Datasheet MCP8024 Datasheet

MCP8024
3-Phase Brushless DC (BLDC) Motor Gate Driver
with Power Module
Features:
• Three Half-bridge Drivers Configured to Drive External High-Side NMOS and Low-Side NMOS MOSFETs:
- Independent input control for high-side
NMOS and low-side NMOS MOSFETs
- Peak output current: 0.5A @ 12V
- Overcurrent and short circuit protection
• Adjustable Output Buck Regulator (750 mW)
• Fixed Output Linear Regulators:
- 5V @ 20 mA
-12V @ 20 mA
• Internal Bandgap Reference
• Three Operational Amplifiers for Motor Phase Current Monitoring and Position Detection
• Overcurrent Comparator
• Two Level Translators
• Operational Voltage Range 6 - 40V
• Undervoltage Lockout (UVLO): 6V
• Overvoltage Lockout (OVLO): 28V
• Transient (100 ms) Voltage Tolerance: 48V
• Extended Temperature Range: TA -40 to +150°C
• Thermal Shutdown
Description:
The MCP8024 is a 3-Phase Brushless DC (BLDC) power module. The MCP8024 device integrates three half-bridge drivers to drive external NMOS/NMOS transistor pairs configured to drive a 3-phase BLDC motor, a comparator, a voltage regulator to provide bias to a companion microcontroller, power monitoring comparators, an overtemperature sensor, two level translators and three operational amplifiers for motor current monitoring.
The MCP8024 has three half-bridge drivers capable of delivering a peak output current of 0.5A at 12V for driving high-side and low-side NMOS MOSFET transistors. The drivers have shoot-through, overcurrent, and short-circuit protection.
The MCP8024 buck converter is capable of delivering 750 mW of power for powering a companion microcontroller. The buck regulator may be disabled if not used. The on-board 5V and 12V low dropout voltage regulators are capable of delivering 20 mA of current.
The MCP8024 operation is specified over a temperature range of -40°C to +150°C.
Package options include the 40-lead 5x5 QFN and 48­lead 7x7 TQFP.
Applications:
• Automotive Fuel, Water, Ventilation Motors
• Home Appliances
• Permanent Magnet Synchronous Motor (PMSM) Control
• Hobby Aircraft, Boats, Vehicles
Related Literature:
• AN885, “Brushless DC (BLDC) Motor Fundamen­tals”, DS00885, Microchip Technology Inc., 2003
• AN1160, “Sensorless BLDC Control with Back­EMF Filtering Using a Majority Function”, DS01160, Microchip Technology Inc., 2008
• AN1078, “Sensorless Field Oriented Control of a PMSM”, DS01078, Microchip Technology Inc., 2010
2013 Microchip Technology Inc. DS20005228A-page 1
MCP8024
2
3
4
5
PWM2H
5mm x 5mm QFN-40
1
ISENSE3-78
9
10
6
121314
1511171819
20
16
29
28
27
26
30
24
23
22
21
25
393837
3640343332
31
35
+12V
V
DD
+5V
CAP2
PWM1L
PWM2L
PWM3H
PWM3L
DE2
CAP1
ISENSE2-
IOUT2
ISENSE3+
LV_OUT1
HV_IN1
LSC
I_SENSE1+
I_SENSE1-
LSB
LSA
P
GND
CE
PWM1H
IOUT3
ISENSE2+
V
BA
ILIMIT_OUT
I_OUT1
PHA
PHB
PHC
HSC
HSB
HSA
V
BB
V
BC
FB
2
3
4
5
PWM1L
7mm x 7mm TQFP-48
1
7
8
9
10
6
131415
16
181920
21
17
32
31
30
29
33
27
26
28
434241
404438
39
+12V
+5V
CAP1
LX
PWM2L
PWM3H
PWM3L
DE2
FB
LSB
I_SENSE1+
I_SENSE1-
LSA
P
GND
P
GND
PWM1H
ISENSE2+
V
BA
ILIMIT_OUT
I_OUT1
PHA
PHB
PHC
HSC
HSB
HSA
V
BB
V
BC
CAP2
11
LSC
22
23
34
35
36
V
DD
45
46
47
48 PWM2H
ISENSE3-
IOUT2
ISENSE3+
LV_OUT1
HV_IN1
LV_OUT2
IOUT3
ISENSE2-
HV_IN2
CE
+
37
25
24
12
LX
P
GND
P
GND
P
GND
P
GND
V
DD
MCP8024 MCP8024

