Datasheet MC74VHC4052D, MC74VHC4052DR2, MC74VHC4052DT, MC74VHC4052DTR2, MC74VHC4051DR2 Datasheet (MOTOROLA)

...
Page 1
MC74VHC4051, MC74VHC4052, MC74VHC4053
Analog Multiplexers / Demultiplexers
The MC74VHC4051, MC74VHC4052 and MC74VHC4053 utilize silicon–gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF leakage currents. These analog multiplexers/demultiplexers control analog voltages that may vary across the complete power supply range (from VCC to VEE).
The VHC4051, VHC4052 and VHC4053 are identical in pinout to the high–speed HC4051A, HC4052A and HC4053A, and the metal–gate MC14051B, MC14052B and MC14053B. The Channel–Select inputs determine which one of the Analog Inputs/Outputs is to be connected, by means of an analog switch, to the Common Output/Input. When the Enable pin is HIGH, all analog switches are turned off.
The Channel–Select and Enable inputs are compatible with standard CMOS outputs; with pullup resistors they are compatible with LSTTL outputs.
These devices have been designed so that the ON resistance (Ron) is more linear over input voltage than Ron of metal–gate CMOS analog switches.
Fast Switching and Propagation Speeds
Low Crosstalk Between Switches
Diode Protection on All Inputs/Outputs
Analog Power Supply Range (V
Digital (Control) Power Supply Range (V
Improved Linearity and Lower ON Resistance Than Metal–Gate
Counterparts
Low Noise
Chip Complexity: VHC4051 — 184 FET s or 46 Equivalent Gates
VHC4052 — 168 FET s or 42 Equivalent Gates VHC4053 — 156 FET s or 39 Equivalent Gates
– VEE) = 2.0 to 12.0 V
CC
– GND) = 2.0 to 6.0 V
CC
http://onsemi.com
MARKING
DIAGRAMS
16
SO–16
16
1
16
See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet.
D SUFFIX
CASE 751B
TSSOP–16
DT SUFFIX
1
ORDERING INFORMATION
CASE 948F
A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week
VHC405x
AWLYWW
1
16
VHC 405x
ALYW
1
Semiconductor Components Industries, LLC, 1999
March, 2000 – Rev . 3
1 Publication Order Number:
MC74VHC4051/D
Page 2
MC74VHC4051, MC74VHC4052, MC74VHC4053
LOGIC DIAGRAM
MC74VHC4051
Single–Pole, 8–Position Plus Common Off
13
X0
14
X1
15
ANALOG
INPUTS/
OUTPUTS
CHANNEL
SELECT
INPUTS
X2 X3 X4 X5 X6 X7
ENABLE
12
1 5 2 4
11
A
10
B
9
C
6
PIN 16 = V PIN 7 = V PIN 8 = GND
MULTIPLEXER/
DEMULTIPLEXER
CC
EE
3
COMMON
X
OUTPUT/ INPUT
FUNCTION TABLE – MC74VHC4051
Control Inputs
Select
Enable
L L L L L L L L
H
CBA
L
L L L L
H H H H X
L
L
H
H
L
H
H
L
L
L
H
H
L
H
H
X
X
ON Channels
X0 X1 X2 X3 X4 X5 X6 X7
NONE
X = Don’t Care
Pinout: MC74VHC4051 (Top View)
V
X2 X1 X0 X3 A B C
CC
1516 14 13 12 11 10
21 34567
9
8
Double–Pole, 4–Position Plus Common Off
ANALOG
INPUTS/OUTPUTS
CHANNEL-SELECT
INPUTS
X0 X1 X2 X3
Y0 Y1 Y2 Y3
ENABLE
LOGIC DIAGRAM
MC74VHC4052
12 14 15 11
1 5 2 4
10
A
9
B
6
X SWITCH
Y SWITCH
13
X
3
Y
PIN 16 = V PIN 7 = V
EE
PIN 8 = GND
COMMON OUTPUTS/INPUTS
CC
FUNCTION TABLE – MC74VHC4052
Control Inputs
Select
Enable
L L L L
H
BA
L
L
L
H H H X
L H X
ON Channels
Y0 Y1 Y2 Y3
NONE
X = Don’t Care
Pinout: MC74VHC4052 (Top View)
X2 X1 X X0 X3 A B
