Datasheet MC74VHC4066DT, MC74VHC4066D, MC74VHC4066DR2, MC74VHC4066DTR2 Datasheet (MOTOROLA)

Page 1

SEMICONDUCTOR TECHNICAL DATA
Order this document
by MC74VHC4066/D
1
REV 3
Motorola, Inc. 1999
07/99
!  "  ! #! #
High–Performance Silicon–Gate CMOS
The MC74VHC4066 utilizes silicon–gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF– channel leakage current. This bilateral switch/multiplexer/demultiplexer controls analog and digital voltages that may vary across the full power–supply range (from VCC to GND).
The VHC4066 is identical in pinout to the metal–gate CMOS MC14066 and the high–speed CMOS HC4066A. Each device has four independent switches. The device has been designed so that the ON resistances (RON) are much more linear over input voltage than RON of metal–gate CMOS analog switches.
The ON/OFF control inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. For analog switches with voltage–level translators, see the VHC4316.
Fast Switching and Propagation Speeds
High ON/OFF Output Voltage Ratio
Low Crosstalk Between Switches
Diode Protection on All Inputs/Outputs
Wide Power–Supply Voltage Range (VCC – GND) = 2.0 to 12.0 Volts
Analog Input Voltage Range (VCC – GND) = 2.0 to 12.0 Volts
Improved Linearity and Lower ON Resistance over Input Voltage than
the MC14016 or MC14066
Low Noise
Chip Complexity: 44 FETs or 11 Equivalent Gates
LOGIC DIAGRAM
X
A
Y
A
12
A ON/OFF CONTROL
13
X
B
Y
B
43
B ON/OFF CONTROL
5
X
C
Y
C
89
C ON/OFF CONTROL
6
X
D
Y
D
11 10
D ON/OFF CONTROL
12
ANALOG OUTPUTS/INPUTS
ANALOG INPUTS/OUTPUTS = XA, XB, XC, X
D
PIN 14 = V
CC
PIN 7 = GND
This document contains information on a new product. Specifications and information herein are subject to change without notice.

FUNCTION TABLE
PIN ASSIGNMENT
11
12
13
14
8
9
105
4
3
2
1
7
6
Y
D
X
D
D ON/OFF CONTROL
A ON/OFF CONTROL
V
CC
X
C
Y
C
X
B
Y
B
Y
A
X
A
GND
C ON/OFF CONTROL
B ON/OFF CONTROL
On/Off Control State of
Input Analog Switch
LOff HOn
ORDERING INFORMATION
MC74VHCXXXXD MC74VHCXXXXDT
SOIC TSSOP
D SUFFIX
14–LEAD SOIC PACKAGE
CASE 751A–03
DT SUFFIX
14–LEAD TSSOP PACKAGE
CASE 948G–01
Page 2
MC74VHC4066
MOTOROLA VHC Data – Advanced CMOS Logic
DL203 — Rev 2
2
MAXIMUM RATINGS*
Symbol
Parameter
Value
Unit
V
CC
Positive DC Supply Voltage (Referenced to GND)
– 0.5 to + 14.0
V
V
IS
Analog Input Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
V
in
Digital Input Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
I
DC Current Into or Out of Any Pin
± 25
mA
Î
Î
P
D
ОООООООООООО
Î
Power Dissipation in Still Air, SOIC Package†
