The MC74VHC4051, MC74VHC4052 and MC74VHC4053 utilize
silicon–gate CMOS technology to achieve fast propagation delays,
low ON resistances, and low OFF leakage currents. These analog
multiplexers/demultiplexers control analog voltages that may vary
across the complete power supply range (from VCC to VEE).
The VHC4051, VHC4052 and VHC4053 are identical in pinout to
the high–speed HC4051A, HC4052A and HC4053A, and the
metal–gate MC14051B, MC14052B and MC14053B. The
Channel–Select inputs determine which one of the Analog
Inputs/Outputs is to be connected, by means of an analog switch, to the
Common Output/Input. When the Enable pin is HIGH, all analog
switches are turned off.
The Channel–Select and Enable inputs are compatible with standard
CMOS outputs; with pullup resistors they are compatible with LSTTL
outputs.
These devices have been designed so that the ON resistance (Ron) is
more linear over input voltage than Ron of metal–gate CMOS analog
switches.
• Fast Switching and Propagation Speeds
• Low Crosstalk Between Switches
• Diode Protection on All Inputs/Outputs
• Analog Power Supply Range (V
• Digital (Control) Power Supply Range (V
• Improved Linearity and Lower ON Resistance Than Metal–Gate
Counterparts
• Low Noise
• Chip Complexity:VHC4051 — 184 FET s or 46 Equivalent Gates
VHC4052 — 168 FET s or 42 Equivalent Gates
VHC4053 — 156 FET s or 39 Equivalent Gates
– VEE) = 2.0 to 12.0 V
CC
– GND) = 2.0 to 6.0 V
CC
http://onsemi.com
MARKING
DIAGRAMS
16
SO–16
16
1
16
See detailed ordering and shipping information in the package
dimensions section on page 14 of this data sheet.
D SUFFIX
CASE 751B
TSSOP–16
DT SUFFIX
1
ORDERING INFORMATION
CASE 948F
A= Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
VHC405x
AWLYWW
1
16
VHC
405x
ALYW
1
Semiconductor Components Industries, LLC, 1999
March, 2000 – Rev . 3
1Publication Order Number:
MC74VHC4051/D
Page 2
MC74VHC4051, MC74VHC4052, MC74VHC4053
LOGIC DIAGRAM
MC74VHC4051
Single–Pole, 8–Position Plus Common Off
13
X0
14
X1
15
ANALOG
INPUTS/
OUTPUTS
CHANNEL
SELECT
INPUTS
X2
X3
X4
X5
X6
X7
ENABLE
12
1
5
2
4
11
A
10
B
9
C
6
PIN 16 = V
PIN 7 = V
PIN 8 = GND
MULTIPLEXER/
DEMULTIPLEXER
CC
EE
3
COMMON
X
OUTPUT/
INPUT
FUNCTION TABLE – MC74VHC4051
Control Inputs
Select
Enable
L
L
L
L
L
L
L
L
H
CBA
L
L
L
L
L
H
H
H
H
X
L
L
H
H
L
H
H
L
L
L
H
H
L
H
H
X
X
ON Channels
X0
X1
X2
X3
X4
X5
X6
X7
NONE
X = Don’t Care
Pinout: MC74VHC4051 (Top View)
V
X2X1X0X3ABC
CC
15161413121110
2134567
9
8
Double–Pole, 4–Position Plus Common Off
ANALOG
INPUTS/OUTPUTS
CHANNEL-SELECT
INPUTS
X0
X1
X2
X3
Y0
Y1
Y2
Y3
ENABLE
LOGIC DIAGRAM
MC74VHC4052
12
14
15
11
1
5
2
4
10
A
9
B
6
X SWITCH
Y SWITCH
13
X
3
Y
PIN 16 = V
PIN 7 = V
EE
PIN 8 = GND
COMMON
OUTPUTS/INPUTS
CC
FUNCTION TABLE – MC74VHC4052
Control Inputs
Select
Enable
L
L
L
L
H
BA
L
L
L
H
H
H
X
L
H
X
ON Channels
Y0
Y1
Y2
Y3
NONE
X = Don’t Care
Pinout: MC74VHC4052 (Top View)
X2X1XX0X3AB
V
CC
15161413121110
2134567
Y0Y2YY3Y1 Enable VEEGND
X0
X1
X2
X3
9
8
http://onsemi.com
2
Page 3
MC74VHC4051, MC74VHC4052, MC74VHC4053
LOGIC DIAGRAM
MC74VHC4053
Triple Single–Pole, Double–Position Plus Common Off
12
X0
ANALOG
INPUTS/OUTPUTS
CHANNEL-SELECT
INPUTS
X1
Y0
Y1
ENABLE
13
2
1
5
Z0
3
Z1
11
A
10
B
9
C
6
X SWITCH
Y SWITCH
Z SWITCH
NOTE: This device allows independent control of each switch.