V
CC
1516 14 13 12 11 10
21 34567
Y0 Y2 Y Y3 Y1 Enable VEEGND
X0 X1 X2 X3
9
8
http://onsemi.com
2
Page 3
MC74VHC4051, MC74VHC4052, MC74VHC4053
LOGIC DIAGRAM
MC74VHC4053
Triple Single–Pole, Double–Position Plus Common Off
12
X0
ANALOG
INPUTS/OUTPUTS
CHANNEL-SELECT
INPUTS
X1
Y0 Y1
ENABLE
13
2 1
5
Z0
3
Z1
11
A
10
B
9
C
6
X SWITCH
Y SWITCH
Z SWITCH
NOTE: This device allows independent control of each switch. Channel–Select Input A controls the X–Switch, Input B controls the Y–Switch and Input C controls the Z–Switch
14
X
15
Y
4
Z
PIN 16 = V PIN 7 = V
EE
PIN 8 = GND
CC
COMMON OUTPUTS/INPUTS
FUNCTION TABLE – MC74VHC4053
Control Inputs
Select
Enable
L L L L L L L L
H
CBA
L
L L L L
H H H H
X
L
L
H
H
L
H
H
L
L
L
H
H
L
H
H
X
X
ON Channels
Z0 Z0 Z0 Z0 Z1 Z1 Z1 Z1
X = Don’t Care
Pinout: MC74VHC4053 (Top View)
Y X X1 X0 A B C
V
CC
1516 14 13 12 11 10
Y0 Y0 Y1 Y1 Y0 Y0 Y1 Y1
NONE
X0 X1 X0 X1 X0 X1 X0 X1
9
21 34567
8
Y1 Y0 Z1 Z Z0 Enable VEEGND
http://onsemi.com
3
Page 4
MC74VHC4051, MC74VHC4052, MC74VHC4053
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎ
Î
Î
Î
ÎÎ
ÎÎ
Î
Î
Î
Î
ÎÎ
ÎÎ
Î ÎÎ ÎÎ
ÎÎ
ÎÎ
Î
Î
Î
Î
Î
Î
ÎÎ
ÎÎ
ÎÎ
Î
Î
MAXIMUM RATINGS*
Symbol
V
ÎÎ
V
ÎÎ
Positive DC Supply Voltage (Referenced to GND)
CC
ОООООООООООО
Negative DC Supply Voltage (Referenced to GND)
EE
V
Analog Input Voltage
IS
V
Digital Input Voltage (Referenced to GND)
in I
DC Current, Into or Out of Any Pin
P
Power Dissipation in Still Air, SOIC Package†
D
ОООООООООООО
T
Storage Temperature Range
stg
T
Lead Temperature, 1 mm from Case for 10 Seconds
L
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
RECOMMENDED OPERATING CONDITIONS
Symbol
V
ÎÎ
V
ÎÎ
V
V
VIO*
T
tr, t
ÎÎ
ÎÎ
*For voltage drops across switch greater than 1.2V (switch on), excessive VCC current may be
drawn; i.e., the current out of the switch may contain both VCC and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
Positive DC Supply Voltage (Referenced to GND)
CC
ООООООООООООО
Negative DC Supply Voltage, Output (Referenced to
EE
GND)
ООООООООООООО
Analog Input Voltage
IS
Digital Input Voltage (Referenced to GND)
in
Static or Dynamic Voltage Across Switch Operating Temperature Range, All Package Types
A
Input Rise/Fall Time VCC = 2.0 V
f
(Channel Select or Enable Inputs) VCC = 3.0 V
ООООООООООООО
ООООООООООООО
Parameter
Parameter
(Referenced to VEE)
TSSOP Package†
(Referenced to VEE)
VCC = 4.5 V VCC = 6.0 V
Value
– 0.5 to + 7.0
– 0.5 to + 14.0
ÎÎÎ
– 7.0 to + 5.0 VEE – 0.5 to
VCC + 0.5
– 0.5 to VCC + 0.5
± 25
500
ÎÎÎ
450
– 65 to + 150
260
Min
Max
2.0
6.0
Î
2.0
12.0
– 6.0
GND
Î
V
V
EE
CC
GND
V
CC
1.2
– 55
+ 125
0
1000
0
800
Î
0
500
0
400
Î
Unit
Î
mA
mW
Î
_
_
Unit
Î
Î
_
ns
Î
Î
This device contains protection
V
circuitry to guard against damage due to high static voltages or electric fields. However, precautions must
V V
be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance cir­cuit. For proper operation, Vin and V
V
should be constrained to the
out
range GND v (Vin or V
Unused inputs must always be
) v VCC.
