
SEMICONDUCTOR TECHNICAL DATA
1
REV 6
Motorola, Inc. 1995
10/95
!
! !
High–Performance Silicon–Gate CMOS
The MC54/74HC240A is identical in pinout to the LS240. The device
inputs are compatible with standard CMOS outputs; with pullup resistors,
they are compatible with LSTTL outputs.
This octal noninverting buffer/line driver/line receiver is designed to be
used w ith 3–state m emory address drivers, clock d rivers, a nd other
sub–oriented systems. The device has inverting outputs and two active–low
output enables.
The HC240A is similar in function to the HC241A and HC244A.
• Output Drive Capability: 15 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS, and TTL
• Operating Voltage Range: 2 to 6 V
• Low Input Current: 1 µA
• High Noise Immunity Characteristic of CMOS Devices
• In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
• Chip Complexity: 120 FETs or 30 Equivalent Gates
LOGIC DIAGRAM
DATA
INPUTS
A1
A2
A3
A4
B1
B2
B3
B4
17
15
13
11
8
6
4
2 18
16
14
12
9
7
5
3
YB4
YB3
YB2
YB1
YA4
YA3
YA2
YA1
INVERTING
OUTPUTS
PIN 20 = V
CC
PIN 10 = GND
OUTPUT
ENABLES
ENABLE A
ENABLE B
1
19
PIN ASSIGNMENT
A3
A2
YB4
A1
ENABLE A
GND
YB1
A4
YB2
YB3 5
4
3
2
1
10
9
8
7
6
14
15
16
17
18
19
20
11
12
13
YA2
B4
YA1
ENABLE B
V
CC
B1
YA4
B2
YA3
B3
FUNCTION TABLE
Inputs Outputs
Enable A,
Enable B A, B YA, YB
L L H
L H L
H X Z
Z = high impedance
DW SUFFIX
SOIC PACKAGE
CASE 751D–04
N SUFFIX
PLASTIC PACKAGE
CASE 738–03
ORDERING INFORMATION
MC54HCXXXAJ
MC74HCXXXAN
MC74HCXXXADW
MC74HCXXXADT
Ceramic
Plastic
SOIC
TSSOP
DT SUFFIX
TSSOP PACKAGE
CASE 948E–02
J SUFFIX
CERAMIC PACKAGE
CASE 732–03
1
20
1
20
1
20
1
20

MC54/74HC240A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
2
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND)
DC Output Voltage (Referenced to GND)
DC Input Current, per Pin
DC Output Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air,Plastic or Ceramic DIP†
SOIC Package†
TSSOP Package†
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP, SOIC or TSSOP Package)
(Ceramic DIP)
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
Ceramic DIP: – 10 mW/_C from 100_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
Operating Temperature, All Package Types
Input Rise and Fall Time VCC = 2.0 V
(Figure 1) VCC = 4.5 V
VCC = 6.0 V
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Minimum High–Level Input
Voltage
V
out
= 0.1 V
|I
out
| v 20 µA
Maximum Low–Level Input
Voltage
V
out
= VCC – 0.1 V
|I
out
| v 20 µA
Minimum High–Level Output
Voltage
Vin = V
IL
|I
out
| v 20 µA
Vin = V
IL
|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
Maximum Low–Level Output
Voltage
Vin = V
IH
|I
out
| v 20 µA
Vin = V
IH
|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
Maximum Input Leakage Current
µA
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.

MC54/74HC240A
High–Speed CMOS Logic Data
DL129 — Rev 6
3 MOTOROLA
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Maximum Three–State
Leakage Current
Output in High–Impedance State
Vin = VIL or V
IH
V
out
= VCC or GND
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
I
out
= 0 µA
µA
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tr = tf = 6 ns)
Maximum Propagation Delay, A to YA or B to YB
(Figures 1 and 3)
Maximum Propagation Delay, Output Enable to YA or YB
(Figures 2 and 4)
Maximum Propagation Delay, Output Enable to YA or YB
(Figures 2 and 4)
Maximum Output Transition Time, Any Output
(Figures 1 and 3)
Maximum Input Capacitance
Maximum Three–State Output Capacitance (Output in
High–Impedance State)
pF
NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the Motorola High–
Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Transceiver Channel)*
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC. For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).

MC54/74HC240A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
4
SWITCHING WAVEFORMS
DATA INPUT
A OR B
OUTPUT
YA OR YB
V
CC
GND
t
f
t
r
90%
50%
10%
90%
50%
10%
t
PHL
t
PLH
t
THL
t
TLH
ENABLE
OUTPUT Y
OUTPUT Y
50%
50%
50%
90%
10%
t
PZL
t
PLZ
t
PZHtPHZ
V
CC
GND
HIGH
IMPEDANCE
V
OL
V
OH
HIGH
IMPEDANCE
Figure 1. Figure 2.
*Includes all probe and jig capacitance
CL*
TEST POINT
DEVICE
UNDER
TEST
OUTPUT
Figure 3. Test Circuit
*Includes all probe and jig capacitance
CL*
TEST POINT
DEVICE
UNDER
TEST
OUTPUT
Figure 4. Test Circuit
CONNECT TO VCC WHEN
TESTING t
PLZ
AND t
PZL
.
CONNECT TO GND WHEN
TESTING t
PHZ
AND t
PZH
.
1 k
Ω
PIN DESCRIPTIONS
INPUTS
A1, A2, A3, A4, B1, B2, B3, B4
(Pins 2, 4, 6, 8, 11, 13, 15, 17)
Data input pins. Data on these pins appear in inverted form
on the c orresponding Y outputs, when t he outputs are
enabled.
CONTROLS
Enable A, Enable B (Pins 1, 19)
Output enables (active–low). When a low level is applied
to these pins, the outputs are enabled and the devices function as inverters. When a high level is applied, the outputs
assume the high–impedance state.
OUTPUTS
YA1, YA2, YA3, YA4, YB1, YB2, YB3, YB4
(Pins 18, 16, 14, 12, 9, 7, 5, 3)
Device outputs. Depending upon the state of the output–
enable pins, these outputs are either inverting outputs or
high–impedance outputs.