Channel–Select Input A controls the X–Switch, Input B controls
the Y–Switch and Input C controls the Z–Switch
14
X
15
Y
4
Z
PIN 16 = V
PIN 7 = V
EE
PIN 8 = GND
CC
COMMON
OUTPUTS/INPUTS
FUNCTION TABLE – MC74VHC4053
Control Inputs
Select
Enable
L
L
L
L
L
L
L
L
H
CBA
L
L
L
L
L
H
H
H
H
X
L
L
H
H
L
H
H
L
L
L
H
H
L
H
H
X
X
ON Channels
Z0
Z0
Z0
Z0
Z1
Z1
Z1
Z1
X = Don’t Care
Pinout: MC74VHC4053 (Top View)
YXX1X0ABC
V
CC
15161413121110
Y0
Y0
Y1
Y1
Y0
Y0
Y1
Y1
NONE
X0
X1
X0
X1
X0
X1
X0
X1
9
2134567
8
Y1Y0Z1ZZ0 Enable VEEGND
http://onsemi.com
3
Page 4
MC74VHC4051, MC74VHC4052, MC74VHC4053
Î
Î
Î
Î
Î
Î
Î
Î
ÎÎ
Î
Î
Î
ÎÎ
ÎÎ
Î
Î
Î
Î
ÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎ
Î
Î
Î
Î
Î
Î
ÎÎ
ÎÎ
ÎÎ
Î
Î
MAXIMUM RATINGS*
Symbol
V
ÎÎ
V
ÎÎ
Positive DC Supply Voltage(Referenced to GND)
CC
ОООООООООООО
Negative DC Supply Voltage (Referenced to GND)
EE
V
Analog Input Voltage
IS
V
Digital Input Voltage (Referenced to GND)
in
I
DC Current, Into or Out of Any Pin
P
Power Dissipation in Still Air,SOIC Package†
D
ОООООООООООО
T
Storage Temperature Range
stg
T
Lead Temperature, 1 mm from Case for 10 Seconds
L
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
RECOMMENDED OPERATING CONDITIONS
Symbol
V
ÎÎ
V
ÎÎ
V
V
VIO*
T
tr, t
ÎÎ
ÎÎ
*For voltage drops across switch greater than 1.2V (switch on), excessive VCC current may be
drawn; i.e., the current out of the switch may contain both VCC and switch input components.
The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
Positive DC Supply Voltage(Referenced to GND)
CC
ООООООООООООО
Negative DC Supply Voltage, Output (Referenced to
EE
GND)
ООООООООООООО
Analog Input Voltage
IS
Digital Input Voltage (Referenced to GND)
in
Static or Dynamic Voltage Across Switch
Operating Temperature Range, All Package Types
A
Input Rise/Fall TimeVCC = 2.0 V
f
(Channel Select or Enable Inputs)VCC = 3.0 V
ООООООООООООО
ООООООООООООО
Parameter
Parameter
(Referenced to VEE)
TSSOP Package†
(Referenced to VEE)
VCC = 4.5 V
VCC = 6.0 V
Value
– 0.5 to + 7.0
– 0.5 to + 14.0
ÎÎÎ
– 7.0 to + 5.0
VEE – 0.5 to
VCC + 0.5
– 0.5 to VCC + 0.5
± 25
500
ÎÎÎ
450
– 65 to + 150
260
Min
Max
2.0
6.0
Î
2.0
12.0
– 6.0
GND
Î
V
V
EE
CC
GND
V
CC
1.2
– 55
+ 125
0
1000
0
800
Î
0
500
0
400
Î
Unit
Î
mA
mW
Î
_
_
Unit
Î
Î
_
ns
Î
Î
This device contains protection
V
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
V
V
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
V
should be constrained to the
out
range GND v (Vin or V
Unused inputs must always be
) v VCC.
out
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
C
Unused outputs must be left open.