TSSOP Package†
ÎÎÎÎ
Î
500 450
Î
Î
mW
T
stg
Storage Temperature
– 65 to + 150
_
C
T
L
Lead Temperature, 1 mm from Case for 10 Seconds
260
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
V
CC
Positive DC Supply Voltage (Referenced to GND)
2.0
12.0
V
V
IS
Analog Input Voltage (Referenced to GND)
GND
V
CC
V
V
in
Digital Input Voltage (Referenced to GND)
GND
V
CC
V
ÎÎ
Î
VIO*
ОООООООООООО
Î
Static or Dynamic Voltage Across Switch
Î
Î
Î
Î
1.2
Î
Î
V
ÎÎ
T
A
ОООООООООООО
Operating Temperature, All Package Types
Î
– 55Î+ 125
Î
_
C
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
tr, t
f
ОООООООООООО
Î
ОООООООООООО
Î
ОООООООООООО
Î
ОООООООООООО
Î
Input Rise and Fall Time, ON/OFF Control Inputs (Figure 10) VCC = 2.0 V
VCC = 3.0 V VCC = 4.5 V VCC = 9.0 V
VCC = 12.0 V
Î
Î
Î
Î
Î
Î
Î
Î
0 0 0 0 0
Î
Î
Î
Î
Î
Î
Î
Î
1000
600 500 400 250
Î
Î
Î
Î
Î
Î
Î
Î
ns
*For voltage drops across the switch greater than 1.2 V (switch on), excessive VCC current may
be drawn; i.e., the current out of the switch may contain both VCC and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
DC ELECTRICAL CHARACTERISTIC Digital Section (Voltages Referenced to GND)
Guaranteed Limit
ÎÎ
Î
Symbol
ООООООО
Î
Parameter
ООООООО
Î
Test Conditions
ÎÎ
Î
V
CC
V
ÎÎ
– 55 to
25_C
ÎÎ
Î
v
85_C
ÎÎ
Î
v
125_C
Î
Î
Unit
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
V
IH
ООООООО
Î
ООООООО
Î
ООООООО
Î
Minimum High–Level Voltage ON/OFF Control Inputs
ООООООО
Î
ООООООО
Î
ООООООО
Î
Ron = Per Spec
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
2.0
3.0
4.5
9.0
12.0
ÎÎ
ÎÎ
ÎÎ
1.5
2.1
3.15
6.3
8.4
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
1.5
2.1
3.15
6.3
8.4
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
1.5
2.1
3.15
6.3
8.4
Î
Î
Î
Î
Î
Î
V
ÎÎ
Î
ÎÎ
Î
V
IL
ООООООО
Î
ООООООО
Î
Maximum Low–Level Voltage ON/OFF Control Inputs
ООООООО
Î
ООООООО
Î
Ron = Per Spec
ÎÎ
Î
ÎÎ
Î
2.0
3.0
4.5
9.0
12.0
ÎÎ
ÎÎ
0.5
0.9
1.35
2.7
3.6
ÎÎ
Î
ÎÎ
Î
0.5
0.9
1.35
2.7
3.6
ÎÎ
Î
ÎÎ
Î
0.5
0.9
1.35
2.7
3.6
Î
Î
Î
Î
V
ÎÎ
Î
I
in
ООООООО
Î
Maximum Input Leakage Current ON/OFF Control Inputs
ООООООО
Î
Vin = VCC or GND
ÎÎ
Î
12.0
ÎÎ
± 0.1
ÎÎ
Î
± 1.0
ÎÎ
Î
± 1.0
Î
Î
µA
ÎÎ
Î
I
CC
ООООООО
Î
Maximum Quiescent Supply Current (per Package)
ООООООО
Î
Vin = VCC or GND VIO = 0 V
ÎÎ
Î
6.0
12.0
ÎÎ
2 4
ÎÎ
Î
20 40
ÎÎ
Î
40
160
Î
Î
µA
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance cir­cuit. For proper operation, Vin and V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open. I/O pins must be connected to a properly terminated line or bus.