Package Types

DS20005228A-page 2 2013 Microchip Technology Inc.
GATE
CONTROL
LOGIC
CE
PWM1H
PWM1L
PWM2H
PWM2L
PWM3H
PWM3L
HV_IN1
I_OUT1
+
-
+
-
PHA PHB PHC
PGND
ILIMIT_OUT
MOTOR CONTROL UNIT
COMMUNICATION PORT BIAS GENERATOR
+12V
HSA
HSB
HSC
I_SENSE1+
LSA
LSB
LSC
I_SENSE1-
VBA VBB VBC
LV_OUT1
LEVEL
TRANSLATOR
VDD
+
-
+
-
I_SENSE2+
I_SENSE2-
I_SENSE3+
I_SENSE3-
I_OUT2
I_OUT3
DRIVER
FAULT
I
I
I
I
I
I
I
I
I
I
I
O
O
O
O
O
O
O
O
LDO
BUCK SMPS
SUPERVISOR
LDO
CHARGE PUMP
DE2
VDD
+5V
LX FB
+12V
CAP2
CAP1
ILIMIT_REF
HV_IN2
LV_OUT2
O
I

Functional Block Diagram

MCP8024
2013 Microchip Technology Inc. DS20005228A-page 3
MCP8024
GATE
CONTROL
LOGIC
CE
PWM1H
PWM1L
PWM2H
PWM2L
PWM3H
PWM3L
HV_IN1
I_OUT1
+
-
+
-
PHA
PHB
PHC
PGND
ILIMIT_OUT
MOTOR CONTROL UNIT
COMMUNICATION PORT
+12V
HSA
HSB
HSC
I_SENSE1+
LSA
LSB
LSC
I_SENSE1-
VBA
VBB
VBC
LV_OUT1
LEVEL
TRANSLATOR
VDD
+
-
+
-
I_SENSE2+
I_SENSE2-
I_SENSE3+
I_SENSE3-
I_OUT2
I_OUT3
DRIVER
FAULT
IIIII
I
III
I
I
O
OOO
O
OOO
CB
A
+
_
E
+12V
DE2
BIAS GENERATOR
LDO
BUCK SMPS
SUPERVISOR
VDD
LDO
+5VLXFB
+12V
CAP2
CHARGE PUMP
VADJ
ILIMIT_REF
CAP1
HV_IN2
LV_OUT2
O
I
100 nF
Ceramic

Typical Application Circuit

DS20005228A-page 4 2013 Microchip Technology Inc.
MCP8024
1.0 ELECTRICAL
CHARACTERISTICS
ESD and Latch-up protection: V
, HV_IN1 pins 12 kV HMM and 750V CDM
DD
All other pins...................... 4 kV HBM and 750V CDM
Latch-up protection - all pins............................... > 100 mA
Absolute Maximum Ratings †
Input Voltage, VDD........................................................+46.0V
Input Voltage, < 100 ms Transient ...............................+48.0V
Internal Power Dissipation ...........................Internally-Limited
Operating Ambient Temperature Range .......-40°C to +150°C
Operating Junction Temperature (Note 1).....-40°C to +160°C
Transient Junction Temperature* ................................+170°C
Storage temperature (Note 1) .......................-55°C to +150°C
Digital I/O .......................................................... -0.3V to 5.5V
LV Analog I/O.................................................... -0.3V to 5.5V
† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
* Notice: Transient junction temperatures should not
exceed one second in duration. Sustained junction temperatures above 170°C may impact the device reliability.

