Datasheet MCP6N16 Datasheet

MCP6N16
V
OUT
20 k
100
2.49 k
68.1
RTD
4.99 k
V
DD
MCP6N16-100
10 µF
100
EN
100
RTD Temperature Sensor
4.99 k 4.99 k
MCP6N16
MSOP
V
IP
V
IM
V
SS
V
OUT
V
FG
1
2
3
4
8
7
6
5
V
REF
V
DD
EN
MCP6N16
3×3 DFN *
V
IP
V
IM
V
SS
V
OUT
V
FG
1
2
3
4
8
7
6
5
V
REF
V
DD
EN
* Includes Exposed Thermal Pad (EP); see Table 3-1.
EP
9

Zero-Drift Instrumentation Amplifier

Features:

• High DC Precision:
-V
: ±17 µV (maximum, G
OS
-TC1: ±60 nV/°C (maximum, G
- CMRR: 112 dB (minimum, G =5.5V)
V
DD
- PSRR: 110 dB (minimum, G =5.5V)
V
DD
: ±0.15% (maximum, G
-g
E
• Flexible:
- Minimum Gain (G
) Options:
MIN
1, 10 and 100 V/V
- Rail-to-Rail Input and Output
- Gain Set by Two External Resistors
• Bandwidth: 500 kHz (typical, Gain = G
• Power Supply:
-VDD: 1.8V to 5.5V
-I
: 1.1 mA (typical)
Q
- Power Savings (Enable) Pin: EN
• Enhanced EMI Protection:
- Electromagnetic Interference Rejection Ratio
(EMIRR): 111 dB at 2.4 GHz
• Extended Temperature Range: -40°C to +125°C
MIN
MIN
MIN
MIN
= 10, 100)
MIN
= 100,
=100,
MIN
=1, 10)

Description:

Microchip Technology Inc. offers the single Zero-Drift MCP6N16 instrumentation amplifier (INA) with Enable pin (EN) and three minimum gain options (G
MIN
). The internal offset correction gives high DC precision: it has very low offset and offset drift, and negligible 1/f noise.
Two external resistors set the gain, minimizing gain error and drift over temperature. The reference voltage
) shifts the output voltage (V
(V
REF
OUT
).
The MCP6N16 is designed for single-supply operation, with rail-to-rail input (no common mode crossover distortion) and output performance. The supply voltage range (1.8V to 5.5V) is low enough to support many portable applications. All devices are fully specified from -40°C to +125°C. Each part has EMI filters at the input pins, for good EMI rejection (EMIRR).
These parts have three minimum gain options (1, 10 and 100 V/V). This allows the user to optimize the input offset voltage and input noise for different applications.

Typical Application Circuit

Typical Applications:

• High-Side Current Sensor
• Wheatstone Bridge Sensors
• Difference Amplifier with Level Shifting
• Power Control Loops

Design Aids:

• SPICE Macro Model
• Microchip Advanced Part Selector (MAPS)
• Application Notes
2014 Microchip Technology Inc. DS20005318A-page 1

Package Types

MCP6N16
-1
0
0
10
20
30
40
ffset Voltage (µV)
-40
-30
-20
0
-50 -25 0 25 50 75 100 125
Input
O
Ambient Temperature (°C)
G
MIN
= 1 28 Samples V
DD
= 5.5V
V
CM
= VDD/2
NPBW = 3 mHz
4
2
3
(µV)
1
oltag
e
-1
0
ffset
V
-2
nput
O
G
MIN
= 10
28 Samples
-3
I
V
DD
=5.
5V
VCM= VDD/2 NPBW = 3 mHz
-
4
-50 -25 0 25 50 75 100 125 Ambient Temperature (°C)
4
2
3
(µV)
1
oltag
e
-1
0
ffset
V
-2
nput
O
G
MIN
= 100
28 Samples
-3
I
VDD=5.5V
VCM= VDD/2 NPBW = 3 mHz
-
4
-50 -25 0 25 50 75 100 125 Ambient Temperature (°C)

Minimum Gain Options

Table 1 shows key specifications that differentiate
between the different minimum gain (G See Section 1.0 “Electrical Characteristics”,
Section 6.0 “Packaging Information” and Product
Identification System for further information on G

TABLE 1: KEY DIFFERENTIATING SPECIFICATIONS

G
V
MIN
Part No.
(V/V)
Nom.
MCP6N16-001 1 85 1800 89 91 2.7 0.50 19 900
MCP6N16-010 10 22 180 103 104 0.27 5.0 2.2 105
MCP6N16-100 100 17 60 112 110 0.027 35 0.93 45
Note 1: G
is the minimum stable gain (GDM), for a given part option. In other words, GDM≥ G
MIN
Figures 1 to 3 show input offset voltage versus
temperature for the three gain options (G 100 V/V).
OS
μV)
Max.
TA= -40 to +125°C
MIN
TC
1
(±nV/°C)
Max.
MIN
) options.
.
MIN
=1, 10,
CMRR
(dB) Min.
VDD=5.5V
PSRR
(dB) Min.
V
DMH
(V)
Min.
GBWP
(MHz)
Typ.
E
ni
(μV
)
P-P
Typ .
f = 0.1 to 10 Hz
.
MIN
(nV/Hz)
Typ .
f < 500 Hz
e
ni
FIGURE 1: Input Offset Voltage vs. Temperature, with G
FIGURE 2: Input Offset Voltage vs. Temperature, with G
DS20005318A-page 2 2014 Microchip Technology Inc.
MIN
MIN
=1.
=10.
FIGURE 3: Input Offset Voltage vs. Temperature, with G
MIN
= 100.
2014 Microchip Technology Inc. DS20005318A-page 3

