Datasheet MCP6V31, MCP6V31U Datasheet

MCP6V31/1U
23 µA, 300 kHz Zero-Drift Op Amps
Features
• High DC Precision:
-V
Drift: ±50 nV/°C (maximum)
OS
-VOS: ±8 µV (maximum)
-AOL: 120 dB (minimum, VDD=5.5V)
- PSRR: 120 dB (minimum, V
- CMRR: 120 dB (minimum, VDD=5.5V) : 1.0 µV
-E
ni
-E
: 0.33 µV
ni
• Low Power and Supply Voltages:
-IQ: 23 µA/amplifier (typical)
- Wide Supply Voltage Range: 1.8V to 5.5V
• Small Packages
- Singles in SC70, SOT-23
•Easy to Use:
- Rail-to-Rail Input/Output
- Gain Bandwidth Product: 300 kHz (typical)
- Unity Gain Stable
• Extended Temperature Range: -40°C to +125°C
(typical), f = 0.1 Hz to 10 Hz
P-P
(typical), f = 0.01 Hz to 1 Hz
P-P
DD
=5.5V)
Typical Applications
• Portable Instrumentation
• Sensor Conditioning
• Temperature Measurement
• DC Offset Correction
• Medical Instrumentation
Design Aids
• SPICE Macro Models
•FilterLab
• Microchip Advanced Part Selector (MAPS)
• Analog Demonstration and Evaluation Boards
• Application Notes
®
Software
Description
The Microchip Technology Inc. MCP6V31/1U family of operational amplifiers provides input offset voltage correction for very low offset and offset drift. These are low power devices, with a gain bandwidth product of 300 kHz (typical). They are unity gain stable, have no 1/f noise, and have good Power Supply Rejection Ratio (PSRR) and Common Mode Rejection Ratio (CMRR). These products operate with a single supply voltage as low as 1.8V, while drawing 23 µA/amplifier (typical) of quiescent current.
The Microchip Technology Inc. MCP6V31/1U op amps are offered in single (MCP6V31 and MCP6V31U) packages. They were designed using an advanced CMOS process.
Package Types
V
OUT
V
VIN+
MCP6V31
1
2
SS
3
SOT-23
5
4
V
DD
VIN–
MCP6V31U
SC70, SOT-23
VIN+
1
V
2
SS
V
3
IN
V
5
DD
V
4
OUT
Typical Application Circuit
R
V
IN
VDD/2
1
R
2
C
R
2
Offset Voltage Correction for Power Driver
2
U
2
MCP6V31
R
4
R
5
R
VDD/2
3
V
U
1
MCP6XXX
OUT
Related Parts
• MCP6V01/2/3: Auto-Zeroed, Spread Clock
• MCP6V06/7/8: Auto-Zeroed
• MCP6V26/7/8: Auto-Zeroed, Low Noise
• MCP6V11/1U: Zero-Drift, Low Power
© 2012 Microchip Technology Inc. DS25127A-page 1
MCP6V31/1U
NOTES:
DS25127A-page 2 © 2012 Microchip Technology Inc.
MCP6V31/1U

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings †

VDD–VSS .................................................................................................................................................................6.5V
Current at Input Pins ..............................................................................................................................................±2 mA
Analog Inputs (V
+ and V
IN
All other Inputs and Outputs .......................................................................................................V
Difference Input voltage .................................................................................................................................|V
Output Short Circuit Current ...........................................................................................................................Continuous
Current at Output and Supply Pins ......................................................................................................................±30 mA
Storage Temperature .............................................................................................................................-65°C to +150°C
Maximum Junction Temperature .......................................................................................................................... +150°C
ESD protection on all pins (HBM, CDM, MM) ...........................................................................................≥ 2kV,1.5kV,400V
Note 1: See Section 4.2.1, Rail-to-Rail Inputs.
†Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
–) (Note 1) .....................................................................................V
IN
– 1.0V to VDD+1.0V
SS
– 0.3V to VDD+0.3V
SS
DD–VSS
|