MC54/74HC240A
High–Speed CMOS Logic Data
DL129 — Rev 6
5 MOTOROLA
LOGIC DETAIL
DATA
INPUT
A OR B
ENABLE A
OR ENABLE B
TO THREE OTHER
A OR B INVERTERS
ONE OF 8
INVERTERS
YA
OR
YB
V
CC

MC54/74HC240A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
6
OUTLINE DIMENSIONS
J SUFFIX
CERAMIC PACKAGE
CASE 732–03
ISSUE E
N SUFFIX
PLASTIC PACKAGE
CASE 738–03
ISSUE E
DW SUFFIX
PLASTIC SOIC PACKAGE
CASE 751D–04
ISSUE E
NOTES:
1. LEADS WITHIN 0.25 (0.010) DIAMETER, TRUE
POSITION AT SEATING PLANE, AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSIONS A AND B INCLUDE MENISCUS.
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 23.88 25.15 0.940 0.990
B 6.60 7.49 0.260 0.295
C 3.81 5.08 0.150 0.200
D 0.38 0.56 0.015 0.022
F 1.40 1.65 0.055 0.065
G 2.54 BSC 0.100 BSC
H 0.51 1.27 0.020 0.050
J 0.20 0.30 0.008 0.012
K 3.18 4.06 0.125 0.160
L 7.62 BSC 0.300 BSC
M 0 15 0 15
N 0.25 1.02 0.010 0.040
_ _ _ _
A
20
1 10
11
B
F
C
SEATING
PLANE
D
H
G
K
N
J
M
L
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
M
L
J
20 PL
M
B
M
0.25 (0.010) T
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A 25.66 27.171.010 1.070
B 6.10 6.600.240 0.260
C 3.81 4.570.150 0.180
D 0.39 0.550.015 0.022
G 2.54 BSC0.100 BSC
J 0.21 0.380.008 0.015
K 2.80 3.550.110 0.140
L 7.62 BSC0.300 BSC
M 0 15 0 15
N 0.51 1.010.020 0.040
_ __ _
E
1.27 1.770.050 0.070
1
11
10
20
–A–
SEATING
PLANE
K
N
FG
D
20 PL
–T–
M
A
M
0.25 (0.010) T
E
B
C
F
1.27 BSC0.050 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.150
(0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.13
(0.005) TOTAL IN EXCESS OF D DIMENSION
AT MAXIMUM MATERIAL CONDITION.
–A–
–B–
20
1
11
10
S
A
M
0.010 (0.25) B
S
T
D20X
M
B
M
0.010 (0.25)
P10X
J
F
G
18X
K
C
–T–
SEATING
PLANE
M
R
X 45
_
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 12.65 12.95 0.499 0.510
B 7.40 7.60 0.292 0.299
C 2.35 2.65 0.093 0.104
D 0.35 0.49 0.014 0.019
F 0.50 0.90 0.020 0.035
G 1.27 BSC 0.050 BSC
J 0.25 0.32 0.010 0.012
K 0.10 0.25 0.004 0.009
M 0 7 0 7
P 10.05 10.55 0.395 0.415
R 0.25 0.75 0.010 0.029
_ _
_ _

MC54/74HC240A
High–Speed CMOS Logic Data
DL129 — Rev 6
7 MOTOROLA
OUTLINE DIMENSIONS
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948E–02
ISSUE A
DIMAMIN MAX MIN MAX
INCHES
6.60 0.260
MILLIMETERS
B 4.30 4.50 0.169 0.177
C 1.20 0.047
D 0.05 0.15 0.002 0.006
F 0.50 0.75 0.020 0.030
G 0.65 BSC 0.026 BSC
H 0.27 0.37 0.011 0.015
J 0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K 0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L 6.40 BSC 0.252 BSC
M 0 8 0 8
_ _ _ _
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE –W–.
1 10
1120
PIN 1
IDENT
A
B
–T–
0.100 (0.004)
C
D
G
H
SECTION N–N
K
K1
J J1
N
N
M
F
–W–
SEATING
PLANE
–V–
–U–
S
U
M
0.10 (0.004) V
S
T
20X REFK
L
L/2
2X
S
U0.15 (0.006) T
DETAIL E
0.25 (0.010)
DETAIL E
6.40 0.252
––– –––
S
U0.15 (0.006) T
How to reach us:
USA/EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters can and do vary in different
applications. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MC54/74HC240A/D
*MC54/74HC240A/D*
◊
CODELINE