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings †

VDD–VSS ............................................................................................................................................................................................................................................ 6.5V
Current at Input Pins (Note 1) ........................................................................................................................................................................................................... ±2 mA
Analog Inputs (V
All Other Inputs and Outputs ............................................................................................................................................................................... V
Difference Input Voltage .............................................................................................................................................................................................................|V
Output Short-Circuit Current ...................................................................................................................................................................................................... Continuous
Current at Output and Supply Pins .................................................................................................................................................................................................. ±30 mA
Storage Temperature ......................................................................................................................................................................................................... -65°C to +150°C
Maximum Junction Temperature ......................................................................................................................................................................................................+150°C
ESD protection on all pins (HBM, MM)..................................................................................................................................................................................... 4kV,400V
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
Note 1: See Section 4.3.1.2 “Input Voltage Limits” and Section 4.3.1.3 “Input Current Limits”.
and VIM) (Note 1) .................................................................................................................................................................. VSS– 1.0V to VDD+1.0V
IP
– 0.3V to VDD+0.3V
SS
DD–VSS
|
MCP6N16
DS20005318A-page 4 2014 Microchip Technology Inc.

1.2 Specifications

MCP6N16

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, TA=+25°C, VDD= 1.8V to 5.5V, VSS= GND, VCM=VDD/2, VDM=0V, V
to V
, GDM=G
L
and EN = VDD; see Figures 1-7 and 1-8 (Note 1).
MIN
Parameters Sym. Min. Typ. Max. Units G
REF=VDD
MIN
Input Offset
Input Offset Voltage V
OS
-85 +85 µV 1 TA=+25°C
-22 +22 10
-17 +17 100
Input Offset Voltage Drift – Linear Temp. Co.
TC
1
-1800 +1800 nV/°C 1 TA= -40°C to +125°C (Note 2)
-180 +180 10
-60 +60 100
Input Offset Voltage Drift – Quadratic Temp. Co.
TC
2
—±560—pV/°C
—±63— 10
2
1TA= -40°C to +125°C
—±69— 100
Input Offset Aging ∆V
OS
±1.0 µV 1 408 hr Life Test at +150°C,
—±0.8— 10
—±0.7— 100
Power Supply Rejection Ratio PSRR 91 109 dB 1
104 122 10
110 128 100
Output Offset
Output Offset Voltage V
OSO
Vall
Input Current and Impedance (Note 3)
Input Bias Current I
B
-100 ±2 +100 pA all
Across Temperature 20 TA=+85°C
Across Temperature 0 250 2000 TA=+125°C
Note 1: V
=(VIP+VIM)/2, VDM=(VIP–VIM) and GDM=1+RF/RG.
CM
2: For Design Guidance only; not tested. 3: These specifications apply to the V 4: This specification applies to the V 5: Figures 2-52 and 2-53 show the V
, VIM input pair (use VCM) and to the V
IP
, VIM, V
IP
, V
IVL
and VFG pins individually.
REF
, V
DML
and V
DMH
IVH
variation over temperature.
, VFG input pair (use V
REF
instead).
REF
6: See Section 1.5 “Explanation of DC Error Specifications”.
/2, VL=VDD/2, RL=10k
Conditions
measured at +25°C
2014 Microchip Technology Inc. DS20005318A-page 5
TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, TA=+25°C, VDD= 1.8V to 5.5V, VSS= GND, VCM=VDD/2, VDM=0V, V
to VL, GDM=G
and EN = VDD; see Figures 1-7 and 1-8 (Note 1).
MIN
Parameters Sym. Min. Typ. Max. Units G
Input Offset Current I
OS
-800 ±300 +800 pA all
Across Temperature ±320 TA=+85°C
Across Temperature -1500 ±350 +1500 T
Common Mode Input Impedance Z
Differential Input Impedance Z
Input Common Mode Voltage (V
CM
or V
) (Note 3)
REF
Input Voltage Range (Note 4, Note 5) V
DIFF
V
CM
IVL
IVH
—10
—10
—V
VDD+0.15 VDD+0.30
13
||10 ||pF
13
||4
–0.25 VSS–0.15 V all
SS
Common Mode Rejection Ratio CMRR 80 98 dB 1 V
94 112 10
103 121 100
89 107 1 V
103 121 10
112 130 100
Common Mode Rejection Ratio at V
REF
CMRR2 83 101 dB 1 V
98 116 10
102 120 100
94 112 1 V
109 127 10
115 133 100
Note 1: V
=(VIP+VIM)/2, VDM=(VIP–VIM) and GDM=1+RF/RG.
CM
2: For Design Guidance only; not tested. 3: These specifications apply to the V 4: This specification applies to the V 5: Figures 2-52 and 2-53 show the V