1.2 Specifications

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS

Electrica l Characteristics: Unless otherwise indicated, T
V
CM
= VDD/3,V
OUT=VDD
/2, VL=VDD/2, RL = 100 kΩ to VL and CL = 20 pF (refer to Figure 1-4 and Figure 1-5).
Parameters Sym. Min. Typ. Max. Units Conditions
Input Offset
Input Offset Voltage V
Input Offset Voltage Drift with
TC
OS
1
Temperature (Linear Temp. Co.)
Input Offset Voltage Quadratic
TC
2
Te m p. Co .
Power Supply Rejection PSRR 120 135 dB
Input Bias Current and Impedance
Input Bias Current I
Input Bias Current across Temperature I
Input Offset Current I
Input Offset Current across Temperature I
Common Mode Input Impedance Z
Differential Input Impedance Z
B
B
I
B
OS
OS
I
OS
CM
DIFF
Note 1: For Design Guidance only; not tested.
2: Figure 2-18 shows how V
CML
and V
changed across temperature for the first production lot.
CMH
= +25°C, VDD = +1.8V to +5.5V, VSS = GND,
A
-8 +8 µV TA = +25°C
-50 +50 nV/°C TA = -40 to +125°C
—±0.08 —nV/°C
—+5 —pA
—+20 —pAT
0+2.9+5nAT
—±130 —pA
—±140 —pAT
-1 ±0.4 +1 nA TA = +125°C
—10
—10
13
||6 ||pF
13
||6 ||pF
(Note 1)
2
TA = -40 to +125°C
= +85°C
A
= +125°C
A
= +85°C
A
© 2012 Microchip Technology Inc. DS25127A-page 3
MCP6V31/1U
TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)
Electrica l Characteristics: Unless otherwise indicated, T
V
CM
= VDD/3,V
OUT=VDD
/2, VL=VDD/2, RL = 100 kΩ to VL and CL = 20 pF (refer to Figure 1-4 and Figure 1-5).
Parameters Sym. Min. Typ. Max. Units Conditions
Common Mode
Common-Mode
V
CML
Input Voltage Range Low
Common-Mode
V
CMHVDD
Input Voltage Range High
Common-Mode Rejection CMRR 110 125 dB V
CMRR 120 135 dB V
Open-Loop Gain
DC Open-Loop Gain (large signal) A
OL
A
OL
Output
Minimum Output Voltage Swing V
Maximum Output Voltage Swing V
Output Short Circuit Current I
OL
V
OL
OH
V
OH
SC
I
SC
Power Supply
Supply Voltage V
Quiescent Current per amplifier I
POR Trip Voltage V
DD
Q
POR
Note 1: For Design Guidance only; not tested.
2: Figure 2-18 shows how V
CML
and V
changed across temperature for the first production lot.
CMH
= +25°C, VDD = +1.8V to +5.5V, VSS = GND,
A
——V
− 0.15 V (Note 2)
SS
+0.2 V (Note 2)
103 125 dB VDD=1.8V,
120 135 dB VDD=5.5V,
V
VSS+14 VSS+45 mV RL=10kΩ, G = +2,
SS
—VSS+1.4 mV RL=100kΩ, G = +2,
VDD–45 VDD–14 V
DD
mV RL=10kΩ, G = +2,
—VDD–1.4 mV RL=100kΩ, G = +2,
—±6 —mAV
—±21 —mAV
1.8 5.5 V
12 23 34 µA IO = 0
0.9 1.6 V
= 1.8V,
DD
V
= -0.15V to 2.0V
CM
(Note 2)
= 5.5V,
DD
V
= -0.15V to 5.7V
CM
(Note 2)
= 0.3V to 1.6V
V
OUT
V
= 0.3V to 5.3V
OUT
0.5V input overdrive
0.5V input overdrive
0.5V input overdrive
0.5V input overdrive
=1.8V
DD
=5.5V
DD
DS25127A-page 4 © 2012 Microchip Technology Inc.
MCP6V31/1U

