
Min
Typ
Max
ÎÎÎ
ÎÎÎ
ÎÎÎ
Unit
Inductive Load (Table 2) MJE16002
Storage Time
ОООООООО
ОООООООО
ОООООООО
t
sv
500
1600
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
ОООООООО
ОООООООО
ОООООООО
_
C)
t
fi
100
200
ÎÎÎ
ÎÎÎ
ÎÎÎ
Crossover Time
ОООООООО
ОООООООО
ОООООООО
(IC = 3.0 Adc, IB1 = 0.4 Adc,
_
C)
t
c
120
250
ÎÎÎ
ÎÎÎ
ÎÎÎ
Storage Time
ОООООООО
ОООООООО
ОООООООО
IB1 = 0.4 Adc, V
BE(off)
= 5.0 Vdc,
t
sv
600
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
ОООООООО
ОООООООО
ОООООООО
V
CE(pk)
= 400 Vdc)
_
C)
t
fi
120
ÎÎÎ
ÎÎÎ
ÎÎÎ
Crossover Time
ОООООООО
ОООООООО
ОООООООО
_
C)
t
c
160
ÎÎÎ
ÎÎÎ
ÎÎÎ
Inductive Load (Table 2) MJE16004
Storage Time
ОООООООО
ОООООООО
ОООООООО
t
sv
400
1300
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
ОООООООО
ОООООООО
ОООООООО
_
C)
t
fi
80
150
ÎÎÎ
ÎÎÎ
ÎÎÎ
Crossover Time
ОООООООО
ОООООООО
ОООООООО
(IC = 3.0 Adc, IB1 = 0.3 Adc,
_
C)
t
c
90
200
ÎÎÎ
ÎÎÎ
ÎÎÎ
Storage Time
ОООООООО
ОООООООО
ОООООООО
IB1 = 0.3 Adc, V
BE(off)
= 5.0 Vdc,
t
sv
450
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
ОООООООО
ОООООООО
ОООООООО
V
CE(pk)
= 400 Vdc)
_
C)
t
fi
100
ÎÎÎ
ÎÎÎ
ÎÎÎ
Crossover Time
ОООООООО
ОООООООО
ОООООООО
_
C)
t
c
110
ÎÎÎ
ÎÎÎ
ÎÎÎ
(1) Pulse Test: PW = 300 µs, Duty Cycle v 2%.
*
β
f
=
I
C
I
B1
V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
V
BE
, BASE–EMITTER VOLTAGE (VOLTS) V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMPS)
3.0
2.0
1.0
1.0
IC, COLLECTOR CURRENT (AMPS)
0.05
0.1
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMPS)
3.0
0.3 0.7 5.0 10
10
Figure 2. Collector Saturation Region
0.1 IB, BASE CURRENT (AMPS)
0.2 0.3
0.1
60
h
FE
, DC CURRENT GAIN
VCE = 5.0 V
0.5 0.7 1.0 2.0
Figure 3. Collector–Emitter Saturation Region Figure 4. Base–Emitter Voltage
2.0
0.3
TJ = 25°C
TJ = 100°C
20
0.5 2.0
1.0
0.070.03
0.3
0.5
25°C
– 55°C
2 A
IC = 1 A
5.0
0.2
1.0 3.0 7.0 3.0
0.1 2.0 100.50.2 1.0 5.0
0.7
1.5
50
30
7.0
0.5
0.7
0.2
0.05
β
f
= 10
TJ = 100
°
C
2.0
0.1
3.0
0.2
5.0
0.5
0.1 2.0 100.50.2 1.0 5.0
3 A 4 A 5 A
β
f
= 10
TJ = 25
°
C
β
f
= 5
TJ = 25
°
C
β
f
= 5
TJ = 25
°
C
β
f
= 10
TJ = 100
°
C
(TJ = 100
(TJ = 150
(TJ = 100
(TJ = 150
ns
ns
Page 4
 