out
tied to an appropriate logic voltage level (e.g., either GND or VCC).
C
Unused outputs must be left open.
C
V
V
V V V
C
http://onsemi.com
4
Page 5
MC74VHC4051, MC74VHC4052, MC74VHC4053
V
CC
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
DC CHARACTERISTICSDigital Section (Voltages Referenced to GND) V
Symbol Parameter Condition
V
Minimum High–Level Input
IH
Voltage, Channel–Select or
Ron = Per Spec 2.0
Enable Inputs
V
Maximum Low–Level Input
IL
Voltage, Channel–Select or
Ron = Per Spec 2.0
Enable Inputs
I
I
CC
Maximum Input Leakage Current,
in
Channel–Select or Enable Inputs Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND, VEE = – 6.0 V
Channel Select, Enable and VIS = VCC or GND; VEE = GND VIO = 0 V VEE = – 6.0
DC ELECTRICAL CHARACTERISTICS Analog Section
V
CC
Symbol
ÎÎ
R
on
ÎÎ
ÎÎ
ÎÎ
R
on
ÎÎ
ÎÎ
I
off
I
on
ООООООО
Parameter
Maximum “ON” Resistance
ООООООО
ООООООО
ООООООО
Maximum Difference in “ON”
ООООООО
Resistance Between Any Two Channels in the Same Package
ООООООО
Maximum Off–Channel Leakage Current, Any One Channel
Maximum Off–ChannelVHC4051 Leakage Current, VHC4052 Common Channel VHC4053
Maximum On–ChannelVHC4051 Leakage Current, VHC4052 Channel–to–Channel VHC4053
Test Conditions
ОООООО
Vin = VIL or V VIS = VCC to V
ОООООО
IS v 2.0 mA (Figures 1, 2)
Vin = VIL or V
ОООООО
VIS = VCC or V (Endpoints)
ОООООО
IS v 2.0 mA (Figures 1, 2) Vin = VIL or V
ОООООО
VIS = 1/2 (VCC – VEE) IS v 2.0 mA
ОООООО
IH
EE
IH
EE
IH
Vin = VIL or VIH; VIO = VCC – VEE; Switch Off (Figure 3)
Vin = VIL or VIH; VIO = VCC – VEE; Switch Off (Figure 4)
Vin = VIL or VIH; Switch–to–Switch = VCC – VEE; (Figure 5)
V
Î
3.0
4.5
Î
4.5
6.0
3.0
Î
4.5
4.5
Î
6.0
3.0
Î
4.5
4.5
Î
6.0
6.0 – 6.0 0.1 0.5 1.0
6.0
6.0
6.0
6.0
6.0
6.0
= GND, Except Where Noted
EE
V
V
3.0
4.5
6.0
3.0
4.5
6.0
Guaranteed Limit
–55 to 25°C ≤85°C ≤125°C
1.50
2.10
3.15
4.20
0.5
0.9
1.35
1.8
1.50
2.10
3.15
4.20
0.5
0.9
1.35
1.8
6.0 ± 0.1 ± 1.0 ± 1.0 µA
6.0
6.0
1 4
10 40
Guaranteed Limit
V
Î
Î
– 4.5 – 6.0
Î
– 4.5
Î
– 6.0