TABLE 1-2: AC ELECTRICAL SPECIFICATIONS

Electrica l Characteristics: Unless otherwise indicated, T
= VDD/3, V
V
CM
OUT=VDD
/2, VL=VDD/2, RL=100kΩ to VL and CL= 20 pF (refer to Figure 1-4 and Figure 1-5).
Parameters Sym. Min. Typ. Max. Units Conditions
Amplifier AC Response
Gain Bandwidth Product GBWP 300 kHz
Slew Rate SR 0.13 V/µs
Phase Margin PM 70 ° G = +1
Amplifier Noise Response
Input Noise Voltage E
E
Input Noise Voltage Density e
Input Noise Current Density i
—0.33—µV
ni
—1.0—µV
ni
—50—nV/√Hz f < 2 kHz
ni
—5—fA/√Hz
ni
Amplifier Distortion (Note 1)
Intermodulation Distortion (AC) IMD 52 µV
Amplifier Step Response
Start Up Time t
Offset Correction Settling Time t
Output Overdrive Recovery Time t
STR
STL
ODR
2 ms G = +1, 0.1% V
100 µs G = +1, VIN step of 2V,
120 µs G = -10, ±0.5V input overdrive to VDD/2,
Note 1: These parameters were characterized using the circuit in Figure 1-6. In Figure 2-36 and Figure 2-37,
there is an IMD tone at DC, a residual tone at 100 Hz and other IMD tones and clock tones.
2: High gains behave differently; see Section 4.3.3, Offset at Power Up. 3: t
includes some uncertainty due to clock edge timing.
ODR
= +25°C, VDD = +1.8V to +5.5V, VSS = GND,
A
f = 0.01 Hz to 1 Hz
P-P
f = 0.1 Hz to 10 Hz
P-P
PKVCM
V
OS
V
IN
tone = 50 mV
within 100 µV of its final value
50% point to V
at 100 Hz, GN = 1
PK
settling (Note 2)
OUT
90% point (Note 3)
OUT

TABLE 1-3: TEMPERATURE SPECIFICATIONS

Electrica l Characteristics: Unless otherwise indicated, all limits are specified for: V
VSS = GND.
Parameters Sym. Min. Typ. Max. Units Conditions
Temperature Ranges
Specified Temperature Range T
Operating Temperature Range T
Storage Temperature Range T
Thermal Package Resistances
Thermal Resistance, 5L-SC-70 θ
Thermal Resistance, 5L-SOT-23 θ
Note 1: Operation must not cause T
to exceed Maximum Junction Temperature specification (+150°C).
J
A
A
A
JA
JA
-40 +125 °C
-40 +125 °C (Note 1)
-65 +150 °C
—331 — °C/W
—256 — °C/W
= +1.8V to +5.5V,
DD
© 2012 Microchip Technology Inc. DS25127A-page 5
MCP6V31/1U

1.3 Timing Diagrams

0V
1.8V
t
STR
V
V
DD
OUT

FIGURE 1-1: Amplifier Start Up.

V
IN
t
STL
V
OS

FIGURE 1-2: Offset Correction Settling Time.

V
IN
t
ODR
V
DD
V
OUT
VDD/2

FIGURE 1-3: Output Overdrive Recovery.

1.8V to 5.5V
1.001(VDD/3)
0.999(V
VOS+100µV
VOS–100µV
t
ODR
V
SS
DD
/3)

1.4 Test Circuits

The circuits used for most DC and AC tests are shown in Figure 1-4 and Figure 1-5. Lay the bypass capacitors out as discussed in Section 4.3.10, Supply Bypassing
and Filtering. R
and RG to minimize bias current effects.
R
F
V
IN
MCP6V3X
VDD/3

FIGURE 1-4: AC and DC Test Circuit for Most Non-Inverting Gain Cond iti ons.