4
Motorola Bipolar Power Transistor Device Data
Figure 5. Collector Cutoff Region
10
4
VBE, BASE–EMITTER VOLTAGE (VOLTS)
10
–1
0–0.4
Figure 6. Capacitance
10000
VR, REVERSE VOLTAGE (VOLTS)
C, CAPACITANCE (pF)
C
ib
0.1
, COLLECTOR CURRENT ( A)
µ
I
C
10
3
10
2
10
1
10
0
–0.2 +0.2 +0.4 +0.6
TJ = 150°C
125°C
100°C
75°C
REVERSE FORWARD
25°C
VCE = 250 Vdc
100
850
TJ = 25°C
1000
10
100101.0
C
ob
TYPICAL STATIC CHARACTERISTICS (continued)
, STORAGE TIME (ns)t
sv
, STORAGE TIME (ns)t
sv
IC, COLLECTOR CURRENT (AMPS)
10000
5000
2000
100
200
1000
500
0.7 1.0 2.00.5 5.0
Figure 7. Storage Time Figure 8. Storage Time
IC, COLLECTOR CURRENT (AMPS)
t
fi
, COLLECTOR CURRENT FALL TIME (ns)
1000
500
200
10
20
100
50
0.7 1.00.5 5.0
IC, COLLECTOR CURRENT (AMPS)
t
fi
, COLLECTOR CURRENT FALL TIME (ns)
1000
500
200
10
20
100
50
0.7 1.00.5 5.0
Figure 9. Collector Current Fall Time Figure 10. Collector Current Fall Time
IC, COLLECTOR CURRENT (AMPS)
10000
5000
2000
100
200
1000
500
0.7 1.0 3.00.5 5.0
β
f
= 5
TJ = 75
°
C
VCC = 20 V
V
BE(off)
= 0 V
–2.0 V
0 V
V
BE(off)
= 0 V
2.0 3.0
2.03.02.0 3.0
V
BE(off)
= 2.0 V
V
BE(off)
= 0 V
V
BE(off)
= 5.0 V
β
f
= 10
TJ = 75
°
C
VCC = 20 V
V
BE(off)
= 2.0 V
V
BE(off)
= 5.0 V
V
BE(off)
= 2.0 V
V
BE(off)
= –5.0 V
β
f
= 5 TJ = 75°C VCC = 20 V
–5.0 V
–2.0 V
0 V
V
BE(off)
= 0 V
V
BE(off)
= 2.0 V
β
f
= 10
TJ = 75
°
C
VCC = 20 V
–5.0 V
V
BE(off)
= 5.0 V
TYPICAL DYNAMIC CHARACTERISTICS
Page 5
 