Î
– 4.5
Î
– 6.0
– 6.0 – 6.0 – 6.0
– 6.0 – 6.0 – 6.0
EE V
0.0
0.0
0.0
0.0
0.0
0.0
– 55 to
25_C
ÎÎ
200 160
ÎÎ
120 100
150
ÎÎ
110
90
ÎÎ
80 40
ÎÎ
20 10
ÎÎ
10
0.2
0.1
0.1
0.2
0.1
0.1
v
85_C
ÎÎ
240 200
ÎÎ
150 125
180
ÎÎ
140 120
ÎÎ
100
50
ÎÎ
25 15
ÎÎ
12
2.0
1.0
1.0
2.0
1.0
1.0
v
125_C
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
1.50
2.10
3.15
4.20
0.5
0.9
1.35
1.8
40 80
320 280 170 140
230 190 140 115
80 40 18 14
4.0
2.0
2.0
4.0
2.0
2.0
Unit
V
V
µA
Unit
µA
µA
5
http://onsemi.com
Page 6
MC74VHC4051, MC74VHC4052, MC74VHC4053
V
CC
AC CHARACTERISTICS (C
Symbol Parameter
t
,
PLH
t
PHL
t
PLH
t
PHL
t
PLZ
t
PHZ
t
PZL
t
PZH
C
C
Maximum Propagation Delay , Channel–Select to Analog Output (Figure 9)
,
Maximum Propagation Delay , Analog Input to Analog Output (Figure 10)
,
Maximum Propagation Delay , Enable to Analog Output (Figure 11)
,
Maximum Propagation Delay , Enable to Analog Output (Figure 11)
Maximum Input Capacitance, Channel–Select or Enable Inputs 10 10 10 pF
in
Maximum Capacitance Analog I/O 35 35 35 pF
I/O
(All Switches Off) Common O/I: VHC4051
= 50 pF, Input tr = tf = 6 ns)
L
V
V
–55 to 25°C ≤85°C ≤125°C
2.0
3.0
4.5
6.0
2.0
3.0
4.5
6.0
2.0
3.0
4.5
6.0
2.0
3.0
4.5
6.0
VHC4052 VHC4053
Feedthrough 1.0 1.0 1.0
Guaranteed Limit
270
90 59 45
40 25 12 10
160
70 48 39
245
115
49 39
130
80 50
320 110
79 65
60 30 15 13
200
95 63 55
315 145
69 58
130
80 50
350 125
85 75
70 32 18 15
220
110
76 63
345 155
83 67
130
80 50
Unit
ns
ns
ns
ns
C
PD
*Used to determine the no–load dynamic power consumption: PD = CPD V
Power Dissipation Capacitance (Figure 13)* VHC4051
VHC4052 VHC4053
Typical @ 25°C, VCC = 5.0 V, VEE = 0 V
45 80 45
2
f + ICC VCC.
CC
pF
http://onsemi.com
6
Page 7
MC74VHC4051, MC74VHC4052, MC74VHC4053
V
CC
V
EE
Obtain 0dB
V
f
R
,
ON
RESISTANCE
OHMS
180
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)
Symbol Parameter Condition
BW Maximum On–Channel Bandwidth
or Minimum Frequency Response (Figure 6)
Off–Channel Feedthrough Isolation
(Figure 7)
Feedthrough Noise.