VDD/3
MCP6V3X
V
IN

FIGURE 1-5: AC and DC Test Circuit for Most Inverting Gain Conditions.

The circuit in Figure 1-6 tests the input’s dynamic behavior (i.e., IMD, t potentiometer balances the resistor network (V should equal V mode input voltage is V input (V 10 V/V.
ERR
is equal to the parallel combination of
N
V
DD
1µF
R
N
R
G
V
DD
R
N
R
G
at DC). The op amp’s common
REF
) appears at V
100 nF
100 nF
STR
CM=VIN
R
ISO
C
L
R
F
1µF
R
ISO
C
L
R
F
, t
and t
STL
/2. The error at the
with a noise gain of
OUT
R
R
ODR
L
V
L
V
V
OUT
L
V
OUT
L
). The
OUT
11.0 k 500
V
IN
11.0 k
100 k
0.1% 25 turn
0.1%
V
DD
1µF
100 nF
MCP6V3X
249
1%
0.1%
100 k
0.1%
V
REF=VDD
R
ISO
/3
0
V
OUT
C
L
R
L
20 pF open
V
L

FIGURE 1-6: Test Circuit for Dynamic Input Behavior.

DS25127A-page 6 © 2012 Microchip Technology Inc.
MCP6V31/1U
n
6
Representative Part
e
0
V
O
+85
C
6
p
e
0
V
O
85
C
6
e
0
V
O
I
8

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, T
L=VDD
/2, RL=100kΩ to VL and CL = 20 pF.
V
=+25°C, VDD= +1.8V to 5.5V, VSS= GND, VCM=VDD/3, V
A

2.1 DC Input Precision

25%
42 Samples
= +25°C
T
A
= 1.8V and 5.5V
V
DD
20%
15%
10%
age of Occurrences
5%
Percent
0%
-8-7-6-5-4-3-2-1012345678

FIGURE 2-1: Input Offset Voltage.

35%
42 Samples V
DD
30%
25%
20%
15%
age of Occurrences
10%
5%
Percent
0%
-50 -40 -30 -20 -10 0 10 20 30 40 50

FIGURE 2-2: Input Offset Voltage Drift.

Input Offset Voltage (μV)
= 1.8V and 5.5V
Input Offset Voltage Drift; TC1(nV/°C)
8
4
(μV)
2
oltag
ffset
-2
-4
Input
-6
-8
0.0
+125°C
°
+25°C
-40°C
0.5
1.0
1.5
2.0
Power Supply Voltage (V)
2.5
3.0
OUT=VDD
3.5
4.0
VCM= V
4.5
CML
5.0
/2,
5.5
FIGURE 2-4: Input Offset Voltage vs. Power Supply Voltage with V
8
4
(μV)
2
oltag
ffset
-2
-4
Input
-6
-8
0.0
+125°C
+
°
+25°C
-40°C
0.5
1.0
1.5
2.0
Power Supply Voltage (V)
2.5
3.0
CM=VCML
VCM= V Representative Part
3.5
4.0
4.5
CMH
5.0
.
5.5
FIGURE 2-5: Input Offset Voltage vs. Power Supply Voltage with V
CM=VCMH
.
6.0
6.0
6.5
6.5
45%
42 Samples
= 1.8V and 5.5V
V
40%
DD
35%
30%
25%
20%
15%
tage of Occurrences
10%
5%
Perce
0%
-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 Input Offset Voltage's Quadratic Temp Co;
TC
(nV/°C2)
2

FIGURE 2-3: Input Offset Voltage Quadratic Temp. Co.

8
4
(μV)
2
oltag
ffset
nput
VDD= 1.8V
-2
-4
-6
-
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Power Supply Voltage (V)
Representative Part
VDD= 5.5V

FIGURE 2-6: Input Offset Voltage vs. Output Voltage.