, VIM input pair (use VCM) and to the V
IP
, VIM, V
IP
, V
IVL
and VFG pins individually.
REF
, V
DML
and V
DMH
IVH
variation over temperature.
, VFG input pair (use V
REF
instead).
REF
6: See Section 1.5 “Explanation of DC Error Specifications”.
REF=VDD
MIN
=+125°C
A
CM=VIVL
CM=VIVL
REF
V
DD
REF
V
DD
/2, VL=VDD/2, RL=10k
Conditions
to V
to V
, VDD=1.8V
IVH
, VDD=5.5V
IVH
= 0.2V to VDD–0.2V,
=1.8V
= 0.2V to VDD–0.2V,
=5.5V
MCP6N16
DS20005318A-page 6 2014 Microchip Technology Inc.
TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, TA=+25°C, VDD= 1.8V to 5.5V, VSS= GND, VCM=VDD/2, VDM=0V, V
to VL, GDM=G
Common Mode Nonlinearity (Note 6) INL
and EN = VDD; see Figures 1-7 and 1-8 (Note 1).
MIN
Parameters Sym. Min. Typ. Max. Units G
CM
-550 +550 ppm 1 VCM=V
REF=VDD
MIN
/2, VL=VDD/2, RL=10k
Conditions
IVL
to V
, VDD=1.8V
IVH
MCP6N16
-75 +75 10
-20 +20 100
-310 +310 1 V
CM=VIVL
to V
, VDD=5.5V
IVH
-35 +35 10
-10 +10 100
Input Differential Voltage (V
Differential Input Voltage Range (Note 5) V
Differential Gain Error (Note 6) g
Note 1: V
=(VIP+VIM)/2, VDM=(VIP–VIM) and GDM=1+RF/RG.
CM
) (Note 3)
DM
V
DML
DMH
E
-3.4/G
+2.7/G
MIN
+3.4/G
MIN
MIN
—±0.03—%1V
±0.02 % 10, 100
—±0.03— 1V
±0.02 10, 100
-2.7/G
MIN
—V
VallVDD≥ 2.9V, V
V
within ±0.2%
OUT
2.9V, V
DD
within ±0.2%
V
OUT
= 1.8V, V
DD
=±(0.7V)/G
V
DM
= 5.5V, V
DD
V
= ±(2.55V)/G
DM
-0.25 ±0.04 +0.25 % 1 VDD= 5.5V, V = 0 to (2.7V)/G
V
-0.15 ±0.02 +0.15 % 10, 100
-0.25 ±0.04 +0.25 % 1 V
-0.15 ±0.02 +0.15 % 10, 100
DM
= 5.5V, V
DD
= 0 to (-2.7V)/G
V
DM
REF=VDD
=0V,
REF
REF=VDD
MIN
REF=VDD
MIN
=0.2V,
REF
MIN
=5.3V,
REF
MIN
,
/2,
/2,
2: For Design Guidance only; not tested. 3: These specifications apply to the V 4: This specification applies to the V 5: Figures 2-52 and 2-53 show the V
, VIM input pair (use VCM) and to the V
IP
, VIM, V
IP
, V
IVL
and VFG pins individually.
REF
, V
DML
and V
DMH
IVH
variation over temperature.
, VFG input pair (use V
REF
instead).
REF
6: See Section 1.5 “Explanation of DC Error Specifications”.
2014 Microchip Technology Inc. DS20005318A-page 7
TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, TA=+25°C, VDD= 1.8V to 5.5V, VSS= GND, VCM=VDD/2, VDM=0V, V
to VL, GDM=G
Differential Gain Drift (Note 6) ∆gE/T
Differential Nonlinearity (Note 6) INL
DC Open-Loop Gain A
Note 1: V
2: For Design Guidance only; not tested. 3: These specifications apply to the V 4: This specification applies to the V 5: Figures 2-52 and 2-53 show the V 6: See Section 1.5 “Explanation of DC Error Specifications”.
and EN = VDD; see Figures 1-7 and 1-8 (Note 1).
MIN
Parameters Sym. Min. Typ. Max. Units G
A
±3 ppm/°C all VDD= 1.8V, V
—±4— V
—±4— V
—±3— V
DM
—±300—ppmallV
—±150— V
—±300— V
—±300— V
OL
84 102 dB 1 VDD=1.8V,
100 118 10
108 126 100
95 113 1 V
111 129 10
119 137 100
=(VIP+VIM)/2, VDM=(VIP–VIM) and GDM=1+RF/RG.
CM
, VIM input pair (use VCM) and to the V
IP
, VIM, V
IP
, V
IVL
and VFG pins individually.
REF
, V
DML
and V
DMH
IVH
variation over temperature.
, VFG input pair (use V
REF
instead).
REF
REF=VDD
MIN
/2, VL=VDD/2, RL=10k
Conditions
=±(0.7V)/G
V
DM
= 5.5V, V
DD
= ±(2.55V)/G
V
DM
= 5.5V, V
DD
V
= 0 to (2.7V)/G
DM
= 5.5V, V
DD
= 0 to (-2.7V)/G
V
DM
= 1.8V, V
DD
=±(0.7V)/G
V
DM
= 5.5V, V
DD
V
= ±(2.55V)/G
DM
= 5.5V, V
DD
= 0 to (2.7V)/G
V
DM
= 5.5V, V
DD
= 0 to (-2.7V)/G
V
DM
V
= 0.2V to 1.6V
OUT
=5.5V,
DD
V
= 0.2V to 5.3V
OUT
REF=VDD
MIN
REF=VDD
MIN
=0.2V,
REF
=5.3V,
REF
REF=VDD
MIN
REF=VDD
MIN
=0.2V,
REF
=5.3V,
REF
/2,
/2,
MIN
MIN
/2,
/2,
MIN
MIN
MCP6N16
DS20005318A-page 8 2014 Microchip Technology Inc.
TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, TA=+25°C, VDD= 1.8V to 5.5V, VSS= GND, VCM=VDD/2, VDM=0V, V
to VL, GDM=G
and EN = VDD; see Figures 1-7 and 1-8 (Note 1).
MIN
Parameters Sym. Min. Typ. Max. Units G
REF=VDD
MIN
/2, VL=VDD/2, RL=10k
Conditions
MCP6N16
Output
Minimum Output Voltage Swing V
Maximum Output Voltage Swing V
OL
OH
—V
—V
—V
—V
—V
+3 mV all RL=10kΩ, VDD=1.8V,
SS
+6 RL=10kΩ, VDD=5.5V,
SS
+60 VSS+ 250 RL=1kΩ, VDD=5.5V,
SS
–3 mV RL=10kΩ, VDD=1.8V,
DD
–6 RL=10kΩ, VDD=5.5V,
DD
V
=-VDD/(2G
DM
V
REF=VDD
V
=-VDD/(2G
DM
V
REF=VDD
V
=-VDD/(2G
DM
V
REF=VDD
V
DM=VDD
V
REF=VDD
V
DM=VDD
V
REF=VDD
/2 – 0.9V
/2 – 1V
/2 – 1V
/(2G
MIN
/2 + 0.9V
/(2G
MIN
/2 + 1V
MIN
MIN
MIN
),
),
),
),
),
VDD–250 VDD–60 RL=1kΩ, VDD=5.5V,
Output Short-Circuit Current I
SC
V
DM=VDD
V
REF=VDD
—±10—mAV
—±35— V
DD
DD
=1.8V
=5.5V
/(2G
MIN
/2 + 1V
),
Power Supply
Supply Voltage V
Quiescent Current per Amplifier I
POR Trip Voltage V
V
Note 1: V
=(VIP+VIM)/2, VDM=(VIP–VIM) and GDM=1+RF/RG.
CM
DD
Q
PRL
PRH
1.8 5.5 V all
0.5 1.1 1.6 mA IO=0
0.9 1.27 V
—1.331.6V
2: For Design Guidance only; not tested. 3: These specifications apply to the V 4: This specification applies to the V 5: Figures 2-52 and 2-53 show the V
, VIM input pair (use VCM) and to the V
IP
, VIM, V
IP
, V
IVL
and VFG pins individually.
REF
, V
DML
and V
DMH
IVH
variation over temperature.
, VFG input pair (use V
REF
instead).
REF
6: See Section 1.5 “Explanation of DC Error Specifications”.
2014 Microchip Technology Inc. DS20005318A-page 9