5
Motorola Bipolar Power Transistor Device Data
IC, COLLECTOR CURRENT (AMPS)
1000
500
200
10
20
100
50
0.7 1.00.5 5.0
IC, COLLECTOR CURRENT (AMPS)
t
c
, CROSSOVER TIME (ns)
1000
500
200
10
20
100
50
0.7 1.00.5 5.0
Figure 11. Crossover Time Figure 12. Crossover Time
2.0
3.02.0
3.0
t
c
, CROSSOVER TIME (ns)
–2.0 V
0 V
V
BE(off)
= 0 V
V
BE(off)
= 2.0 V
β
f
= 5
TJ = 75°C VCC = 20 V
–5.0 V
V
BE(off)
= 5.0 V
–2.0 V
0 V
V
BE(off)
= 0 V
V
BE(off)
= 2.0 V
β
f
= 10 TJ = 75°C VCC = 20 V
–5.0 V
V
BE(off)
= 5.0 V
TYPICAL DYNAMIC CHARACTERISTICS (continued)
TIME
V
CE
90% I
B1
t
sv
IC pk
V
CE(pk)
90% V
CE(pk)
90% I
C(pk)
t
c
10% V
CE(pk)
10%
IC pk
V
BE(off)
, REVERSE BASE VOLTAGE (VOLTS)
0 5.04.0 7.0 8.02.0
0
2.0
1.0
5.0
4.0
3.0
1.0 3.0 6.0
Figure 13. Inductive Switching Measurements Figure 14. Peak Reverse Base Current
IB1 = 0.6 A
IC = 3.0 A TJ = 25
°
C
I
B2
, REVERSE BASE CURRENT (AMPS)
Figure 15. Thermal Response (MJE16002 and MJE16004)
t, TIME (ms)
1
0.01
0.01
0.2
0.1
0.05
0.02
0.05 1 2 5 10 20 50 100 200 500
R
θ
JC
(t) = r(t) R
θ
JC
R
θ
JC
= 156
°
C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t
1
T
J(pk)
– TC = P
(pk)
R
θ
JC
(t)
P
(pk)
t
1
t
2
DUTY CYCLE, D = t1/t
2
D = 0.5
0.2
0.05
0.02
0.01 SINGLE PULSE
0.1
0.1 0.50.2
r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED)
0.5
0.3
0.03
0.02 1 k
0.7
0.07
I
C
I
B
2% I
C
t
rv
t
fi
t
ti
IB1 = 0.3 A
TYPICAL ELECTRICAL CHARACTERISTICS
Page 6
 
6
Motorola Bipolar Power Transistor Device Data
I
C
, COLLECTOR CURRENT (AMPS)
, COLLECTOR CURRENT (AMPS)I
C(pk)
10
0
1000100 500
β
f
4
TJ
100°C
850
V
BE(off)
= 1.0 to 5.0 V
0
V
CE(pk)
, PEAK COLLECTOR–EMITTER VOLTAGE (VOLTS)
200 700
V
BE(off)
= 0 V
10 µs
1.0 ms
dc
10
7.0 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
10 450
2.0
1.0
5.0
0.5
0.05
0.02
BONDING WIRE LIMIT THERMAL LIMIT SECOND BREAKDOWN LIMIT
30 70 100 200
TC = 25°C
0.2
0.01
Figure 16. Maximum Rated Forward Bias
Safe Operating Area (MJE16002 and MJE16004)
3005.0 20 50
Figure 17. Maximum Rated Reverse Bias
Safe Operating Area
9.0
6.0
7.0
8.0
3.0
4.0
5.0
1.0
2.0
TC, CASE TEMPERATURE (
°
C)
0
40 120 160
0.6
POWER DERATING FACTOR
SECOND BREAKDOWN
DERATING
1.0
0.8
0.4
0.2
60 100 14080
THERMAL
DERATING
20
Figure 18. Power Derating
0.1
SAFE OPERATING AREA INFORMATION
Page 7
 
7
Motorola Bipolar Power Transistor Device Data
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
There are two limitations on the power handling ability of a transistor: average junction temperature and second break­down. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipa­tion than the curves indicate.
The data of Figure 16 is based on TC = 25_C; T
J(pk)
is vari­able depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC 25_C. Second breakdown limitations do not der­ate the same as thermal limitations. Allowable current at the voltages shown on Figures 17 and 18 may be found at any case temperature by using the appropriate curve on Figure
20.
T
J(pk)
may be calculated from the data in Figure 15. At
high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations imposed by second breakdown.
REVERSE BIAS
For inductive loads, high voltage and high current must be sustained simultaneously during turn–off, in most cases, with the base–to–emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe 0perating Area and represents the voltage–current condition allowable pull­ing reverse biased turn–off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 17 gives the RBSOA character­istics.
H.P. 214 or Equiv.
P.G.
50
RB = 33
*I
B
*I
C
T.U.T.
R
L
V
CC
VCC = 250 Vdc RL = 83
IC = 3.0 Adc IB = 0.3 Adc
*Tektronix
*P–6042 or *Equivalent
V
in
0 V
11 V
tr
15 ns
H.P. 214
or Equiv.
P.G.
0 V
–35 V
ts and t
f
td and t
r
50
500
1.0
µ
F
10 µF
+ –
100
20
+Vdc
11 Vdc
0.02
µ
F
A
R
B1
R
B2
2N5337
2N6191
–V
100
0.02
µ
F
R
L
V
CC
T.U.T.
*I
C
*I
B
A
0 V
+V
–5 V
VCC = 250 RL = 83
IC = 3.0 Adc
Note: Adjust –V to obtain desired V
BE(off)
at Point A.
IB1 = 0.3 Adc IB2 = 0.6 Adc For V
BE(off)
= 5.0 V
RB1 = 33
RB2 = 8.0
RB2 = 0
50
Table 1. Resistive Load Switching
Page 8
 