© 2012 Microchip Technology Inc. DS25127A-page 7
MCP6V31/1U
6
Representative Part
e
0
V
O
+25
C
6
Representative Part
e
0
V
O
+25
C
s
35%
r
25%
a
e
s
60%
r
30%
a
e
VDD1.8V
145
135
S
CMRR
VDD=5.5V
Note: Unless otherwise indicated, T
=+25°C, VDD= +1.8V to 5.5V, VSS= GND, VCM=VDD/3, V
A
VL=VDD/2, RL=100kΩ to VL and CL = 20 pF.
8
4
(μV)
2
oltag
ffset
-2
-4
Input
-6
-8
-0.5 0.0 0.5 1.0 1.5 2.0 2.5
VDD= 1.8V
+125°C +85°C
°
-40°C
Input Common Mode Voltage (V)
FIGURE 2-7: Input Offset Voltage vs. Common Mode Voltage with V
8
4
(μV)
2
oltag
ffset
-2
-4
Input
-6
-8
-0.5
0.0
VDD= 5.5V
+125°C +85°C
°
-40°C
0.5
1.0
1.5
2.0
Input Common Mode Voltage (V)
2.5
3.0
DD
3.5
=1.8V.
4.0
4.5
5.0
5.5
FIGURE 2-8: Input Offset Voltage vs. Common Mode Voltage with V
DD
=5.5V.
6.0
OUT=VDD
50%
20 Samples
45%
40%
rence
30%
Occu
20%
ge of
15%
rcent
10%
P
= +25°C
T
A
5%
0%
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1/PSRR (μV/V)
/2,

FIGURE 2-10: PSRR.

90%
21 Samples
= +25°C
T
80%
70%
rence
1/A
OL
VDD= 5.5V
(μV/V)
50%
Occu
40%
ge of
20%
rcent P
10%
0%
=
-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

FIGURE 2-11: DC Open-Loop Gain.

80%
21 Samples T
= 25°C
A
70%
60%
50%
40%
30%
tage of Occurrences
20%
10%
Percen
0%
-1.6
-1.2
VDD= 5.5V
-0.8
-0.4
1/CMRR (μV/V)

FIGURE 2-9: CMRR.

0.0
0.4
VDD= 1.8V
0.8
1.2
1.6
160
155
150
B)
140
RR (d
130
RR, P
125
CM
120
115
110
-50 -25 0 25 50 75 100 125
VDD= 1.8V
Ambient Temperature (°C)
PSRR

FIGURE 2-12: CMRR and PSRR vs. Ambient Temperature.

DS25127A-page 8 © 2012 Microchip Technology Inc.
MCP6V31/1U
145
n
V
135
o
e
D
V
150
p
DD
0
e
s u
I
OS
4000
p
VDD=5.5V
r
e
I
s
1000
u
A
r
100
e
100
s
1p
1.E
03
A
1m
M
1.E-08
u
+85
C
10n
p
p
Note: Unless otherwise indicated, T
=+25°C, VDD= +1.8V to 5.5V, VSS= GND, VCM=VDD/3, V
A
VL=VDD/2, RL=100kΩ to VL and CL = 20 pF.
160
155
150
(dB)
140
p Gai
130
n-Lo
125
C Op
120
115
110
-50 -25 0 25 50 75 100 125
VDD= 5.5V
= 1.8V
DD
Ambient Temperature (°C)

FIGURE 2-13: DC Open-Loop Gain vs. Ambient Temperature.