C
V
V
V
V
V
C
http://onsemi.com
4
Page 5
MC74VHC4051, MC74VHC4052, MC74VHC4053
V
CC
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND) V
SymbolParameterCondition
V
Minimum High–Level Input
IH
Voltage, Channel–Select or
Ron = Per Spec2.0
Enable Inputs
V
Maximum Low–Level Input
IL
Voltage, Channel–Select or
Ron = Per Spec2.0
Enable Inputs
I
I
CC
Maximum Input Leakage Current,
in
Channel–Select or Enable Inputs
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND,
VEE = – 6.0 V
Channel Select, Enable and
VIS = VCC or GND; VEE = GND
VIO = 0 VVEE = – 6.0
DC ELECTRICAL CHARACTERISTICS Analog Section
V
CC
Symbol
ÎÎ
R
on
ÎÎ
ÎÎ
ÎÎ
∆R
on
ÎÎ
ÎÎ
I
off
I
on
ООООООО
Parameter
Maximum “ON” Resistance
ООООООО
ООООООО
ООООООО
Maximum Difference in “ON”
ООООООО
Resistance Between Any Two
Channels in the Same Package
ООООООО
Maximum Off–Channel Leakage
Current, Any One Channel
Maximum Off–ChannelVHC4051
Leakage Current,VHC4052
Common ChannelVHC4053
Maximum On–ChannelVHC4051
Leakage Current,VHC4052
Channel–to–Channel VHC4053
Test Conditions
ОООООО
Vin = VIL or V
VIS = VCC to V
ОООООО
IS v 2.0 mA (Figures 1, 2)
Vin = VIL or V
ОООООО
VIS = VCC or V
(Endpoints)
ОООООО
IS v 2.0 mA (Figures 1, 2)
Vin = VIL or V
ОООООО
VIS = 1/2 (VCC – VEE)
IS v 2.0 mA
ОООООО
IH
EE
IH
EE
IH
Vin = VIL or VIH;
VIO = VCC – VEE;
Switch Off (Figure 3)
Vin = VIL or VIH;
VIO = VCC – VEE;
Switch Off (Figure 4)
Vin = VIL or VIH;
Switch–to–Switch =
VCC – VEE; (Figure 5)
V
Î
3.0
4.5
Î
4.5
6.0
3.0
Î
4.5
4.5
Î
6.0
3.0
Î
4.5
4.5
Î
6.0
6.0– 6.00.10.51.0
6.0
6.0
6.0
6.0
6.0
6.0
= GND, Except Where Noted
EE
V
V
3.0
4.5
6.0
3.0
4.5
6.0
Guaranteed Limit
–55 to 25°C≤85°C≤125°C
1.50
2.10
3.15
4.20
0.5
0.9
1.35
1.8
1.50
2.10
3.15
4.20
0.5
0.9
1.35
1.8
6.0± 0.1± 1.0± 1.0µA
6.0
6.0
1
4
10
40
Guaranteed Limit
V
Î
Î
– 4.5
– 6.0
Î
– 4.5
Î
– 6.0
Î
– 4.5
Î
– 6.0
– 6.0
– 6.0
– 6.0
– 6.0
– 6.0
– 6.0
EE
V
0.0
0.0
0.0
0.0
0.0
0.0
– 55 to
25_C
ÎÎ
200
160
ÎÎ
120
100
150
ÎÎ
110
90
ÎÎ
80
40
ÎÎ
20
10
ÎÎ
10
0.2
0.1
0.1
0.2
0.1
0.1
v
85_C
ÎÎ
240
200
ÎÎ
150
125
180
ÎÎ
140
120
ÎÎ
100
50
ÎÎ
25
15
ÎÎ
12
2.0
1.0
1.0
2.0
1.0
1.0
v
125_C
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
1.50
2.10
3.15
4.20
0.5
0.9
1.35
1.8
40
80
320
280
170
140
230
190
140
115
80
40
18
14
4.0
2.0
2.0
4.0
2.0
2.0
Unit
V
V
µA
Unit
Ω
Ω
µA
µA
5
http://onsemi.com
Page 6
MC74VHC4051, MC74VHC4052, MC74VHC4053
V
CC
AC CHARACTERISTICS (C
SymbolParameter
t
,
PLH
t
PHL
t
PLH
t
PHL
t
PLZ
t
PHZ
t
PZL
t
PZH
C
C
Maximum Propagation Delay , Channel–Select to Analog Output
(Figure 9)
,
Maximum Propagation Delay , Analog Input to Analog Output