AC/DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted T
Parameters Symbol Min. Typ. Max. Units Conditions
Power Supply Input
Input Operating Voltage V
Transient Maximum Voltage V
Input Quiescent Current I
DD
DDmax
Q
Digital Input/Output DIGITAL
Digital Open-Drain Drive
DIGITAL
Strength
Digital Input Rising Threshold V
Digital Input Falling Threshold V
Digital Input Hysteresis V
Digital Input Current I
DIG_HI_TH
DIG_LO_TH
DIG_HYS
DIG
Analog Low-Voltage Input ANALOG
Analog Low-Voltage Output ANALOG
VOUT
BIAS GENERATOR +12V Regulated Charge Pump
Charge Pump Current I
Charge Pump Voltage V
Charge Pump Start CP
CP
CP
START
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., T maximum allowable power dissipation may cause the device operating junction temperature to exceed the maximum 160°C rating. Sustained junction temperatures above 150°C can impact the device reliability and OTP data retention.
2: 1000 hour cumulative maximum for OTP data retention (typical).
= -40°C to +150°C.
J
6.0
6.0
— —
28.0 40
V Operating
48 V < 100 ms
I/O
IOL
— — — — — —
0—5.5V
—1—mAVDS < 50 mV
— 171 197 200 200 900
220
— —
500
AVDD = 13V,
1.26 V
——0.54V
500 mV
VIN
— —
0 5.5 V Excludes high voltage
0—V
30
0.2
100
OUT5
µA V
V Excludes high voltage
20——mAVDD = 9.0V
+10 2 * V
—VVDD = 9.0V, ICP = 20 mA
DD
11.0 11.5 V VDD falling
Shutdown
disabled, CE = 0V, T disabled, CE = 0V, T disabled, CE = 0V, T disabled, CE = 0V, T active, CE > V
= 3.0V
DIG
V
=0V
DIG
, TJ, JA). Exceeding the
A
J
J
J
J
DIG_HI_TH
= 25°C = 85°C = 130°C = 150°C
2013 Microchip Technology Inc. DS20005228A-page 5
MCP8024
AC/DC CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise noted T
Parameters Symbol Min. Typ. Max. Units Conditions
= -40°C to +150°C.
J
Charge Pump Stop CP
Charge Pump Frequency
CP
(50% charging /
STOP
FSW
12.0 12.5 V VDD rising
——76.800—
kHz VDD = 9.0V
V
= 12.5V (stopped)
DD
50% discharging)
Charge Pump Switch Resistance
Output Voltage V
Output Voltage Tolerance |TOLV
Output Current I
Output Current Limit I
Output Voltage Temperature
CP
TCV
RDSON
OUT12
OUT12
OUT
LIMIT
OUT12
—14— RDSON sum of high side and
low side
10 12 V VDD = V
|— — 4.0 %VDD = V
OUT12
OUT12
+ 1V, I
+ 1V, I
20 mA Average current
30 40 mA Average current
—50—ppm/°C
OUT
OUT
= 1 mA
= 1 mA
Coefficient Line Regulation |V
(V
OUT
Load Regulation |V
Dropout Voltage V
OUT/VOUT
DD-VOUT12
/
OUT
XVDD)|
0.1 0.5 %/V 13V < V
|— 0.2 0.5 % I
380 mV I
OUT
OUT
< 19V, I
DD
OUT
= 0.1 mA to 15 mA
= 20 mA,
= 20 mA
measurement taken when output voltage drops 2% from no-load value.
Power Supply Rejection Ratio PSRR 60 dB f = 1 kHz, I
OUT
= 10 mA
+5V Linear Regulator
Output Voltage V
OUT5
Output Voltage Tolerance |TOLV
Output Current I
Output Current Limit I
Output Voltage Temperature
OUT
LIMIT
|TCV
—5— VVDD = V
|— — 4.0 %
OUT5
20 mA Average current
30 40 mA Average current
|—50—ppm/°C
OUT5
OUT5
+ 1V, I
OUT
= 1 mA
Coefficient Line Regulation |V
(V
OUT
Load Regulation |V
Dropout Voltage V
/
OUT
XVDD)|
OUT/VOUT
DD-VOUT5
0.1 0.5 %/V 6V < V
|— 0.2 0.5 % I
180 350 mV I
OUT
OUT
< 19V, I
DD
OUT
= 0.1 mA to 15 mA
= 20 mA,
= 20 mA
measurement taken when output voltage drops 2% from no-load value.
Power Supply Rejection Ratio PSRR 60 dB f = 1 kHz, I
OUT
= 10 mA
Buck Regulator
Feedback Voltage V
FB
Feedback Voltage Tolerance TOLV
FB
1.19 1.25 1.31 V
——5.0 %IFB = 1 µA