200
A)
100
ents (
50
t Curr
-50
, Offs
-100
t Bia
-150
Inp
-200
TA= +85°C
= 5.5V
0.0
0.5
1.0
1.5
-0.5
Common Mode Input Voltage (V)
2.0
2.5
I
B
3.0
3.5
4.0
4.5
5.0
5.5
6.0
FIGURE 2-14: Input Bias and Offset Currents vs. Common Mode Input Voltage with T
= +85°C.
A
OUT=VDD
10000
1n
VDD= 5.5V
)
1000
1n
ents (
t Cur
, Offs
10p
ut Bia
Inp
10
I
p
1
OS
I
B
25 35 45 55 65 75 85 95 105 115 125
Ambient Temperature (°C)
/2,
FIGURE 2-16: Input Bias and Offset Currents vs. Ambient Temperature with V
=+5.5V.
DD
1.E-02
10m
)
-
1.E-04
100μ
ude (
1.E-05
10μ
agnit
1.E-06
1.E-07
100n
rrent
1.E-09
1n
put C In
1.E-10
100p
1.E-11
10
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
+125°C
°
+25°C
-40°C
Input Voltage (V)
FIGURE 2-17: Input Bias Current vs. Input Voltage (below V
SS
).
5000
TA= +125°C
A)
ents (
3000
2000
t Cur
1000
, Offs
t Bia
-
Inp
-2000
0
-0.5
B
I
OS
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Common Mode Input Voltage (V)
3.5
4.0
4.5
5.0
5.5
6.0
FIGURE 2-15: Input Bias and Offset Currents vs. Common Mode Input Voltage with T
= +125°C.
A
© 2012 Microchip Technology Inc. DS25127A-page 9
MCP6V31/1U
0.3
g
0.0
o
m
H
p
V
r
VDDV
OH
V
V
10
V
u
4
u
o
10
C
35%
e
1 Wafer Lot
20%
f
t
5%
P
0
Note: Unless otherwise indicated, T
=+25°C, VDD= +1.8V to 5.5V, VSS= GND, VCM=VDD/3, V
A
VL=VDD/2, RL=100kΩ to VL and CL = 20 pF.

2.2 Other DC Voltages and Currents

0.4
e
Upper ( V
0.2
Vol ta
0.1
m (V)
Mode
mon
-0.1
eadro
ut Co
In
Lower (V
-0.2
-0.3
-0.4
-50 -25 0 25 50 75 100 125
)
CMH–VDD
)
CML–VSS
Ambient Temperature (°C)

FIGURE 2-18: Input Common Mode Voltage Headroom (Range) vs. Ambient Temperature.

1000
)
oom (
100
Head
oltage
tput O
1
0.1 1 10
VOL–V
SS
Output Current Magnitude (V)

FIGURE 2-19: Output Voltage Headroom vs. Output Current.

1 Wafer Lot
VDD= 5.5V
= 1.8
DD
4.5
5.0
/2,
5.5
6.0
6.5
40
0.0
-40°C +25°C +85°C
+125°C
+125°C
+85°C +25°C
-40°C
0.5
1.0
1.5
Power Supply Voltage (V)
30
20
10
0
-10
rt Circuit Current (mA)
-20
-30
Output Sh
-40
2.0
2.5
3.0
3.5
OUT=VDD
4.0

FIGURE 2-21: Output Short Circuit Current vs. Power Supply Voltage.

30
25
20
15
urrent (μA/amplifier)
5
Supply
0
1.5
2.0
+125°C
+85°C +25°C
-40°C
2.5
3.0
3.5
Power Supply Voltage (V)
4.0
4.5
5.0
5.5

FIGURE 2-22: Supply Current vs. Power Supply Voltage.

12
RL= 25 k
11
10
9 8 7
VDD= 5.5V
6 5
t Headroom (mV)
3
Outp
2
VDD= 1.8V
1 0
-50 -25 0 25 50 75 100 125
VOL–V
Ambient Temperature (°C)
VDD–V
SS
OH

FIGURE 2-20: Output Voltage Headroom vs. Ambient Temperature.

40%
850 Samples
s
TA= +25°C
30%
rrenc
25%
Occu
15%
age o
10%
ercen
0%
1.101.121.141.161.181.201.221.241.261.281.3
POR Trip Voltage (V)

FIGURE 2-23: Power-on Reset Trip Voltage.