(Figure 10)
,
Maximum Propagation Delay , Enable to Analog Output
(Figure 11)
,
Maximum Propagation Delay , Enable to Analog Output
(Figure 11)
Maximum Input Capacitance, Channel–Select or Enable Inputs101010pF
in
Maximum CapacitanceAnalog I/O353535pF
I/O
(All Switches Off)Common O/I: VHC4051
= 50 pF, Input tr = tf = 6 ns)
L
V
V
–55 to 25°C≤85°C≤125°C
2.0
3.0
4.5
6.0
2.0
3.0
4.5
6.0
2.0
3.0
4.5
6.0
2.0
3.0
4.5
6.0
VHC4052
VHC4053
Feedthrough1.01.01.0
Guaranteed Limit
270
90
59
45
40
25
12
10
160
70
48
39
245
115
49
39
130
80
50
320
110
79
65
60
30
15
13
200
95
63
55
315
145
69
58
130
80
50
350
125
85
75
70
32
18
15
220
110
76
63
345
155
83
67
130
80
50
Unit
ns
ns
ns
ns
C
PD
*Used to determine the no–load dynamic power consumption: PD = CPD V
Switches (Figure 12)
(Test does not apply to VHC4051)
THDTotal Harmonic Distortion
(Figure 14)
*Limits not tested. Determined by design and verified by qualification.
fin = 1MHz Sine Wave; Adjust fin Voltage to
Frequency Until dB Meter Reads –3dB;
RL = 50Ω, CL = 10pF
fin = Sine Wave; Adjust fin Voltage to
Obtain 0dBm at V
Vin ≤ 1MHz Square Wave (tr = tf = 6ns);
Adjust RL at Setup so that IS = 0A;
Enable = GNDRL = 600Ω, CL = 50pF
fin = Sine Wave; Adjust fin Voltage to
Obtain 0dBm at V
fin = 1kHz, RL = 10kΩ, CL = 50pF
THD = THD
m at
fin = 10kHz, RL = 600Ω, CL = 50pF
fin = 1.0MHz, RL = 50Ω, CL = 10pF
fin = 10kHz, RL = 600Ω, CL = 50pF
fin = 1.0MHz, RL = 50Ω, CL = 10pF
measured
; Increase
OS
IS
RL = 10kΩ, CL = 10pF
IS
– THD
VIS = 4.0VPP sine wave
VIS = 8.0VPP sine wave
VIS = 11.0VPP sine wave
in
source
V
V
2.25
4.50
6.00
2.25
4.50
6.00
2.25
4.50
6.00
2.25
4.50
6.00
2.25
4.50
6.00
2.25
4.50
6.00
2.25
4.50
6.00
2.25
4.50
6.00
V
V
–2.25
–4.50
–6.00
–2.25
–4.50
–6.00
–2.25
–4.50
–6.00
–2.25
–4.50
–6.00
–2.25
–4.50
–6.00
–2.25
–4.50
–6.00
–2.25
–4.50
–6.00
–2.25
–4.50
–6.00
Limit*
25°C
‘51‘52‘53
80
95
95
95
–50
–50
–50
–40
–40
–40
25
105
135
35
145
190
–50
–50
–50
–60
–60
–60
0.10
0.08
0.05
120
120
120
80
80
Unit
MHz
mV
dB
PP
dB
%
300
)
250
(
200
150
100
on
50
0
00.250.50.751.01.251.51.752.02.25
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO V
125°C
25°C
–55°C
EE
160
140
120
100
80
60
, ON RESISTANCE (OHMS)
on
40
R
20
0
0 0.25 0.5 0.75 1.0 1.25 1.5 1.752.25
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO V
2.0
125°C
25°C
–55°C
2.5 2.75 3.0
EE
Figure 1a. T ypical On Resistance, VCC – VEE = 2.0 VFigure 1b. Typical On Resistance, VCC – VEE = 3.0 V
http://onsemi.com
7
Page 8
120
R
,
ON
RESISTANCE
OHMS
105
0
60
MC74VHC4051, MC74VHC4052, MC74VHC4053
)
100
(
80
60
40