Page 3
MC74VHC4066
VHC Data – Advanced CMOS Logic DL203 — Rev 2
3 MOTOROLA
DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to GND)
Guaranteed Limit
ÎÎ
Î
Symbol
ООООООО
Î
Parameter
ООООООО
Î
Test Conditions
ÎÎ
Î
V
CC
V
ÎÎ
– 55 to
25_C
ÎÎ
Î
v
85_C
ÎÎ
Î
v
125_C
Î
Î
Unit
ÎÎ
Î
ÎÎ
Î
R
on
ООООООО
Î
ООООООО
Î
Maximum “ON” Resistance
ООООООО
Î
ООООООО
Î
Vin = V
IH
VIS = VCC to GND IS v 2.0 mA (Figures 1, 2)
ÎÎ
Î
ÎÎ
Î
2.0†
3.0†
4.5
9.0
12.0
ÎÎ
ÎÎ
— —
120
70 70
ÎÎ
Î
ÎÎ
Î
— —
160
85 85
ÎÎ
Î
ÎÎ
Î
— 200 100 100
Î
Î
Î
Î
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
ООООООО
Î
ООООООО
Î
ООООООО
Î
ООООООО
Î
ООООООО
Î
ООООООО
Î
Vin = V
IH
VIS = VCC or GND (Endpoints) IS v 2.0 mA (Figures 1, 2)
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
2.0
3.0
4.5
9.0
12.0
ÎÎ
ÎÎ
ÎÎ
— — 70 50 30
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
— — 85 60 60
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
— 100
80
80
Î
Î
Î
Î
Î
Î
ÎÎ
Î
ÎÎ
Î
R
on
ООООООО
Î
ООООООО
Î
Maximum Difference in “ON” Resistance Between Any Two Channels in the Same Package
ООООООО
Î
ООООООО
Î
Vin = V
IH
VIS = 1/2 (VCC – GND) IS v 2.0 mA
ÎÎ
Î
ÎÎ
Î
2.0
4.5
9.0
12.0
ÎÎ
ÎÎ
— 20 15 15
ÎÎ
Î
ÎÎ
Î
— 25 20 20
ÎÎ
Î
ÎÎ
Î
30
25
25
Î
Î
Î
Î
ÎÎ
Î
I
off
ООООООО
Î
Maximum Off–Channel Leakage Current, Any One Channel
ООООООО
Î
Vin = V
IL
VIO = VCC or GND Switch Off (Figure 3)
ÎÎ
Î
12.0
ÎÎ
0.1
ÎÎ
Î
0.5
ÎÎ
Î
1.0
Î
Î
µA
ÎÎ
Î
I
on
ООООООО
Î
Maximum On–Channel Leakage Current, Any One Channel
ООООООО
Î
Vin = V
IH
VIS = VCC or GND (Figure 4)
ÎÎ
Î
12.0
ÎÎ
0.1
ÎÎ
Î
0.5
ÎÎ
Î
1.0
Î
Î
µA
†At supply voltage (VCC) approaching 3 V the analog switch–on resistance becomes extremely non–linear. Therefore, for low–voltage
operation, it is recommended that these devices only be used to control digital signals.
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, ON/OFF Control Inputs: tr = tf = 6 ns)
Guaranteed Limit
Symbol
Parameter
V
CC
V
– 55 to
25_C
v
85_Cv 125_C
Unit
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
t
PLH
,
t
PHL
ООООООООООООООО
Î
ООООООООООООООО
Î
ООООООООООООООО
Î
Maximum Propagation Delay , Analog Input to Analog Output
(Figures 8 and 9)
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
2.0
3.0
4.5
9.0
12.0
ÎÎ
ÎÎ
ÎÎ
40 30
5 5 5
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
50 40
7 7 7
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
60
50
8 8 8
Î
Î
Î
Î
Î
Î
ns
ÎÎ
Î
ÎÎ
Î
ÎÎ
t
PLZ
,
t
PHZ
ООООООООООООООО
Î
ООООООООООООООО
Î
ООООООООООООООО
Maximum Propagation Delay, ON/OFF Control to Analog Output
(Figures 10 and 11)
ÎÎ
Î
ÎÎ
Î
ÎÎ
2.0
3.0
4.5
9.0
12.0
ÎÎ
ÎÎ
ÎÎ
80 60 20 20 20
ÎÎ
Î
ÎÎ
Î
ÎÎ
90 70 25 25 25
ÎÎ
Î
ÎÎ
Î
ÎÎ
110
80
35
35
35
Î
Î
Î
Î
Î
ns
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
t
PZL
,
t
PZH
ООООООООООООООО
Î
ООООООООООООООО
Î
ООООООООООООООО
Î
Maximum Propagation Delay, ON/OFF Control to Analog Output
(Figures 10 and 1 1)
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
2.0
3.0
4.5
9.0
12.0
ÎÎ
ÎÎ
ÎÎ
80 45 20 20 20
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
90 50 25 25 25
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
100
60
30
30
30
Î
Î
Î
Î
Î
Î
ns
C
Maximum Capacitance ON/OFF Control Input
10
10
10
pF
ÎÎÎООООООООООООООО
Î
Control Input = GND
Analog I/O
Feedthrough
ÎÎ
Î
— —
ÎÎ
35
1.0
ÎÎ
Î
35
1.0
ÎÎ
Î
35
1.0
Î
Î
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Switch) (Figure 13)*
15
pF
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC.