Channel–Select Input to Common I/O (Figure 8)
Crosstalk Between Any Two
Switches (Figure 12) (Test does not apply to VHC4051)
THD Total Harmonic Distortion
(Figure 14)
*Limits not tested. Determined by design and verified by qualification.
fin = 1MHz Sine Wave; Adjust fin Voltage to
Frequency Until dB Meter Reads –3dB; RL = 50, CL = 10pF
fin = Sine Wave; Adjust fin Voltage to Obtain 0dBm at V
Vin 1MHz Square Wave (tr = tf = 6ns); Adjust RL at Setup so that IS = 0A; Enable = GND RL = 600, CL = 50pF
fin = Sine Wave; Adjust fin Voltage to Obtain 0dBm at V
fin = 1kHz, RL = 10kΩ, CL = 50pF THD = THD
m at
fin = 10kHz, RL = 600, CL = 50pF
fin = 1.0MHz, RL = 50, CL = 10pF
fin = 10kHz, RL = 600, CL = 50pF
fin = 1.0MHz, RL = 50, CL = 10pF
measured
; Increase
OS
IS
RL = 10kΩ, CL = 10pF
IS
– THD VIS = 4.0VPP sine wave VIS = 8.0VPP sine wave
VIS = 11.0VPP sine wave
in
source
V
V
2.25
4.50
6.00
2.25
4.50
6.00
2.25
4.50
6.00
2.25
4.50
6.00
2.25
4.50
6.00
2.25
4.50
6.00
2.25
4.50
6.00
2.25
4.50
6.00
V
V
–2.25 –4.50 –6.00
–2.25 –4.50 –6.00
–2.25 –4.50 –6.00
–2.25 –4.50 –6.00
–2.25 –4.50 –6.00
–2.25 –4.50 –6.00
–2.25 –4.50 –6.00
–2.25 –4.50 –6.00
Limit*
25°C
‘51 ‘52 ‘53 80
95 95 95
–50 –50 –50
–40 –40 –40
25 105 135
35 145 190
–50 –50 –50
–60 –60 –60
0.10
0.08
0.05
120 120 120
80 80
Unit
MHz
mV
dB
PP
dB
%
300
)
250
(
200
150
100
on
50
0
0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO V
125°C
25°C
–55°C
EE
160 140
120 100
80 60
, ON RESISTANCE (OHMS)
on
40
R
20
0
0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.25
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO V
2.0
125°C
25°C
–55°C
2.5 2.75 3.0 EE
Figure 1a. T ypical On Resistance, VCC – VEE = 2.0 V Figure 1b. Typical On Resistance, VCC – VEE = 3.0 V
http://onsemi.com
7
Page 8
120
R
,
ON
RESISTANCE
OHMS
105
0
60
MC74VHC4051, MC74VHC4052, MC74VHC4053
)
100
(
80
60
40
on
20
0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO V
125°C
25°C
–55°C
EE
90
75
60
45
, ON RESISTANCE (OHMS)
30
on
R
15
0
0 1.0 2.0 3.0 4.0 5.0 6.03.5 4.5 5.5
0.5 1.5 2.5 VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO V
125°C
25°C
–55°C
EE
Figure 1c. T ypical On Resistance, VCC – VEE = 4.5 V Figure 1d. T ypical On Resistance, VCC – VEE = 6.0 V
8 70 60 50 40 30
, ON RESISTANCE (OHMS)
20
on
R
10
0
–4.5 –3.5
–2.5 –1.5 –0.5 0.5 1.5 2.5 3.5 4.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO V
125°C
25°C
–55°C
EE
50
40
30
20
, ON RESISTANCE (OHMS)
on
R
10
0
–6.0 –5.0
125°C
25°C
–55°C
–4.0 –3.0 –2.0 2.0 3.0 4.0 5.0 6.0
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO V
–1.0
1.00 EE
Figure 1e. T ypical On Resistance, VCC – VEE = 9.0 V Figure 1f. Typical On Resistance, VCC – VEE = 12.0 V
PLOTTER
PROGRAMMABLE
POWER SUPPLY
+
ANALOG IN COMMON OUT
MINI COMPUTER