8
Motorola Bipolar Power Transistor Device Data
H.P. 214
or Equiv.
P.G.
–35 V
0
50
500
0.02
µ
F
1.0
µ
F
100
2N5337
R
B1
R
B2
A
2N6191
+V
11 V
100
0.02
µ
F
20
+ –
10
µ
F
T
1
+V
–V
0 V
A
*I
B
*I
C
T.U.T.
L
V
CC
V
clamp
MR856
V
CE
I
C
I
B
I
B1
I
B2
I
C(pk)
V
CE(pk)
Scope — Tektronix 7403 or Equivalent
T1[
L
coil(ICpk
)
V
CC
Note: Adjust –V to obtain desired V
BE(off)
at Point A.
T1 adjusted to obtain I
C(pk)
V
CEO(sus)
L = 10 mH RB2 = VCC = 20 Volts
Inductive Switching
L = 200 µH RB2 = 0 VCC = 20 Volts RB1 selected for desired I
B1
RBSOA
L = 200 µH RB2 = 0 VCC = 20 Volts RB1 selected for desired I
B1
*Tektronix
*P–6042 or *Equivalent
–V
50
+
Table 2. Inductive Load Switching
t
sv
tfi, t
c
I
C(pk)
= 3.0 Amps IB1 = 0.3 Amp V
BE(off)
= 5.0 Volts
V
CE(pk)
= 300 Volts TC = 25°C Time Base = 20 ns/cm
I
C(pk)
= 3.0 Amps IB1 = 0.3 Amp V
BE(off)
= 5.0 Volts
V
CE(pk)
= 300 Volts TC = 25°C Time Base = 20 ns/cm
TYPICAL INDUCTIVE SWITCHING WAVEFORMS
Page 9
 
9
Motorola Bipolar Power Transistor Device Data
PACKAGE DIMENSIONS
CASE 221A–06
TO–220AB
ISSUE Y
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 0.570 0.620 14.48 15.75 B 0.380 0.405 9.66 10.28 C 0.160 0.190 4.07 4.82 D 0.025 0.035 0.64 0.88
F 0.142 0.147 3.61 3.73 G 0.095 0.105 2.42 2.66 H 0.110 0.155 2.80 3.93
J 0.018 0.025 0.46 0.64 K 0.500 0.562 12.70 14.27
L 0.045 0.060 1.15 1.52 N 0.190 0.210 4.83 5.33 Q 0.100 0.120 2.54 3.04 R 0.080 0.110 2.04 2.79
S 0.045 0.055 1.15 1.39
T 0.235 0.255 5.97 6.47 U 0.000 0.050 0.00 1.27
V 0.045 ––– 1.15 –––
Z ––– 0.080 ––– 2.04
B
Q
H
Z
L
V
G
N
A
K
F
1 2 3
4
D
SEATING PLANE
–T–
C
S
T
U
R J
Page 10
 
10
Motorola Bipolar Power Transistor Device Data
How to reach us: USA /EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters can and do vary in different applications. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MJE16002/D
*MJE16002/D*
Loading...