Datasheet MC68HC908GR16A Datasheet (Freescale)

MC68HC908GR16A
Data Sheet
M68HC08 Microcontrollers
MC68HC908GR16A Rev. 1.0 03/2006
freescale.com
MC68HC908GR16A
Data Sheet
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:
http://freescale.com/
The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.
Revision History
Date
October,
2004
March,
2006
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. This product incorporates SuperFlash® technology licensed from SST.
© Freescale Semiconductor, Inc., 2004, 2006. All rights reserved.
Revision
Level
N/A Initial release N/A
1.0
10.5 Clock Generator Module (CGM) — Updated description to remove
erroneous information.
Description
Page
Number(s)
106
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 3
Revision History
MC68HC908GR16A Data Sheet, Rev. 1.0
4 Freescale Semiconductor
List of Chapters
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 2 Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Chapter 3 Analog-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Chapter 4 Clock Generator Module (CGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Chapter 5 Configuration Register (CONFIG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Chapter 6 Computer Operating Properly (COP) Module . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Chapter 7 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Chapter 8 External Interrupt (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Chapter 9 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Chapter 10 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
Chapter 11 Low-Voltage Inhibit (LVI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Chapter 12 Input/Output (I/O) Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
Chapter 13 Resets and Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
Chapter 14 Enhanced Serial Communications Interface (ESCI) Module . . . . . . . . . . . . . 143
Chapter 15 System Integration Module (SIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
Chapter 16 Serial Peripheral Interface (SPI) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
Chapter 17 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211
Chapter 18 Timer Interface Module (TIM1 and TIM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
Chapter 19 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231
Chapter 20 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247
Chapter 21 Ordering Information and Mechanical Specifications . . . . . . . . . . . . . . . . . .263
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 5
List of Chapters
MC68HC908GR16A Data Sheet, Rev. 1.0
6 Freescale Semiconductor
Table of Contents
Chapter 1
General Description
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.1 Standard Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.2 Features of the CPU08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.1 Power Supply Pins (V
1.5.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.3 External Reset Pin (RST
1.5.4 External Interrupt Pin (IRQ
1.5.5 CGM Power Supply Pins (V
1.5.6 External Filter Capacitor Pin (V
1.5.7 ADC Power Supply/Reference Pins (VDDAD/V
1.5.8 Port A Input/Output (I/O) Pins (PTA7/KBD7
1.5.9 Port B I/O Pins (PTB7/AD7–PTB0/AD0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.10 Port C I/O Pins (PTC6–PTC0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.11 Port D I/O Pins (PTD7/T2CH1–PTD0/SS
1.5.12 Port E I/O Pins (PTE5–PTE2 and PTE0/TxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
and VSS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DD
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DDA
and V
CGMXFC
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
SSA
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
and VSSAD/V
REFH
). . . . . . . . . . . . . . 25
REFL
–PTA0/KBD0) . . . . . . . . . . . . . . . . . . . . . . . . . 25
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Chapter 2
Memory
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Input/Output (I/O) Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6 FLASH Memory (FLASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.2 FLASH Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.3 FLASH Page Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.4 FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6.5 FLASH Program/Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.6 FLASH Block Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.7 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.8 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6.9 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 7
Table of Contents
Chapter 3
Analog-to-Digital Converter (ADC)
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.4 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.6 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Monotonicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7.1 ADC Analog Power Pin (V
3.7.2 ADC Analog Ground Pin (V
3.7.3 ADC Voltage Reference High Pin (V
3.7.4 ADC Voltage Reference Low Pin (V
3.7.5 ADC Voltage In (V
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
ADIN
3.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.8.1 ADC Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.8.2 ADC Data Register High and Data Register Low. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8.2.1 Left Justified Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8.2.2 Right Justified Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.8.2.3 Left Justified Signed Data Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8.2.4 Eight Bit Truncation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8.3 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DDAD
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
SSAD
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
REFH
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
REFL
Chapter 4
Clock Generator Module (CGM)
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Crystal Oscillator Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.4 Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.5 Manual and Automatic PLL Bandwidth Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.6 Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.7 Special Programming Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.8 Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.9 CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
MC68HC908GR16A Data Sheet, Rev. 1.0
8 Freescale Semiconductor
4.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.3 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.4 PLL Analog Power Pin (V
4.4.5 PLL Analog Ground Pin (V
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
DDA
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
SSA
4.4.6 Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.7 Oscillator Enable in Stop Mode Bit (OSCENINSTOP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.8 Crystal Output Frequency Signal (CGMXCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.9 CGM Base Clock Output (CGMOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.10 CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.1 PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.2 PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5.3 PLL Multiplier Select Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.4 PLL Multiplier Select Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.5 PLL VCO Range Select Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.7 Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7.3 CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.8 Acquisition/Lock Time Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.8.1 Acquisition/Lock Time Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.8.2 Parametric Influences on Reaction Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.8.3 Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Chapter 5
Configuration Register (CONFIG)
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Chapter 6
Computer Operating Properly (COP) Module
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.5 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.6 Reset Vector Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 9
Table of Contents
6.6 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.8 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Chapter 7
Central Processor Unit (CPU)