TABLE 1-2: AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, TA= +25°C, VDD= 1.8V to 5.5V, VSS= GND, VCM=VDD/2, VDM=0V, V
R
=10kΩ to VL, CL= 60 pF, GDM=G
L
Parameters Sym.
and EN = VDD; see Figures 1-7 and 1-8.
MIN
Min.
Typ.
Max.
Units G
MIN
REF=VDD
Conditions
AC Response
Gain-Bandwidth Product GBWP 0.5 MHz 1
—5 — 10
35 100
Phase Margin PM 70 ° all
Open-Loop Output Impedance R
OL
—1.6 —k
Power Supply Rejection Ratio PSRR 80 dB 1 f = 1 kHz
—98 — 10
123 100
Common Mode Rejection Ratio
and V
at V
CM
REF
CMRR, CMRR2 83 dB 1 f = 10 kHz
—80 — 10
140 100
Step Response (see Section 4.1.4 “AC Performance”)
Slew Rate SR Note 1 V/µs all
Start-Up Time t
STR
—2 —ms1GDM= 1000, VDD power up to 0.1% V
—0.3 — 10
0.2 100
Overdrive Recovery,
Input Common Mode
Overdrive Recovery,
Input Differential Mode
Overdrive Recovery, Output t
t
IRC
t
IRD
OR
—1 —µsallVIP=VIM=V
90% of V
—10 — G
MINVDM=GMINVDMH
= 1V (or VDD– 1V), 90% of V
V
REF
—180 — GDMVDM= 1.5V to 0V (or -1.5V to 0V),
V
REF=VDD
+ 0.5V to VDD– 1V (or V
IVH
change (IB≤ 2mA) (Note 4)
OUT
+ 0.5V to 0V (or G
– 1V (or 1V), 90% of V
OUT
OUT
Note 1: The slew rate is limited by the GBWP; the large signal step response is dominated by the small signal bandwidth.
2: These parameters were characterized using the circuit in Figure 1-8. In Figures 2-75 and 2-76, there is an IMD tone at DC, a residual tone at 100 Hz and
other IMD tones and clock tones.
3: High gains behave differently; see Section 4.4.4 “Offset at Power-Up”.
, t
, t
, t
4: t
STR
STL
IRC
and tOR include some uncertainty due to clock edge timing.
IRD
/2, VL=VDD/2,
settling (Note 3, Note 4)
OUT
– 0.5V to 1V),
IVL
MINVDML
– 0.5V to 0V),
change (Note 4)
change (Note 4)
MCP6N16
DS20005318A-page 10 2014 Microchip Technology Inc.
TABLE 1-2: AC ELECTRICAL SPECIFICATIONS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, TA= +25°C, VDD= 1.8V to 5.5V, VSS= GND, VCM=VDD/2, VDM=0V, V
RL=10kΩ to VL, CL= 60 pF, GDM=G
Parameters Sym.
and EN = VDD; see Figures 1-7 and 1-8.
MIN
Min.
Typ.
Max.
Units G
MIN
Conditions
REF=VDD
/2, VL=VDD/2,
MCP6N16
Noise
Input Noise Voltage Density e
ni
—900 —nV/√Hz 1 f = 500 Hz
—105 — 10
45 100
Input Noise Voltage E
ni
—19 —µV
1 f = 0.1 Hz to 10 Hz
P-P
—2.2 — 10
0.93 100
5.9 1 f = 0.01 Hz to 1 Hz
—0.69 — 10
0.30 100
Input Current Noise Density i
Output Noise Voltage Density e
Output Noise Voltage E
ni
no
no
—7 —fA/√Hz all f = 1 kHz
0nV/√Hz
V
P-P
Amplifier Distortion (Note 2)
Intermodulation Distortion (AC) IMD 5 µV
all VCM tone = 100 mV
PK
at 100 Hz
PK
EMI Protection
EMI Rejection Ratio EMIRR 103 dB all VIN=0.1VPK, f = 400 MHz
—106 — V
=0.1VPK, f = 900 MHz
IN
—106 — VIN=0.1VPK, f = 1800 MHz
111 VIN=0.1VPK, f = 2400 MHz
Note 1: The slew rate is limited by the GBWP; the large signal step response is dominated by the small signal bandwidth.
2: These parameters were characterized using the circuit in Figure 1-8. In Figures 2-75 and 2-76, there is an IMD tone at DC, a residual tone at 100 Hz and
other IMD tones and clock tones.
3: High gains behave differently; see Section 4.4.4 “Offset at Power-Up”. 4: t
STR
, t
, t
, t
STL
IRC
and tOR include some uncertainty due to clock edge timing.
IRD
2014 Microchip Technology Inc. DS20005318A-page 11