Page 4
MC74VHC4066
MOTOROLA VHC Data – Advanced CMOS Logic
DL203 — Rev 2
4
ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)
ÎÎ
Î
ÎÎ
Symbol
ОООООООО
Î
ОООООООО
Parameter
ОООООООООООО
Î
ОООООООООООО
Test Conditions
Î
Î
Î
V
CC
V
ÎÎ
Î
ÎÎ
Limit*
25_C
74HC
Î
Î
Î
Unit
ÎÎ
Î
ÎÎ
Î
BW
ОООООООО
Î
ОООООООО
Î
Maximum On–Channel Bandwidth or Minimum Frequency Response
(Figure 5)
ОООООООООООО
Î
ОООООООООООО
Î
fin = 1 MHz Sine Wave Adjust fin Voltage to Obtain 0 dBm at V
OS
Increase fin Frequency Until dB Meter Reads – 3 dB
RL = 50 , CL = 10 pF
Î
Î
Î
Î
4.5
9.0
12.0
ÎÎ
Î
ÎÎ
Î
150 160 160
Î
Î
Î
Î
MHz
ÎÎ
Î
ÎÎ
Î
ОООООООО
Î
ОООООООО
Î
Off–Channel Feedthrough Isolation
(Figure 6)
ОООООООООООО
Î
ОООООООООООО
Î
fin Sine Wave Adjust fin Voltage to Obtain 0 dBm at V
IS
fin = 10 kHz, RL = 600 , CL = 50 pF
Î
Î
Î
Î
4.5
9.0
12.0
ÎÎ
Î
ÎÎ
Î
– 50 – 50 – 50
Î
Î
Î
Î
dB
ÎÎÎООООООООÎОООООООООООО
Î
fin = 1.0 MHz, RL = 50 , CL = 10 pF
Î
Î
4.5
9.0
12.0
ÎÎ
Î
– 40 – 40 – 40
Î
Î
ÎÎ
Î
ОООООООО
Î
Feedthrough Noise, Control to Switch
(Figure 7)
ОООООООООООО
Î
Vin v 1 MHz Square Wave (tr = tf = 6 ns) Adjust RL at Setup so that IS = 0 A
RL = 600 , CL = 50 pF
Î
Î
4.5
9.0
12.0
ÎÎ
Î
60
130 200
Î
Î
mV
PP
ÎÎ
Î
ÎÎ
Î
ОООООООО
Î
ОООООООО
Î
ОООООООООООО
Î
ОООООООООООО
Î
RL = 10 k, CL = 10 pF
Î
Î
Î
Î
4.5
9.0
12.0
ÎÎ
Î
ÎÎ
Î
30 65
100
Î
Î
Î
Î
ÎÎ
Î
ОООООООО
Î
Crosstalk Between Any Two Switches
(Figure 12)
ОООООООООООО
Î
fin Sine Wave Adjust fin Voltage to Obtain 0 dBm at V
IS
fin = 10 kHz, RL = 600 , CL = 50 pF
Î
Î
4.5
9.0
12.0
ÎÎ
Î
– 70 – 70 – 70
Î
Î
dB
ÎÎÎООООООООÎОООООООООООО
Î
fin = 1.0 MHz, RL = 50 , CL = 10 pF
Î
Î
4.5
9.0
12.0
ÎÎ
Î
– 80 – 80 – 80
Î
Î
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
THD
ОООООООО
Î
ОООООООО
Î
ОООООООО
Î
Total Harmonic Distortion
(Figure 14)
ОООООООООООО
Î
ОООООООООООО
Î
ОООООООООООО
Î
fin = 1 kHz, RL = 10 k, CL = 50 pF THD = THD
Measured
– THD
Source
VIS = 4.0 VPP sine wave VIS = 8.0 VPP sine wave
VIS = 11.0 VPP sine wave
Î
Î
Î
Î
Î
Î
4.5
9.0
12.0
ÎÎ
Î
ÎÎ
Î
ÎÎ
Î
0.10
0.06
0.04
Î
Î
Î
Î
Î
Î
%
*Guaranteed limits not tested. Determined by design and verified by qualification.