UNDER TEST
GND
DEVICE
DC ANALYZER
V
CC
V
EE
Figure 1. On Resistance T est Set–Up
http://onsemi.com
8
Page 9
MC74VHC4051, MC74VHC4052, MC74VHC4053
T
V
CC
V
V
EE
V
CC
A
NC
V
IH
V
EE
6 7 8
16
OFF OFF
CC
COMMON O/I
Figure 2. Maximum Off Channel Leakage Current,
Any One Channel, Test Set–Up
V
CC
V
EE
V
CC
A
ON
OFF
ANALOG I/O
16
COMMON O/I
V
CC
N/C
V
CC
V
CC
OFF OFF
16
COMMON O/I
V
EE
V
CC
ANALOG I/O
V
IH
V
EE
6 7 8
Figure 3. Maximum Off Channel Leakage Current,
Common Channel, Test Set–Up
V
V
CC
0.1µF
f
in
16
ON
OS
CL*
dB
METER R
L
V
IL
V
EE
6 7 8
Figure 4. Maximum On Channel Leakage Current,
Channel to Channel, T est Set–Up
V
V
f
in
VIL or V
0.1µF
V
IH
EE
V
IS
R
L
6 7 8
CHANNEL SELECT
*Includes all probe and jig capacitance
OFF
CC
16
OS
CL*
dB
METER R
L
Figure 6. Off Channel Feedthrough Isolation,
T est Set–Up
6 7 8
V
EE
*Includes all probe and jig capacitance
Figure 5. Maximum On Channel Bandwidth,
T est Set–Up
V
CC
16
11
V
CC
GND
Vin 1 MHz tr = tf = 6 ns
R
L
ANALOG I/O
R
L
V
EE
ON/OFF OFF/ON
6 7 8
CHANNEL SELECT
*Includes all probe and jig capacitance
Figure 7. Feedthrough Noise, Channel Select to
Common Out, Test Set–Up
COMMON O/I
R
L
V
CC
TEST POIN
CL*
http://onsemi.com
9
Page 10
CHANNEL
SELECT
ANALOG
OUT
t
PLH
50%
MC74VHC4051, MC74VHC4052, MC74VHC4053
V
CC
V
CC
ANALOG I/O
GND
t
PHL
50%
*Includes all probe and jig capacitance
V
CC
16
ON/OFF OFF/ON
6 7 8
CHANNEL SELECT
COMMON O/I
TEST POINT
CL*
Figure 9a. Propagation Delays, Channel Select
to Analog Out
ANALOG
ANALOG
OUT
IN
t
PLH
50%
50%
Figure 10a. Propagation Delays, Analog In
to Analog Out
t
ENABLE
ANALOG
OUT
ANALOG
OUT
f
50%
50%
t
PZL
t
PZH
t
t
PHZ
t
r
PLZ
Figure 11a. Propagation Delays, Enable to
Analog Out
90% 50% 10%
10%
90%
t
PHL
V
CC
GND HIGH
IMPEDANCE
V
OL
V
OH
HIGH IMPEDANCE
Figure 8b. Propagation Delay , Test Set–Up Channel
Select to Analog Out
V
CC
16
V
CC
GND
ANALOG I/O
ON
6 7 8
*Includes all probe and jig capacitance
COMMON O/I
Figure 9b. Propagation Delay , Test Set–Up
Analog In to Analog Out
POSITION 1 WHEN TESTING t
1 2
V
CC
1 2
POSITION 2 WHEN TESTING t
ANALOG I/O
ENABLE
ON/OFF
6 7 8
V
CC
16
Figure 10b. Propagation Delay , Test Set–Up
Enable to Analog Out
PHZ PLZ
AND t
AND t
1k
TEST POINT
CL*
PZH
PZL
TEST POINT
CL*
http://onsemi.com
10
Page 11
MC74VHC4051, MC74VHC4052, MC74VHC4053
V
V
IS
R
0.1µF
V
EE
L
R
L
6 7 8
*Includes all probe and jig capacitance
f
in
Figure 11. Crosstalk Between Any Two
ON
OFF
16
R
L
CL*
V
OS
R
L
CL*
Figure 12. Power Dissipation Capacitance,
Switches, T est Set–Up
V
CC
ANALOG I/O
V
EE
ON/OFF OFF/ON
6 7 8
CHANNEL SELECT
Test Set–Up
CC
A
16
COMMON O/I
11
NC
V
CC
dB
–100
0 –10 –20 –30 –40 –50
–60 –70 –80 –90
FUNDAMENTAL FREQUENCY
DEVICE SOURCE
1.0 2.0 3.125 FREQUENCY (kHz)
V
IS
0.1µF
f
in
6 7 8
V