on
20
0
00.51.01.52.02.53.03.54.04.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO V
125°C
25°C
–55°C
EE
90
75
60
45
, ON RESISTANCE (OHMS)
30
on
R
15
0
01.02.03.04.05.06.03.54.55.5
0.51.52.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO V
125°C
25°C
–55°C
EE
Figure 1c. T ypical On Resistance, VCC – VEE = 4.5 VFigure 1d. T ypical On Resistance, VCC – VEE = 6.0 V
8
70
60
50
40
30
, ON RESISTANCE (OHMS)
20
on
R
10
0
–4.5 –3.5
–2.5 –1.5 –0.50.51.52.53.54.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO V
125°C
25°C
–55°C
EE
50
40
30
20
, ON RESISTANCE (OHMS)
on
R
10
0
–6.0 –5.0
125°C
25°C
–55°C
–4.0 –3.0 –2.02.0 3.0 4.0 5.0 6.0
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO V
–1.0
1.00
EE
Figure 1e. T ypical On Resistance, VCC – VEE = 9.0 VFigure 1f. Typical On Resistance, VCC – VEE = 12.0 V
PLOTTER
PROGRAMMABLE
POWER
SUPPLY
+–
ANALOG INCOMMON OUT
MINI COMPUTER
UNDER TEST
GND
DEVICE
DC ANALYZER
V
CC
V
EE
Figure 1. On Resistance T est Set–Up
http://onsemi.com
8
Page 9
MC74VHC4051, MC74VHC4052, MC74VHC4053
T
V
CC
V
V
EE
V
CC
A
NC
V
IH
V
EE
6
7
8
16
OFF
OFF
CC
COMMON O/I
Figure 2. Maximum Off Channel Leakage Current,
Any One Channel, Test Set–Up
V
CC
V
EE
V
CC
A
ON
OFF
ANALOG I/O
16
COMMON O/I
V
CC
N/C
V
CC
V
CC
OFF
OFF
16
COMMON O/I
V
EE
V
CC
ANALOG I/O
V
IH
V
EE
6
7
8
Figure 3. Maximum Off Channel Leakage Current,
Common Channel, Test Set–Up
V
V
CC
0.1µF
f
in
16
ON
OS
CL*
dB
METER
R
L
V
IL
V
EE
6
7
8
Figure 4. Maximum On Channel Leakage Current,
Channel to Channel, T est Set–Up
V
V
f
in
VIL or V
0.1µF
V
IH
EE
V
IS
R
L
6
7
8
CHANNEL SELECT
*Includes all probe and jig capacitance
OFF
CC
16
OS
CL*
dB
METER
R
L
Figure 6. Off Channel Feedthrough Isolation,
T est Set–Up
6
7
8
V
EE
*Includes all probe and jig capacitance
Figure 5. Maximum On Channel Bandwidth,
T est Set–Up
V
CC
16
11
V
CC
GND
Vin ≤ 1 MHz
tr = tf = 6 ns
R
L
ANALOG I/O
R
L
V
EE
ON/OFF
OFF/ON
6
7
8
CHANNEL SELECT
*Includes all probe and jig capacitance
Figure 7. Feedthrough Noise, Channel Select to
Common Out, Test Set–Up
COMMON O/I
R
L
V
CC
TEST
POIN
CL*
http://onsemi.com
9
Page 10
CHANNEL
SELECT
ANALOG
OUT
t
PLH
50%
MC74VHC4051, MC74VHC4052, MC74VHC4053
V
CC
V
CC
ANALOG I/O
GND
t
PHL
50%
*Includes all probe and jig capacitance
V
CC
16
ON/OFF
OFF/ON
6
7
8
CHANNEL SELECT
COMMON O/I
TEST
POINT
CL*
Figure 9a. Propagation Delays, Channel Select
to Analog Out
ANALOG
ANALOG
OUT
IN
t
PLH
50%
50%
Figure 10a. Propagation Delays, Analog In
to Analog Out
t
ENABLE
ANALOG
OUT
ANALOG
OUT
f
50%
50%
t
PZL
t
PZH
t
t
PHZ
t
r
PLZ
Figure 11a. Propagation Delays, Enable to