TABLE 1-3: DIGITAL ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, TA=+25°C, VDD= 1.8V to 5.5V, VSS= GND, VCM=VDD/2, VDM=0V, V
R
=10kΩ to VL, CL=60 pF, GDM=G
L
Parameters Sym. Min. Typ. Max. Units G
EN Low Specifications
EN Logic Threshold, Low V
EN Input Current, Low I
GND Current I
Amplifier Output Leakage I
EN High Specifications
EN Logic Threshold, High V
EN Input Current, High I
EN Dynamic Specifications
EN Input Hysteresis V
EN Input Resistance R
EN Low to Amplifier Output High Z Turn-Off Time t
EN High to Amplifier Output On Time t
EN Low to EN High hold time t
EN High to EN Low setup time t
POR Dynamic Specifications
V
to Output Off t
DD
VDD to Output On t
Note 1: For design guidance only; not tested.
and EN = VDD; see Figures 1-7 and 1-8.
MIN
IL
ENL
SS
O(LEAK)
IH
ENH
HYST
PD
OFF
ON
——0.2VDDVall
-10 pA EN = 0V
-8 -2 µA EN = 0V, VDD=5.5V
—-1—nA EN=0V
0.8V
DD
——Vall
—10—pA EN=V
0.16V
10
—0.1 2µs EN=0.2VDD to V
12 100 VDD= 1.8V, EN = 0.8VDD to V
30 100 V
ENLH
ENHL
PHL
PLH
50 Minimum time before releasing EN (Note 1)
50 Minimum time before exerting EN (Note 1)
—10—µsallV
100
13
MIN
DD
—V
Vall
DD
=0V, VDD= 1.8V to V
L
=0V, VDD= 0V to V
L
DD
= 5.5V, EN = 0.8VDD to V
REF=VDD
Conditions
=0.1(VDD/2), VL=0V
OUT
OUT
OUT
– 0.1V step, 90% of V
PRL
+ 0.1V step, 90% of V
PRH
/2, VL=VDD/2,
=0.9(VDD/2), VL=0V
=0.9(VDD/2), VL=0V
change
OUT
change
OUT
MCP6N16
DS20005318A-page 12 2014 Microchip Technology Inc.
MCP6N16

TABLE 1-4: TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD= 1.8V to 5.5V, VSS= GND.
Parameters Sym. Min. Typ. Max. Units Conditions
Temperature Ranges
Specified Temperature Range T
Operating Temperature Range T
Storage Temperature Range T
Thermal Package Resistances
Thermal Resistance, 8L-DFN (3×3) θ Thermal Resistance, 8L-MSOP θ
Note 1: Operation must not cause T
to exceed the Absolute Maximum Junction Temperature specification (+150°C).
J
A
A
A
JA
JA
-40 +125 °C
-40 +125 Note 1
-65 +150
—57 — °C/W
—211 —