EE
V
CC
16
ON
*Includes all probe and jig capacitance
V
OS
TO
DISTORTION
CL*
METER
R
L
Figure 14a. T otal Harmonic Distortion, Test Set–Up Figure 13b. Plot, Harmonic Distortion
APPLICATIONS INFORMATION
The Channel Select and Enable control pins should be at VCC or GND logic levels. VCC being recognized as a logic high and GND being recognized as a logic low. In this example:
VCC = +5V = logic high
GND = 0V = logic low
The maximum analog voltage swings are determined by the supply voltages VCC and VEE. The positive peak analog voltage should not exceed VCC. Similarly, the negative peak analog voltage should not go below VEE. In this example, the difference between VCC and VEE is ten volts. Therefore, using the configuration of Figure 15, a maximum analog signal of ten volts peak–to–peak can be controlled. Unused analog inputs/outputs may be left floating (i.e., not connected). However, tying unused analog inputs and
outputs to VCC or GND through a low value resistor helps minimize crosstalk and feedthrough noise that may be picked up by an unused switch.
Although used here, balanced supplies are not a requirement. The only constraints on the power supplies are that:
VCC – GND = 2 to 6 volts
VEE – GND = 0 to –6 volts
VCC – VEE = 2 to 12 volts
and VEE GND
When voltage transients above VCC and/or below VEE are anticipated on the analog channels, external Germanium or Schottky diodes (Dx) are recommended as shown in Figure
16. These diodes should be able to absorb the maximum anticipated current surges during clipping.
http://onsemi.com
11
Page 12
MC74VHC4051, MC74VHC4052, MC74VHC4053
+5V
–5V
+5V
V
EE
V
16
CC
CC
D
x
D
x
V
EE
V
ANALOG
SIGNAL
–5V
V
+5V
16
ANALOG
ON
6 7 8
SIGNAL
11 10
TO EXTERNAL CMOS CIRCUITRY 0 to 5V DIGITAL SIGNALS
9
+5V
–5V
CC
D
x
ON/OFF
D
x
V
EE
7 8
V
EE
Figure 14. Application Example Figure 15. External Germanium or
Schottky Clipping Diodes
ANALOG
V
EE
SIGNAL
ON/OFF
6 7 8
+5V
16
ANALOG
SIGNAL
R*R R
11 10
9
* 2K R 10K
+5V
+5V
V
EE
LSTTL/NMOS
CIRCUITRY
+5V
V
EE
ANALOG
V
EE
SIGNAL
ON/OFF
6 7 8
16
11
10
9
+5V
ANALOG
SIGNAL
HCT
BUFFER
a. Using Pull–Up Resistors b. Using HCT Interface
+5V
V
EE
+5V
LSTTL/NMOS
CIRCUITRY
ENABLE
Figure 16. Interfacing LSTTL/NMOS to CMOS Inputs
11
A
10
B
9
C
6
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
13
X0
14
X1
15
X2
12
X3
1
X4
5
X5
2
X6
4
X7
Figure 18. Function Diagram, VHC4051
http://onsemi.com
12
3
X
Page 13
MC74VHC4051, MC74VHC4052, MC74VHC4053
ENABLE
10
A
9
B
6
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
12
X0
14
X1
15
X2
11
X3
13
X
1
Y0
5
Y1
2
Y2
4
Y3
3
Y
ENABLE
Figure 19. Function Diagram, VHC4052
11
A
10
B
9
C
6
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
13
X1
12
X0
14
X
1
Y1
2
Y0
15
Y
3
Z1
5
Z0
4
Z