Analog Out
90%
50%
10%
10%
90%
t
PHL
V
CC
GND
HIGH
IMPEDANCE
V
OL
V
OH
HIGH
IMPEDANCE
Figure 8b. Propagation Delay , Test Set–Up Channel
Select to Analog Out
V
CC
16
V
CC
GND
ANALOG I/O
ON
6
7
8
*Includes all probe and jig capacitance
COMMON O/I
Figure 9b. Propagation Delay , Test Set–Up
Analog In to Analog Out
POSITION 1 WHEN TESTING t
1
2
V
CC
1
2
POSITION 2 WHEN TESTING t
ANALOG I/O
ENABLE
ON/OFF
6
7
8
V
CC
16
Figure 10b. Propagation Delay , Test Set–Up
Enable to Analog Out
PHZ
PLZ
AND t
AND t
1kΩ
TEST
POINT
CL*
PZH
PZL
TEST
POINT
CL*
http://onsemi.com
10
Page 11
MC74VHC4051, MC74VHC4052, MC74VHC4053
V
V
IS
R
0.1µF
V
EE
L
R
L
6
7
8
*Includes all probe and jig capacitance
f
in
Figure 11. Crosstalk Between Any Two
ON
OFF
16
R
L
CL*
V
OS
R
L
CL*
Figure 12. Power Dissipation Capacitance,
Switches, T est Set–Up
V
CC
ANALOG I/O
V
EE
ON/OFF
OFF/ON
6
7
8
CHANNEL SELECT
Test Set–Up
CC
A
16
COMMON O/I
11
NC
V
CC
dB
–100
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
FUNDAMENTAL FREQUENCY
DEVICE
SOURCE
1.02.03.125
FREQUENCY (kHz)
V
IS
0.1µF
f
in
6
7
8
V
EE
V
CC
16
ON
*Includes all probe and jig capacitance
V
OS
TO
DISTORTION
CL*
METER
R
L
Figure 14a. T otal Harmonic Distortion, Test Set–UpFigure 13b. Plot, Harmonic Distortion
APPLICATIONS INFORMATION
The Channel Select and Enable control pins should be at
VCC or GND logic levels. VCC being recognized as a logic
high and GND being recognized as a logic low. In this
example:
VCC = +5V = logic high
GND = 0V = logic low
The maximum analog voltage swings are determined by
the supply voltages VCC and VEE. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below VEE. In this example,
the difference between VCC and VEE is ten volts. Therefore,
using the configuration of Figure 15, a maximum analog
signal of ten volts peak–to–peak can be controlled. Unused
analog inputs/outputs may be left floating (i.e., not
connected). However, tying unused analog inputs and
outputs to VCC or GND through a low value resistor helps
minimize crosstalk and feedthrough noise that may be
picked up by an unused switch.
Although used here, balanced supplies are not a
requirement. The only constraints on the power supplies are
that:
VCC – GND = 2 to 6 volts
VEE – GND = 0 to –6 volts
VCC – VEE = 2 to 12 volts
and VEE ≤ GND
When voltage transients above VCC and/or below VEE are
anticipated on the analog channels, external Germanium or
Schottky diodes (Dx) are recommended as shown in Figure
16. These diodes should be able to absorb the maximum
anticipated current surges during clipping.