Page 5
MC74VHC4066
VHC Data – Advanced CMOS Logic DL203 — Rev 2
5 MOTOROLA
Figure 1a. Typical On Resistance, VCC = 2.0 V Figure 1b. Typical On Resistance, VCC = 4.5 V
Figure 1c. Typical On Resistance, VCC = 6.0 V Figure 1d. Typical On Resistance, VCC = 9.0 V
Figure 1e. Typical On Resistance, VCC = 12 V Figure 2. On Resistance Test Set–Up
TBD TBD
TBDTBD
TBD
PLOTTER
MINI COMPUTER
PROGRAMMABLE
POWER SUPPLY
DC ANALYZER
V
CC
+
ANALOG IN COMMON OUT
GND
DEVICE
UNDER TEST
Page 6
MC74VHC4066
MOTOROLA VHC Data – Advanced CMOS Logic
DL203 — Rev 2
6
Figure 3. Maximum Off Channel Leakage Current,
Any One Channel, Test Set–Up
OFF
7
14
V
CC
A
V
CC
GND
V
CC
SELECTED
CONTROL
INPUT
V
IL
Figure 4. Maximum On Channel Leakage Current,
Test Set–Up
ON
14
V
CC
N/C
A
GND
V
CC
7
SELECTED
CONTROL
INPUT
V
IH
Figure 5. Maximum On–Channel Bandwidth
Test Set–Up
ON
14
V
CC
0.1µF
CL*
f
in
dB
METER
*Includes all probe and jig capacitance.
V
OS
7
SELECTED
CONTROL
INPUT
V
CC
Figure 6. Off–Channel Feedthrough Isolation,
Test Set–Up
OFF
7
14
V
CC
0.1µF
CL*
f
in
dB
METER
*Includes all probe and jig capacitance.
V
OS
R
L
V
IS
SELECTED CONTROL INPUT
Figure 7. Feedthrough Noise, ON/OFF Control to
Analog Out, Test Set–Up
14
V
CC
CL*
*Includes all probe and jig capacitance.
OFF/ON
V
CC
GND
Vin
1 MHz
tr = tf = 6 ns
CONTROL
V
CC/2
R
L
I
S
R
L
V
OS
7
SELECTED
CONTROL
INPUT
V
CC/2
V
CC
GND
ANALOG IN
ANALOG OUT
50%
t
PLH
t
PHL
50%
Figure 8. Propagation Delays, Analog In to
Analog Out
Page 7
MC74VHC4066
VHC Data – Advanced CMOS Logic DL203 — Rev 2
7 MOTOROLA
POSITION WHEN TESTING t
PLZ
AND t
PZL
Figure 9. Propagation Delay Test Set–Up
ON
14
V
CC
*Includes all probe and jig capacitance.