1.3 Timing Diagrams

V
DD
V
OUT
1.001 V
REF
0.999 V
REF
0V
1.8V to 5.5V
1.8V
t
STR
V
OUT
t
IRC
V
CM
V
IVH
+0.5V
VDD–1V
V
REF
t
IRC
V
IVL
–0.5V
1V
V
REF
V
OUT
t
IRD
V
REF
GDMV
DM
1V
0V
V
REF
G
MINVDMH
+0.5V
V
OH
t
IRD
VDD–1V
0V
V
REF
G
MINVDML
–0.5V
V
OL
V
OUT
t
OR
V
REF
G
MINVDM
VDD–1V
0V
V
REF
1.5V
V
OH
t
OR
1V
0V
V
REF
-1.5V
V
OL
V
OUT
t
PHL
V
DD
V
PRL
–0.1V
High Z
1.8V
t
PLH
V
PRH
+0.1V
0V
High Z
V
OUT
t
OFF
EN
High Z
t
ON
t
ENLH
t
ENHL
High Z

FIGURE 1-1: Amplifier Start-Up Timing Diagram.

FIGURE 1-2: Common Mode Input Overdrive Recovery Timing Diagram.

MCP6N16

FIGURE 1-3: Differential Mode Input Overdrive Recovery Timing Diagram.

FIGURE 1-4: Output Overdrive Recovery Timing Diagram.

FIGURE 1-5: POR Timing Diagram.

FIGURE 1-6: EN Timing Diagram .

2014 Microchip Technology Inc. DS20005318A-page 13
MCP6N16
R
G
R
F
R
L
100 nF
V
DD
2.2 µF
V
REF
V
L
31.6 k
V
M
10 µF
C
CNT
U
1
MCP6N16
U
2
MCP6H01
V
CNT
31.6 k
R
CNT
31.6 k
V
OUT
2.2 nF
100
100
V
CM
2.2 nF
100
G
DM
1RFR
G
+=
V
OUTVCNT
=
V
M
V
REFGDM
1g
E
+V
E
+=
G
DM
1RFR
G
+=
V
M
V
REF
G+
DM
1g
E
+V
DMVE
+=
V
OUT
V
REFGDM
1g
E
+V
DMVE
++=
R
L
63.4 k
100
100
VCM+VDM/2
1.0 µF
V
OUT
R
F
R
G
V
M
100 nF
V
DD
2.2 µF
V
REF
V
L
VCM–VDM/2
U
1
MCP6N16

1.4 DC Test Circuits

1.4.1 INPUT OFFSET TEST CIRCUIT
Figure 1-7 is a simple circuit that can test the INA’s
input offset errors and input voltage range (V
; see Section 1.5.1 “Input Offset Related
V
IVH
Errors” and Section 1.5.2 “Input Offset Common Mode Nonlinearity”). U2 is part of a control loop that
forces V
to equal V
OUT
; U1 can be set to any bias
CNT
point.
, V
and
E
IVL
1.4.2 DIFFERENTIAL GAIN TEST CIRCUIT
Figure 1-8 is a simple circuit that can test the INA’s
differential gain error, nonlinearity and input voltage range (g
, INLDM, V
E
“Differential Gain Error and Nonlinearity”). R
are 0.01% for accurate gain error measurements.
R
G
The output voltages are (where V offset errors and g
and V
DML
is the gain error):
E
DMH
; see Section 1.5.3
and
F
is the sum of input
E
EQUATION 1-2:

FIGURE 1-7: Simple Test Circuit for Common Mode (Input Offset).

When MCP6N16 is in its normal range of operation, the DC output voltages are (where V offset errors and g
is the gain error):
E
is the sum of input
E
EQUATION 1-1:
Table 1-5 shows the resulting behavior for different
options.
G
MIN

TABLE 1-5: RESULTS

G (V/V)
Nom.
100 68 8.7
DS20005318A-page 14 2014 Microchip Technology Inc.
R
MIN
F
(kΩ) Typ.
1 100 1.00 85 0.50 0.50
10 402 4.02 88 1.2
G
DM
(kV/V)
Typ.
G
DMVOS
(±mV)
Max.
BW
(kHz)
Typ .
at V
OUT
BW (Hz) Typ .
at V
M

FIGURE 1-8: Simple Test Circuit for Differential Mode.

For different values of V ranges to keep V
REF
Table 1-6 shows the recommended R
produce a 10 k load. V
, VDM sweeps over different
REF
, VFG and V
can usually be left open.
L
within their ranges.
OUT
and RG; they
F
TABLE 1-6: SELECTING RF AND R
G
MIN
(V/V)
Nom.
R
F
(kΩ)
Nom.
1 0 Open 1.0000
10 10.0 || 90.9 1.00 10.009
100 10.0 || 1000 100 100.01
R
G
(kΩ)
Nom.
1.4.3 DYNAMIC TESTING OF INPUT BEHAVIOR
The circuit in Figure 1-8 can test the input’s dynamic
, t
, t
behavior (i.e., IMD, t measure the output at V
STR
STL
, instead of at VM.
OUT
IRC
, t
IRD
G
G
DM
(V/V)
Nom.
and tOR);
1.5 Explanation of DC Error
V
E
VMV
REF
GDM1g
E
+
=
Where:
PSRR, CMRR, CMRR2 and A
OL
are in
units of V/V
T
A
is in units of °C
TC
1
is in units of V/°C
V
DM
=0
V
E
V
OS
V
DD
VSS–
PSRR
---------------------------------
V
CM
CMRR
-----------------
V
REF
CMRR2
--------------------+++=
V
OUT
A
OL
-----------------TATC
1
++
V
1
V
3
VE, V
E_LIN
(V)
VCM (V)
V
IVL
V
IVH
VDD/2
V
2
V
E_LIN
V
E
V
E
Where:
V
E_LINVOS
VCMVDD2
CMRR
+=
V
OSV2
=
1CMRR
V3V1–V
IVHVIVL