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.4 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.6 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.7 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.8 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Chapter 8
External Interrupt (IRQ)
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.4 IRQ
8.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.6 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Chapter 9
Keyboard Interrupt Module (KBI)
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.4 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
9.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.6 Keyboard Module During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.7 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.7.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.7.2 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
MC68HC908GR16A Data Sheet, Rev. 1.0
10 Freescale Semiconductor
Chapter 10
Low-Power Modes
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.1.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.1.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.2 Analog-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.2.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.2.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.3 Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.3.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.3.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.4 Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.4.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.4.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.5 Clock Generator Module (CGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.6 Computer Operating Properly Module (COP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.7 External Interrupt Module (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.8 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
10.9 Low-Voltage Inhibit Module (LVI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.9.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.9.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.10 Enhanced Serial Communications Interface Module (ESCI) . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.10.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.10.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.11 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.12 Timer Interface Module (TIM1 and TIM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.12.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.12.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.13 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.13.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.13.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.14 Exiting Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 11
Table of Contents
Chapter 11
Low-Voltage Inhibit (LVI)
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11.3.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.3.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.3.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.3.4 LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.4 LVI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.5 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Chapter 12
Input/Output (I/O) Ports
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.2 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.2.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.2.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.2.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.3 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.3.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.3.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.4 Port C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.4.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.4.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.4.3 Port C Input Pullup Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
12.5 Port D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
12.5.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
12.5.2 Data Direction Register D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
12.5.3 Port D Input Pullup Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
12.6 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
12.6.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
12.6.2 Data Direction Register E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Chapter 13
Resets and Interrupts
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
13.2 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
13.2.1 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
13.2.2 External Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
13.2.3 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
13.2.3.1 Power-On Reset (POR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
13.2.3.2 Computer Operating Properly (COP) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
MC68HC908GR16A Data Sheet, Rev. 1.0
12 Freescale Semiconductor
13.2.3.3 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
13.2.3.4 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
13.2.3.5 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.2.4 System Integration Module (SIM) Reset Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.3 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
13.3.1 Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
13.3.2 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
13.3.2.1 Software Interrupt (SWI) Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
13.3.2.2 Break Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
13.3.2.3 IRQ
Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
13.3.2.4 Clock Generator (CGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
13.3.2.5 Timer Interface Module 1 (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
13.3.2.6 Timer Interface Module 2 (TIM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
13.3.2.7 Serial Peripheral Interface (SPI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
13.3.2.8 Serial Communications Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
13.3.2.9 KBD0
–KBD7 Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
13.3.2.10 Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
13.3.2.11 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
13.3.3 Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
13.3.3.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
13.3.3.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
13.3.3.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Chapter 14
Enhanced Serial Communications Interface (ESCI) Module
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
14.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
14.3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
14.4.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
14.4.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
14.4.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
14.4.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
14.4.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
14.4.2.4 Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
14.4.2.5 Inversion of Transmitted Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
14.4.2.6 Transmitter Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
14.4.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
14.4.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
14.4.3.2 Character Reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
14.4.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
14.4.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
14.4.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
14.4.3.6 Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
14.4.3.7 Receiver Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
14.4.3.8 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 13
Table of Contents
14.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
14.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
14.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
14.6 ESCI During Break Module Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
14.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
14.7.1 PTE0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