TEST
POINT
ANALOG OUTANALOG IN
CL*
7
SELECTED
CONTROL
INPUT
V
CC
t
r
t
f
V
CC
GND
HIGH IMPEDANCE
V
OL
V
OH
HIGH IMPEDANCE
CONTROL
ANALOG
OUT
90%
50%
10%
50%
50%
10%
90%
t
PZH
t
PHZ
t
PZL
t
PLZ
Figure 10. Propagation Delay, ON/OFF Control
to Analog Out
ON/OFF
V
CC
TEST
POINT
14
V
CC
1 k
POSITION WHEN TESTING t
PHZ
AND t
PZH
CL*
1 2
1 2
Figure 11. Propagation Delay Test Set–Up
1 2
7
SELECTED CONTROL INPUT
Figure 12. Crosstalk Between Any Two Switches,
Test Set–Up
R
L
ON
14
VCC OR GND
CL*
*Includes all probe and jig capacitance.
OFF
R
L
R
L
V
IS
R
L
CL*
V
OS
f
in
0.1
µ
F
V
CC/2
V
CC/2
7
SELECTED CONTROL INPUT
V
CC/2
Figure 13. Power Dissipation Capacitance
Test Set–Up
14
V
CC
N/C
OFF/ON
A
N/C
7
SELECTED
CONTROL
INPUT
ON/OFF CONTROL
ON
V
CC
0.1 µF
CL*
f
in
R
L
TO
DISTORTION
METER
*Includes all probe and jig capacitance.
V
OS
V
IS
7
SELECTED
CONTROL
INPUT
V
CC
Figure 14. Total Harmonic Distortion, Test Set–Up
*Includes all probe and jig capacitance.
V
CC
V
CC/2
Page 8
MC74VHC4066
MOTOROLA VHC Data – Advanced CMOS Logic
DL203 — Rev 2
8
0 –10 –20 –30 –40 –50
1.0 2.0 FREQUENCY (kHz)
dBm
–60 –70 –80 –90
FUNDAMENT AL FREQUENCY
DEVICE SOURCE
Figure 15. Plot, Harmonic Distortion
3.0
APPLICATION INFORMATION
The ON/OFF Control pins should be at VCC or GND logic levels, VCC being recognized as logic high and GND being recognized as a logic low. Unused analog inputs/outputs may be left floating (not connected). However, it is advisable to tie unused analog inputs and outputs to VCC or GND through a low value resistor. This minimizes crosstalk and feedthrough noise that may be picked–up by the unused I/O pins.
The maximum analog voltage swings are determined by the supply voltages VCC and GND. The positive peak analog voltage should not exceed VCC. Similarly, the negative peak analog voltage should not go below GND. In the example
below, the dif ference between VCC and GND is twelve volts. Therefore, using the configuration in Figure 16, a maximum analog signal of twelve volts peak–to–peak can be con­trolled.
When voltage transients above VCC and/or below GND are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure 17. Thes e diodes should be small signal, fast turn–on types able to absorb the maximum anticipated current surges during clipping. An alternate method would be to replace the Dx diodes with MOsorbs (Motorola high current surge protectors). MOsorbs are fast turn–on devices ideally suited for precise DC protection with no inherent wear out mechanism.