=
Where:
INL
CMH
maxVEV
IVHVIVL

=
VEVEV
E_LIN
=
INL
CML
minVEV
IVHVIVL

=
INL
CM
INL
CMH
INL
CMH
INL
CML
=
INL
CML
otherwise
=
V
E_LIN2
V
OSVREFVDD
2
CMRR2
+=
INL
CMH2
maxVE2V
IVHVIVL

=
INL
CML2
minVE2V
IVHVIVL

=
Where:
V
E2VEVE_LIN2
=
INL
CM2
INL
CMH2
INL
CMH2
INL
CML2
=
INL
CML2
otherwise
=
Specifications
1.5.1 INPUT OFFSET RELATED ERRORS
The input offset error (VE) is extracted from input offset measurements (see Section 1.4.1 “Input Offset Test
Circuit”), based on Equation 1-1:
EQUATION 1-3:
VE has several terms, which assume a linear response to changes in V
, VSS, VCM, V
DD
are in their specified ranges):
EQUATION 1-4:
and TA (all of which
OUT
MCP6N16

FIGURE 1-9: Input Offset Error vs. Common Mode Input Voltage.

Based on the measured VE data, we obtain the following linear fit:
EQUATION 1-5:
Equation 1-2 shows how VE affects V
1.5.2 INPUT OFFSET COMMON MODE
The input offset error (VE) changes nonlinearly with
. Figure 1-9 shows VE vs. VCM, as well as a linear
V
CM
fit line (V standard conditions (∆V swept from V
Section 1.4.1 “Input Offset Test Circuit” and V
calculated using Equation 1-3.
2014 Microchip Technology Inc. DS20005318A-page 15
NONLINEARITY
) based on VOS and CMRR. The INA is in
E_LIN
to V
IVL
.
OUT
=0, VDM=0, etc.). VCM is
OUT
. The test circuit is in
IVH
The remaining error (∆VE) is described by the Common Mode Nonlinearity spec:
EQUATION 1-6:
is
E
The same common mode behavior applies to VE when
is swept, instead of VCM, since both input stages
V
REF
are designed the same:
EQUATION 1-7:
MCP6N16
G
DM
1RFR
G
+=
V
M
GDM1g
E
+V
DM
V+
E
=
V
EDVMGDM
VDM–=
V
1
V
3
VED, V
ED_LIN
(V)
V
DM
(V)
V
DML
V
DMH
0
V
2
V
ED_LIN
V
ED
V
ED
Where:
V
ED_LIN
1g
E
+VEgEV
DM
+=
g
E
V3V1–V
DMHVDML

1=
V
E
V21g
E
+
=
Where:
INL
DMH
max VEDV
DMHVDML
=
V
ED
VEDV
ED_LIN
=
INL
DML
min VEDV
DMHVDML
=
INL
DM
INL
DMH
INL
DMH
INL
DML
=
INL
DML
otherwise=
1.5.3 DIFFERENTIAL GAIN ERROR AND NONLINEARITY
The differential errors are extracted from differential gain measurements (see Section 1.4.2 “Differential
Gain Test Circuit”), based on Equation 1-2. These
errors are the differential gain error (g offset error (V
, which changes nonlinearly with VDM):
E
) and the input
E
EQUATION 1-8:
These errors are adjusted for the expected output, then referred back to the input, giving the differential input error (VED) as a function of VDM:
EQUATION 1-9:
Figure 1-10 shows VED vs. VDM, as well as a linear fit
line (V standard conditions (∆V from V
) based on VED and gE. The INA is in
ED_LIN
to V
DML
DMH
.
=0, etc.). VDM is swept
OUT
EQUATION 1-11:

FIGURE 1-10: Differential Input Error vs. Differential Input Voltage.

Based on the measured VED data, we obtain the following linear fit:
EQUATION 1-10:
Note that the VE value measured here is not as accurate as the one obtained in Section 1.5.1 “Input
Offset Related Errors”.
The remaining error (∆V Differential Nonlinearity spec:
DS20005318A-page 16 2014 Microchip Technology Inc.
ED
) is described by the
MCP6N16
30%
G
MIN
= 1
25%
ence
s
28 Samples
TA= +25°C NPBW = 3 mHz
20%
ccur
r
15%
ge of
O
VDD=1.8V
VDD= 5.5V
10%
rcent
a
5%
P
e
0%
-12-10-8-6-4-2 0 2 4 6 8 1012 Input Offset Voltage (µV)
0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
Percentage of Occurrences
G
MIN
= 10 28 Samples T
A
= +25°C
NPBW = 3 mHz
VDD= 5.5V
VDD= 1.8V
0%
10%
20%
30%
40%
50%
60%
Percentage of Occurrences
G
MIN
= 100 28 Samples T
A
= +25°C
NPBW = 3 mHz
VDD= 5.5V
VDD= 1.8V
40%
G
MIN
= 1
30%
35%
ence
s
28 Samples
TA= -40 to +125°C NPBW = 3 mHz
25%
ccur
r
VDD= 1.8V
15
%
20%
ge of
O
VDD=5.5V
10%
%
rcent
a
5%
P
e
0%
-600 -400 -200 0 200 400 600 Input Offset Voltage Drift; TC
1
(nV/°C)
40%
G
MIN
= 10
30%
35%
ence
s
28 Samples
TA= -40 to +125°C NPBW = 3 mHz
25%
ccur
r
VDD= 5.5V
15
%
20%
ge of
O
VDD=1.8V
10%
%
rcent
a
5%
P
e
0%
-40 -30 -20 -10 0 10 20 30 40 Input Offset Voltage Drift; TC
1
(nV/°C)
40%
G
MIN
= 100
30%
35%
ence
s
28 Samples
TA= -40 to +125°C NPBW = 3 mHz
25%
ccur
r
15
%
20%
ge of
O
VDD= 5.5VVDD= 1.8V
10%
%
rcent
a
5%
P
e
0%
-16 -12 -8 -4 0 4 8 12 16 Input Offset Voltage Drift; TC
1
(nV/°C)