Figure 20. Function Diagram, VHC4053
http://onsemi.com
13
Page 14
MC74VHC4051, MC74VHC4052, MC74VHC4053
ORDERING & SHIPPING INFORMATION
Device Package Shipping
MC74VHC4051D SOIC–16 48 Units / Rail MC74VHC4051DR2 SOIC–16 2500 Units / Tape & Reel MC74VHC4051DT TSSOP–16 96 Units / Rail MC74VHC4051DTR2 TSSOP–16 2500 Units / Tape & Reel MC74VHC4052D SOIC–16 48 Units / Rail MC74VHC4052DR2 SOIC–16 2500 Units / Tape & Reel MC74VHC4052DT TSSOP–16 96 Units / Rail MC74VHC4052DTR2 TSSOP–16 2500 Units / Tape & Reel MC74VHC4053D SOIC–16 48 Units / Rail MC74VHC4053DR2 SOIC–16 2500 Units / Tape & Reel MC74VHC4053DT TSSOP–16 96 Units / Rail MC74VHC4053DTR2 TSSOP–16 2500 Units / Tape & Reel
http://onsemi.com
14
Page 15
–T
SEATING
PLANE
MC74VHC4051, MC74VHC4052, MC74VHC4053
P ACKAGE DIMENSIONS
SOIC–16
D SUFFIX
CASE 751B–05
ISSUE J
–A
916
–B
P 8 PL
1
8
0.25 (0.010) B
M M
G
K
R X 45°
F
C
J
16 PL
D
0.25 (0.010) T B A
M
M
S S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
MILLIMETERS INCHES
MIN MINMAX MAX
DIM
A
9.80
B
3.80
C
1.35
D
0.35
F
0.40
G J
0.19
K
0.10
M
0°
P
5.80
R
0.25
1.27 BSC 0.050 BSC
10.00
4.00
1.75
0.49
1.25
0.25
0.25
6.20
0.50
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.008
0.009
0.004
0.009
0°
0.229
0.010
0.244
0.019
7°
7°
0.10 (0.004)
–T–
SEATING PLANE
L
U0.15 (0.006) T
PIN 1 IDENT.
U0.15 (0.006) T
D
S
2X L/2
S
TSSOP–16 DT SUFFIX
CASE 948F–01
ISSUE O
16X REFK
T
U
B
–U–
S
H
N
S
J
N
DETAIL E
DETAIL E
J1
0.25 (0.010)
F
K
K1
SECTION N–N
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.
INCHESMILLIMETERS
–W–
DIM MIN MAX MIN MAX
A 4.90 5.10 0.193 0.200 B 4.30 4.50 0.169 0.177 C ––– 1.20 ––– 0.047 D 0.05 0.15 0.002 0.006 F 0.50 0.75 0.020 0.030 G 0.65 BSC 0.026 BSC H 0.18 0.28 0.007 0.011 J 0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K 0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L 6.40 BSC 0.252 BSC M 0 8 0 8
____
0.10 (0.004) V
16
1
M
9
8
A
–V–
C
G
http://onsemi.com
15
Page 16
MC74VHC4051, MC74VHC4052, MC74VHC4053
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability , including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly , any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer .
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 T oll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse T ime)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK T ime)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, England, Ireland
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
ASIA/PACIFIC : LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
T oll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, T okyo, Japan 141–8549
Phone: 81–3–5740–2745 Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.
http://onsemi.com
16
MC74VHC4051/D
Loading...