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., T
, TJ, JA). Exceeding the
A
maximum allowable power dissipation may cause the device operating junction temperature to exceed the maximum 160°C rating. Sustained junction temperatures above 150°C can impact the device reliability and OTP data retention.
2: 1000 hour cumulative maximum for OTP data retention (typical).
DS20005228A-page 6 2013 Microchip Technology Inc.
AC/DC CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise noted T
Parameters Symbol Min. Typ. Max. Units Conditions
= -40°C to +150°C.
J
MCP8024
Feedback Voltage Line Regulation
Feedback Voltage Load
VFB/VFB) /
V
|
DD
VFB / VFB|— 0.10.5 %I
0.1 0.5 %/V V
DD
OUT
= 6V to 28V
= 5 mA to 150 mA
Regulation
Feedback Input Bias Current I
Switching Frequency f
Duty Cycle Range DC
PMOS Switch On Resistance R
PMOS Switch Current Limit I
P(MAX)
Ground Current – PWM Mode I
Quiescent Current – PFM
FB
SW
MAX
DSON
GND
I
Q
-100 +100 nA Sink/Source
461 kHz
3—96%
—0.6— VDD = 13V, TJ=25°C
—2.5— A
1.5 2.5 mA Switching — 150 200 AI
OUT
= 0mA
Mode
Output Voltage Adjust Range V
Output Current I
OUT
OUT
2.0 5.0 V
150——mA5v
250 3v
Output Power P
OUT
750 mW P = I
OUT
* V
OUT
V oltage Supervisor
Undervoltage Lockout Start UVLO
Undervoltage Lockout Stop UVLO
Undervoltage Lockout
UVLO
STRT
STOP
HYS
—6.06.25 VVDD rising
5.1 5.5 V VDD falling
0.35 0.5 0.65 V
Hysteresis
Overvoltage Lockout All
OVLO
STOP
32.0 33.0 V VDD rising
Functions Disabled
Overvoltage Lockout All
OVLO
STRT
29.0 30.0 V VDD falling
Functions Enabled
Overvoltage Lockout
OVLO
HYS
1.0 2.0 3.0 V
Hysteresis
Temperature Supervisor
Thermal Warning Temperature (115°C)
T
WARN
72 % Rising temperature,
percentage of thermal shutdown temperature “MIN”
Thermal Warning Hysteresis T
Thermal Shutdown
WARN
T
SD
15 °C Falling temperature
160 170 °C Rising temperature
Temperature Thermal Shutdown Hysteresis T
SD
25 °C Falling temperature
MOTOR CONTROL UNIT Output Drivers
PWMH/L Input Pull-Down R
PULLDN
32 47 62 k
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., T
, TJ, JA). Exceeding the
A
maximum allowable power dissipation may cause the device operating junction temperature to exceed the maximum 160°C rating. Sustained junction temperatures above 150°C can impact the device reliability and OTP data retention.
2: 1000 hour cumulative maximum for OTP data retention (typical).
2013 Microchip Technology Inc. DS20005228A-page 7
MCP8024
AC/DC CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise noted T
Parameters Symbol Min. Typ. Max. Units Conditions
= -40°C to +150°C.
J
Output Driver Source Current I
Output Driver Sink Current I
Output Driver Source Resistance
Output Driver Sink Resistance R
SOURCE
SINK
R
DSON
DSON
0.3 A VDD = 12V, H[A:C], L[A:C]
0.3 A VDD = 12V, H[A:C], L[A:C]
—17— I
= 10 mA, VDD = 12V,
OUT
H[A:C], L[A:C]
—17— I
= 10 mA, VDD = 12V,
OUT
H[A:C], L[A:C]
Output Driver UVLO
D
UVLO
7.2 8.0 V
Threshold
Output Driver Bootstrap Voltage (w/ respect to ground)
Output Driver HS Drive Voltage
Output Driver LS Drive
V
BOOTSTRAP
V
HS
V
LS
— —
8.0
-5.5
— —
44 48
12—13.5
V Continuous
< 100 ms
V With respect to Phase pin
With respect to ground
8.0 12 13.5 V With respect to ground
Voltage
Output Driver Phase Pin
V
PHASE
-5.5V 34 V With respect to ground
Voltage
Output Driver Short Circuit Protection Threshold