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, TA=+25°C, VDD= 1.8V to 5.5V, VSS=GND, VCM=VDD/2, VDM=0V, V
REF=VDD

2.1 DC Precision

/2, VL=VDD/2, RL=10kΩ to VL, CL=60pF, GDM=G
and EN = VDD; see Figures 1-7 and 1-8.
MIN
FIGURE 2-1: Input Offset Voltage, with G
=1.
MIN
-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 Input Offset Voltage (µV)
FIGURE 2-2: Input Offset Voltage, with G
= 10.
MIN
FIGURE 2-4: Input Offset Voltage Drift, with G
MIN
=1.
FIGURE 2-5: Input Offset Voltage Drift, with G
MIN
=10.
FIGURE 2-3: Input Offset Voltage, with G
2014 Microchip Technology Inc. DS20005318A-page 17
-1.0 -0.6 -0.2 0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0
= 100.
MIN
Input Offset Voltage (µV)
FIGURE 2-6: Input Offset Voltage Drift, with G
MIN
=100.
MCP6N16
50%
55%
s
G
MIN
= 1
40%
45%
rrenc
e
28 Samples
TA= -40 to +125°C NPBW = 3 mHz
30%
35%
Occu
VDD= 1.8V
20%
25%
age o
f
VDD=5.5V
10%
15%
ercen
t
0%
5%
P
-
1200-800-4000400
800
1200
Quadratic Input Offset Voltage Drift;
TC
2
(pV/°C2)
30%
s
G
MIN
= 10
25%
rrenc
e
28 Samples
TA= -40 to +125°C NPBW = 3 mHz
20%
Occu
=
10%
15%
age o
f
VDD1.8V
VDD= 5.5V
5%
ercen
t
0%
P
-
160-120-80-4004080120
160
Quadratic Input Offset Voltage Drift;
TC
2
(pV/°C2)
4
45%
s
G
MIN
= 100
28 Sam
p
les
35%
40%
rrenc
e
p
TA= -40 to +125°C NPBW = 3 mHz
25%
30%
Occu
VDD= 5.5V V
DD
= 1.8V
15%
20%
age o
f
10%
ercen
t
0%
5%
P
-
120-100-80-60-40-20020
40
Quadratic Input Offset Voltage Drift;
TC
2
(pV/°C2)
25
30
Representative Part
=
15
20
(µV)
G
MIN
1
NPBW = 2 Hz
5
10
oltag
e
-5
0
ffset
V
-15
-10
put
O
VDD= 1.8V
VDD= 5.5V
-25
-
20
I
n
-
30
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Output Voltage (V)
25
30
Representative Part
=
15
20
(µV)
G
MIN
10
NPBW = 2 Hz
5
10
oltag
e
-5
0
ffset
V
VDD= 1.8V
VDD= 5.5V
-15
-10
put
O
-25
-
20
I
n
-
30
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Output Voltage (V)
25
30
Representative Part
=
15
20
(µV)
G
MIN
100
NPBW = 2 Hz
5
10
oltag
e
-5
0
ffset
V
VDD= 1.8V
VDD= 5.5V
-15
-10
put
O
-25
-
20
I
n
-
30
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Output Voltage (V)
Note: Unless otherwise indicated, TA=+25°C, VDD= 1.8V to 5.5V, VSS=GND, VCM=VDD/2, VDM=0V, V
REF=VDD
/2, VL=VDD/2, RL=10kΩ to VL, CL=60pF, GDM=G
and EN = VDD; see Figures 1-7 and 1-8.
MIN
FIGURE 2-7: Quadratic Input Offset Voltage Drift, with G
MIN
=1.
FIGURE 2-8: Quadratic Input Offset Voltage Drift, with G
MIN
=10.
FIGURE 2-10: Input Offset Voltage vs. Output Voltage, with G
MIN
=1.
FIGURE 2-11: Input Offset Voltage vs. Output Voltage, with G
MIN
=10.
FIGURE 2-9: Quadratic Input Offset Voltage Drift, with G
DS20005318A-page 18 2014 Microchip Technology Inc.
MIN
= 100.
FIGURE 2-12: Input Offset Voltage vs. Output Voltage, with G
MIN
= 100.
Loading...
+ 40 hidden pages