http://onsemi.com
11
Page 12
MC74VHC4051, MC74VHC4052, MC74VHC4053
+5V
–5V
+5V
V
EE
V
16
CC
CC
D
x
D
x
V
EE
V
ANALOG
SIGNAL
–5V
V
+5V
16
ANALOG
ON
6
7
8
SIGNAL
11
10
TO EXTERNAL CMOS
CIRCUITRY 0 to 5V
DIGITAL SIGNALS
9
+5V
–5V
CC
D
x
ON/OFF
D
x
V
EE
7
8
V
EE
Figure 14. Application ExampleFigure 15. External Germanium or
Schottky Clipping Diodes
ANALOG
V
EE
SIGNAL
ON/OFF
6
7
8
+5V
16
ANALOG
SIGNAL
R*RR
11
10
9
* 2K ≤ R ≤ 10K
+5V
+5V
V
EE
LSTTL/NMOS
CIRCUITRY
+5V
V
EE
ANALOG
V
EE
SIGNAL
ON/OFF
6
7
8
16
11
10
9
+5V
ANALOG
SIGNAL
HCT
BUFFER
a. Using Pull–Up Resistorsb. Using HCT Interface
+5V
V
EE
+5V
LSTTL/NMOS
CIRCUITRY
ENABLE
Figure 16. Interfacing LSTTL/NMOS to CMOS Inputs
11
A
10
B
9
C
6
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
13
X0
14
X1
15
X2
12
X3
1
X4
5
X5
2
X6
4
X7
Figure 18. Function Diagram, VHC4051
http://onsemi.com
12
3
X
Page 13
MC74VHC4051, MC74VHC4052, MC74VHC4053
ENABLE
10
A
9
B
6
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
12
X0
14
X1
15
X2
11
X3
13
X
1
Y0
5
Y1
2
Y2
4
Y3
3
Y
ENABLE
Figure 19. Function Diagram, VHC4052
11
A
10
B
9
C
6
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
LEVEL
SHIFTER
13
X1
12
X0
14
X
1
Y1
2
Y0
15
Y
3
Z1
5
Z0
4
Z
Figure 20. Function Diagram, VHC4053
http://onsemi.com
13
Page 14
MC74VHC4051, MC74VHC4052, MC74VHC4053
ORDERING & SHIPPING INFORMATION
DevicePackageShipping
MC74VHC4051DSOIC–1648 Units / Rail
MC74VHC4051DR2SOIC–162500 Units / Tape & Reel
MC74VHC4051DTTSSOP–1696 Units / Rail
MC74VHC4051DTR2TSSOP–162500 Units / Tape & Reel
MC74VHC4052DSOIC–1648 Units / Rail
MC74VHC4052DR2SOIC–162500 Units / Tape & Reel
MC74VHC4052DTTSSOP–1696 Units / Rail
MC74VHC4052DTR2TSSOP–162500 Units / Tape & Reel
MC74VHC4053DSOIC–1648 Units / Rail
MC74VHC4053DR2SOIC–162500 Units / Tape & Reel
MC74VHC4053DTTSSOP–1696 Units / Rail
MC74VHC4053DTR2TSSOP–162500 Units / Tape & Reel
http://onsemi.com
14
Page 15
–T
SEATING
–
PLANE
MC74VHC4051, MC74VHC4052, MC74VHC4053
P ACKAGE DIMENSIONS
SOIC–16
D SUFFIX
CASE 751B–05
ISSUE J
–A
–
916
–B
P 8 PL
1
–
8
0.25 (0.010)B
MM
G
K
R X 45°
F
C
J
16 PL
D
0.25 (0.010)T BA
M
M
SS
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
MILLIMETERSINCHES
MINMINMAXMAX
DIM
A
9.80
B
3.80
C
1.35
D
0.35
F
0.40
G
J
0.19
K
0.10
M
0°
P
5.80
R
0.25
1.27 BSC0.050 BSC
10.00
4.00
1.75
0.49
1.25
0.25
0.25
6.20
0.50
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.008
0.009
0.004
0.009
0°
0.229
0.010
0.244
0.019
7°
7°
0.10 (0.004)
–T–
SEATING
PLANE
L
U0.15 (0.006) T
PIN 1
IDENT.
U0.15 (0.006) T
D
S
2X L/2
S
TSSOP–16
DT SUFFIX
CASE 948F–01
ISSUE O
16X REFK
T
U
B
–U–
S
H
N
S
J
N
DETAIL E
DETAIL E
J1
0.25 (0.010)
F
K
K1
SECTION N–N
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER
SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT
DATUM PLANE –W–.
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty , representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability ,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly , any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer .
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867Toll Free USA/Canada
Email: ONlit@hibbertco.com
Fax Response Line: 303–675–2167 or 800–344–3810 T oll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)
Email: ONlit–german@hibbertco.com
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse T ime)
Email: ONlit–french@hibbertco.com
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK T ime)
Email: ONlit@hibbertco.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, England, Ireland
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–spanish@hibbertco.com
ASIA/PACIFIC : LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
T oll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, T okyo, Japan 141–8549
Phone: 81–3–5740–2745
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
http://onsemi.com
16
MC74VHC4051/D
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.