Output Driver Short Circuit Detected Propagation Delay
Output Driver Turn-off
D
SC
D
SC_DEL
T
DEL_OFF
— — — — —
— — — —
0.250
0.500
0.750
1.000
430
10 —
— — — — —
— — — —
V Set by DE2 CONFIG[1:0] word
ns C
100 250 ns C
00 - Default 01 10 11
= 1000 pF, V
LOAD
DD
=12V, detection after blanking detection during blanking, value is delay after blanking
= 1000 pF, V
LOAD
DD
=12V,
Propagation Delay
Output Driver Turn-on
T
DEL_ON
100 250 ns C
= 1000 pF, V
LOAD
DD
=12V,
Propagation Delay
Standby to Motor Operational
= 10 µF)
(C
LOAD
CE Low to Standby State CE Fault Clearing Pulse
t
MOTOR
t
STANDBY
t
FAULT_ CLR
— —
10
50
µs
CE High-Low-High Transition < 100 µs (Fault Clearing)
— 10
1
10 — —
ms
Standby state to Operational state
µs
Time after CE = 0V
µs
CE High-Low-High Transition Time
Current Sense Amplifier
Input Offset Voltage V
Input Offset Temperature Drift V
Input Bias Current I
Common Mode Input Range V
OS
OS
CMR
/T
B
-3.0 +3.0 mV VCM = 0V
A
2.0 V/°C VCM = 0V
-1 +1 µA
-0.3 3.5 V
T
= -40°C to +150°C
A
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., T
, TJ, JA). Exceeding the
A
maximum allowable power dissipation may cause the device operating junction temperature to exceed the maximum 160°C rating. Sustained junction temperatures above 150°C can impact the device reliability and OTP data retention.
2: 1000 hour cumulative maximum for OTP data retention (typical).
DS20005228A-page 8 2013 Microchip Technology Inc.
AC/DC CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise noted T
Parameters Symbol Min. Typ. Max. Units Conditions
= -40°C to +150°C.
J
MCP8024
Common Mode Rejection Ratio CMRR 65 80 dB Freq = 1 kHz, I
Maximum Output Voltage
, V
V
OL
OH
0.05 4.5 V I
= 200 µA
OUT
OUT
Swing Slew Rate SR 7—V/sSymmetrical
Gain Bandwidth Product GBWP 10.0 MHz
Current Comparator
CC
HYS
—10—mV
Hysteresis
Current Comparator Common
V
CC_CMR
1.0 4.5 V
Mode Input Range
Current Limit DAC
Resolution 8 Bits
Output Voltage Range V
OL
Output Voltage V
Input to Output Delay T
, V
DAC
DELAY
OH
0.991 4.503 V I
— — — —
0.991
1.872
4.503
— — — —
V Code * 13.77 mV/Bit + 0.991V
= 1 mA
OUT
Code 00H Code 40H Code FFH
50 µs 5 time constants of 100 kHz filter
Integral Nonlinearity INL -0.5 +0.5 %FSR %Full Scale Range
Differential Nonlinearity DNL -50 +50 %LSB %LSB
ILIMIT_OUT Sink Current
IL
OUT
—1—mAV
ILIMIT_OUT
<= 50mV
(Open-Drain)
V oltage Level Translator
High-Voltage Input Range VIN 0 VDD V
Low-Voltage Output Range VOUT 0 5.0V V
Input Pull-up Resistor RPU 20 30 47 k
High-Level Input Voltage VIH 0.60 V
Low-Level Input Voltage VIL 0.40 V
Input Hysteresis VHYS 0.30 V
DD
DD
DD
VDD = 15V
VDD = 15V
Propagation Delay TLV_OUT 3.0 6.0 µs
Maximum Communication
FMAX 20 kHz
Frequency
Low-Voltage Output Sink
IOL 1 mA V
<= 50 mV
OUT
Current (Open-Drain)
OTP Data Retention
OTP Cell High Temperature
HTOL 1000 Hours T
= 150°C (Note 2)
J
Operating Life
OTP Cell Operating Life 10 Years T
= 85°C
J
= 10 µA
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum allowable power dissipation may cause the device operating junction temperature to exceed the maximum 160°C rating. Sustained junction temperatures above 150°C can impact the device reliability and OTP data retention.
2: 1000 hour cumulative maximum for OTP data retention (typical).
2013 Microchip Technology Inc. DS20005228A-page 9
MCP8024