ANALOG O/I
ON
14
VCC = 12 V
ANALOG I/O
+ 12 V
0 V
+ 12 V
0 V
OTHER CONTROL
INPUTS
(VCC OR GND)
ON
16
V
CC
D
x
D
x
V
CC
D
x
Figure 16. 12 V Application Figure 17. Transient Suppressor Application
7
SELECTED CONTROL INPUT
D
x
OTHER CONTROL
INPUTS
(VCC OR GND)
7
SELECTED CONTROL INPUT
V
CC
Page 9
MC74VHC4066
VHC Data – Advanced CMOS Logic DL203 — Rev 2
9 MOTOROLA
+5 V
14
VHC4066
CONTROL
INPUTS
7
5
6 14 15
LSTTL/
NMOS
ANALOG SIGNALS
R* R* R* R*
ANALOG
SIGNALS
VHCT
BUFFER
R* = 2 TO 10 k
VDD = 5 V VCC = 5 TO 12 V
ANALOG SIGNALS
ANALOG
SIGNALS
116 14
CONTROL
INPUTS
78
MC14504
13
3 5 7 9
11
14
2 4 6
10
5
6 14 15
CHANNEL 4
CHANNEL 3
CHANNEL 2
CHANNEL 1
1 OF 4
SWITCHES
COMMON I/O
1234
CONTROL INPUTS
INPUT
OUTPUT
0.01
µ
F
LF356 OR
EQUIVALENT
a. Using Pull-Up Resistors b. Using HCT Buffer
Figure 18. LSTTL/NMOS to HCMOS Interface
Figure 19. TTL/NMOS–to–CMOS Level Converter
Analog Signal Peak–to–Peak Greater than 5 V
(Also see VHC4316)
Figure 20. 4–Input Multiplexer Figure 21. Sample/Hold Amplifier
+
1 OF 4
SWITCHES
+5 V
14
CONTROL
INPUTS
7
5
6 14 15
LSTTL/ NMOS
ANALOG SIGNALS
ANALOG
SIGNALS
1 OF 4
SWITCHES
1 OF 4
SWITCHES
1 OF 4
SWITCHES
VHC4066
VHC4066
Page 10
MC74VHC4066
MOTOROLA VHC Data – Advanced CMOS Logic
DL203 — Rev 2
10
OUTLINE DIMENSIONS
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751A–03
ISSUE F
MIN MINMAX MAX
MILLIMETERS INCHES
DIM
A B C D F G J K M P R
8.55
3.80
1.35
0.35
0.40
0.19
0.10 0
°
5.80
0.25
8.75
4.00
1.75
0.49
1.25
0.25
0.25 7
°
6.20
0.50
0.337
0.150
0.054
0.014
0.016
0.008
0.004 0
°
0.228
0.010
0.344
0.157
0.068
0.019
0.049
0.009
0.009 7
°
0.244
0.019
1.27 BSC 0.050 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
–A–
–B–
P 7 PL
G
C
K
SEATING PLANE
D 14 PL
M
J
R
X 45°
1
7
814
0.25 (0.010) T B A
M
S S
B0.25 (0.010)
M M
F
Page 11
MC74VHC4066
VHC Data – Advanced CMOS Logic DL203 — Rev 2
11 MOTOROLA
OUTLINE DIMENSIONS
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948G–01
ISSUE O
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 4.90 5.10 0.193 0.200 B 4.30 4.50 0.169 0.177 C ––– 1.20 ––– 0.047 D 0.05 0.15 0.002 0.006
F 0.50 0.75 0.020 0.030 G 0.65 BSC 0.026 BSC H 0.50 0.60 0.020 0.024 J 0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K 0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L 6.40 BSC 0.252 BSC M 0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.
____
S
U0.15 (0.006) T
2X L/2
S
U
M
0.10 (0.004) V
S
T
L
–U–
SEATING PLANE
0.10 (0.004)
–T–
SECTION N–N
DETAIL E
J
J1
K
K1
DETAIL E
F
M
–W–
0.25 (0.010)
8
14
7
1
PIN 1 IDENT.
H
G
A
D
C
B
S
U0.15 (0.006) T
–V–
14X REFK
N
N
Page 12
MC74VHC4066
MOTOROLA VHC Data – Advanced CMOS Logic
DL203 — Rev 2
12
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us: USA/EUROPE /Locations Not Listed: Motorola Literature Distribution; JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488
Customer Focus Center: 1–800–521–6274 Mfax: RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,
Motorola Fax Back System – US & Canada ONLY 1–800–774–1848 2, Dai King Street, T ai Po Industrial Estate, Tai Po, N.T., Hong Kong.
– http://sps.motorola.com/mfax/ 852–26668334
HOME PAGE: http://motorola.com/sps/
MC74VHC4066/D
Loading...