DS25127A-page 10 © 2012 Microchip Technology Inc.
MCP6V31/1U
R
Note: Unless otherwise indicated, T
=+25°C, VDD= +1.8V to 5.5V, VSS= GND, VCM=VDD/3, V
A
VL=VDD/2, RL=100kΩ to VL and CL = 20 pF.
1.6
1.4
1.2
1.0
0.8
0.6
Trip Voltage (V)
0.4
PO
0.2
0.0
-50 -25 0 25 50 75 100 125 Ambient Temperature (°C)

FIGURE 2-24: Power-on Reset Voltage vs. Ambient Temperature.

OUT=VDD
/2,
© 2012 Microchip Technology Inc. DS25127A-page 11
MCP6V31/1U
R
CMRR
180
10
n
n
O
180
10
n
n h
d
h
h
Note: Unless otherwise indicated, T
=+25°C, VDD= +1.8V to 5.5V, VSS= GND, VCM=VDD/3, V
A
VL=VDD/2, RL=100kΩ to VL and CL = 20 pF.

2.3 Frequency Response

110
100
90
80
70
60
50
R, PSRR (dB)
40
CM
30
20
10
10 10k
1.E+01 1.E+02 1.E+03 1.E+04 1.E+05
100
Frequency (Hz)

FIGURE 2-25: CMRR and PSRR vs. Frequency.

70
60
50
40
30
20
-Loop Gain (dB)
0
Ope
-10
-20
1k 10k 1M100k
1.E+03 1.E+04 1.E+05 1.E+06
Frequency (Hz)
FIGURE 2-26: Open-Loop Gain vs. Frequency with V
DD
=1.8V.
PSRR
| AOL|
VDD= 1.8V
= 20 pF
C
L
A
OL
0
-30
-60
-90
-120
-150
-
-210
-240
-270
100k1k
-Loop Phase (°)
Ope
OUT=VDD
700
600
500
400
300
width Product (kHz)
200
100
Gain Ban
0
-50 -25 0 25 50 75 100 125
PM
GBWP
Ambient Temperature (°C)
VDD= 5.5V
VDD= 1.8V
/2,
100
90
80
70
60
50
40
30

FIGURE 2-28: Gain Bandwidth Product and Phase Margin vs. Ambient Temperature.

5.0
5.5
100
90
80
70
60
50
40
30
6.0
700
600
500
400
300
dwidth Product (kHz)
200
100
Gain Ban
0
PM
2.0
2.5
VDD= 1.8V
3.0
GBWP
0.0
0.5
1.0
-0.5
1.5
Common Mode Input Voltage (V)
3.5
4.0
RF= 1 M
VDD= 5.5V
4.5

FIGURE 2-29: Gain Bandwidth Product and Phase Margin vs. Common Mode Input Voltage.

ase Margin (°) P
ase Margin (°) P
70
60
50
40
30
20
-Loop Gain (dB)
0
Ope
-10
-20
1k 10k 1M100k
1.E+03 1.E+04 1.E+05 1.E+06
Frequency (Hz)
| A
VDD= 5.5V C
L
A
OL
|
L
= 20 pF
FIGURE 2-27: Open-Loop Gain vs. Frequency with V
DD
=5.5V.
0
-30
-60
-90
-120
-150
-
-210
-240
-270
-Loop Phase (°)
Ope
700
600
500
400
300
dwidth Product (kHz)
200
100
Gain Ban
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
PM
GBWP
VDD= 1.8V
Output Voltage (V)
VDD= 5.5V

FIGURE 2-30: Gain Bandwidth Product and Phase Margin vs. Output Voltage.

100
90
80
70
60
50
40
30
ase Margin (°) P
DS25127A-page 12 © 2012 Microchip Technology Inc.
Loading...
+ 28 hidden pages