TEMPERATURE SPECIFICATIONS

Parameters Sym. Min. Typ. M ax. Units Conditions
Temperature Ranges (Notes 1)
Specified Temperature Range T
Operating Temperature Range T
Storage Temperature Range T
Thermal Package Resistance
5mm x 5mm QFN-40
7mm x 7mm TQFP-48-EP
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability.
2: 1000 hour cumulative maximum for OTP data retention (typical).
A
A
A
JA
JC
JA
JC

ESD, SUSCEPTIBILITY, SURGE, AND LATCH-UP TESTING

Parameter Standard and Test Condition Value
Input voltage surges ISO 16750-2 28V for 1 minute,
ESD HBM with 1.5 k / 100 pF ESD-STM5.1-2001
ESD CDM (Charged Device Model, field­induced method – replaces machine-model method)
Latch-up Susceptibility AEC Q100-004, 150°C >100 mA
-40 +150 °C
-40 +150 °C
-55 +150 °C (Note 2)
— —
— —
JESD22-A114E 2007 CEI/IEC 60749-26: 2006 AEC-Q100-002-Ref_D
ESD-STM5.3.1-1999 +750 V all pins
34
5.2
30 15
——°C/W 4-Layer JC51-7 standard board,
natural convection
——°C/W
45V for 0.5 seconds
4 kV
+
DS20005228A-page 10 2013 Microchip Technology Inc.
MCP8024
0.000
0.002
0.004
0.006
0.008
0.010
-45 -30 -15 0 15 30 45 60 75 90 105 120 135 150
Temperature (°C)
V
OUT
= 5V
V
OUT
= 12V
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
-45 -30 -15 0 15 30 45 60 75 90 105 120 135 150
Temperature (°C)
V
OUT
= 5V
V
OUT
= 12V
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.01 0.10 1.00 10.00 100.00 1000.00
Frequency (kHz)
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
0.01 0.10 1.00 10.00 100.00 1000.00
Frequency (kHz)
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
7 1013161922252831
Voltage (V)
5V LDO
12V LDO
-100
-50
0
50
100
150
200
0
3
6
9
12
15
18
0 50 100 150 200 250
Volts (mV)
Time (µs)
Vin = 14V
Vin = 15V
Vout (AC)
Cin = Cout = 10 µF Iout = 20 mA

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated: T
= +25°C; Junction Temperature (TJ) is approximated by soaking the device under
A
test to an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.
PSRR (dB)
Line Reg (%/V)

FIGURE 2-1: LDO Line Regulation vs Temperature.

FIGURE 2-4: 12 V LDO Power Supply Ripple Rejection vs Frequency.

Load Reg (%)

FIGURE 2-2: LDO Load Regulation vs Temperature.

PSRR (dB)

FIGURE 2-3: 5V LDO Power Supply Ripple Rejection vs Frequency.

2013 Microchip Technology Inc. DS20005228A-page 11
Current (mA)
FIGURE 2-5: LDO Short Circuit Current vs Input Voltage. .
Volts (V)
FIGURE 2-6: 5V LDO Dynami c Lin es tep ­Rising V
DD
.
MCP8024
-180
-120
-60
0
60
120
180
0
3
6
9
12
15
18
0 50 100 150 200 250
Volts (mV)
Time (µs)
Vin = 15V
Vin = 14V
Vout (AC)
Cin = Cout = 10 µF Iout = 20 mA
-140
-70
0
70
140
210
280
0
3
6
9
12
15
18
0 50 100 150 200 250
Volts (mV)
Time (µs)
Vin = 14V Vin = 15V
Vout (AC)
Cin = Cout = 10 µF Iout = 20 mA
-180
-120
-60
0
60
120
180
0
3
6
9
12
15
18
0 50 100 150 200 250
Volts (mV)
Time (µs)
Vin = 15V
Vin = 14V
Vout (AC)
Cin = Cout = 10 µF Iout = 20 mA
-40
-30
-20
-10
0
10
20
30
40
0 5 10 15 20 25
Time (ms)
Vout (AC)
Vin = 14V Vout = 5V Cin = Cout = 10 µF Iout = 1 mA to 20 mA Step
-40
-30
-20
-10
0
10
20
30
40
0 5 10 15 20 25
Time (ms)
Vout (AC)
Vin = 14V Vout = 5V Cin = Cout = 10 µF Iout = 20 mA to 1 mA Step
-40
-30
-20
-10
0
10
20
30
40
0 5 10 15 20 25
Time (ms)
Vout (AC)
Vin = 14V Vout = 12V Cin = Cout = 10 µF Iout = 1 mA to 20 mA Step
Note: Unless otherwise indicated: T
= +25°C; Junction Temperature (TJ) is approximated by soaking the device under
A
test to an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.
Volts (V)
FIGURE 2-7: 5V LDO Dynamic Linestep ­Falling V
DD
.
Vout (mV)
FIGURE 2-10: 5V LDO Dynamic Loadstep ­Rising Current.
Volts (V)
FIGURE 2-8: 12V LDO Dynamic Linestep ­Rising V
Volts (V)
DD
.
FIGURE 2-9: 12V LDO Dynamic Linestep ­Falling V
DS20005228A-page 12 2013 Microchip Technology Inc.
.
DD
Vout (mV)
FIGURE 2-11: 5V LDO Dynamic Loadstep ­Falling Current.
Vout (mV)
FIGURE 2-12: 12V LDO Dynamic Loadstep ­Rising Current.
MCP8024
-40
-30
-20
-10
0
10
20
30
40
0 5 10 15 20 25
Time (ms)
Vout (AC)
Vin = 14V Vout = 12V Cin = Cout = 10 µF Iout = 20 mA to 1 mA Step
10.0
10.5
11.0
11.5
12.0
12.5
13.0
0 5 10 15 20 25 30
Vin (V)
Vout = 12V Cin = Cout = 10 µF Iout = 20 mA
Charge Pump
Hysteresis
0
200
400
600
800
1000
1200
-45 -20 5 30 55 80 105 130 155
Temperature (°C)
CE Low
CE High
0.0 0.5 1.0 1.5 2.0 2.5
Time ( ms)
PHA
PHB
PHC
0 102030405060
Time (µs)
Dead Time
Dead Time
PWMxH
PWMxL
0
4
8
12
16
20
0.10 0.12 0.14 0.16 0.18 0.20
LX
Time (µs)
SnubberNo Snubber
Switch ON
Note: Unless otherwise indicated: T
= +25°C; Junction Temperature (TJ) is approximated by soaking the device under
A
test to an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.
Vout (mV)
FIGURE 2-13: 12V LDO Dynamic Loadstep -
BEMF

FIGURE 2-16: Trapezoidal Back EMF.

Falling Current.
Vout (V)

FIGURE 2-14: 12V LDO Output Voltage vs Rising Input Voltage.

Quiescent Current (µA)

FIGURE 2-15: Quiescent Current vs Temperature.

2013 Microchip Technology Inc. DS20005228A-page 13

FIGURE 2-17: PWM Deadtime.

(V)
V

FIGURE 2-18: Buck Snubber Turn On.

MCP8024
-4
0
4
8
12
16
20
0.06 0.08 0.10 0.12 0.14 0.16 0.18
LX
Time (µs)
Snubber
No Snubber
Switch Off
0.00
5.00
10.00
15.00
20.00
25.00
30.00
-40 -15 10 35 60 85 110 135 160
RDSON (
:
)
Temperature (°C)
Hx Lowside MOSFET
Lx Lowside MOSFET
Lx Highside MOSFET
Note: Unless otherwise indicated: T
= +25°C; Junction Temperature (TJ) is approximated by soaking the device under
A
test to an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.
(V)
V

FIGURE 2-19: Buck Snubber Turn Off.

Hx Highside MOSFET
FIGURE 2-20: Gate Driver RDS Temperature.
DS20005228A-page 14 2013 Microchip Technology Inc.
ON
vs
Loading...
+ 32 hidden pages