14.7.2 PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
14.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
14.8.1 ESCI Control Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
14.8.2 ESCI Control Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
14.8.3 ESCI Control Register 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
14.8.4
14.8.5
ESCI Status Register 1 ESCI Status Register 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
14.8.6 ESCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
14.8.7 ESCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
14.8.8 ESCI Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
14.9 ESCI Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
14.9.1 ESCI Arbiter Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
14.9.2 ESCI Arbiter Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
14.9.3 Bit Time Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
14.9.4 Arbitration Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Chapter 15
System Integration Module (SIM)
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
15.2 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
15.2.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
15.2.2 Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
15.2.3 Clocks in Stop Mode and Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
15.3 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
15.3.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
15.3.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
15.3.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
15.3.2.2 Computer Operating Properly (COP) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
15.3.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
15.3.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
15.3.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
15.3.2.6 Monitor Mode Entry Module Reset (MODRST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
15.4 SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
15.4.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
15.4.2 SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
15.4.3 SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
15.5 Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
15.5.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
15.5.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
15.5.1.2 SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
15.5.1.3 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
MC68HC908GR16A Data Sheet, Rev. 1.0
14 Freescale Semiconductor
15.5.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
15.5.3 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
15.5.4 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
15.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
15.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
15.7 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
15.7.1 SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
15.7.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
15.7.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Chapter 16
Serial Peripheral Interface (SPI) Module
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
16.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
16.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
16.3.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
16.3.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
16.4 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
16.4.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
16.4.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
16.4.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
16.4.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
16.5 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
16.6 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
16.6.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
16.6.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
16.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
16.8 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
16.9 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
16.9.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
16.9.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
16.10 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
16.11 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
16.11.1 MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
16.11.2 MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
16.11.3 SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
16.11.4 SS
16.12 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
16.12.1 SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
16.12.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
16.12.3 SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
(Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 15
Table of Contents
Chapter 17
Timebase Module (TBM)
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
17.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
17.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
17.5 TBM Interrupt Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
17.7 Timebase Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Chapter 18
Timer Interface Module (TIM1 and TIM2)
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
18.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
18.3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
18.4.1 TIM Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
18.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
18.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
18.4.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
18.4.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
18.4.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
18.4.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
18.4.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
18.4.4.3 PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
18.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
18.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
18.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
18.7 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
18.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
18.9 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
18.9.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
18.9.2 TIM Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
18.9.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
18.9.4 TIM Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
18.9.5 TIM Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
MC68HC908GR16A Data Sheet, Rev. 1.0
16 Freescale Semiconductor
Chapter 19
Development Support
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
19.2 Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
19.2.1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
19.2.1.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
19.2.1.2 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
19.2.1.3 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
19.2.2 Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
19.2.2.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
19.2.2.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
19.2.2.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
19.2.2.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
19.2.3 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
19.3 Monitor Module (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
19.3.1 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
19.3.1.1 Normal Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
19.3.1.2 Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
19.3.1.3 Monitor Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
19.3.1.4 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
19.3.1.5 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
19.3.1.6 Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
19.3.1.7 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
19.3.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Chapter 20
Electrical Specifications
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
20.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
20.3 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
20.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
20.5 5-Vdc Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
20.6 3.3-Vdc Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
20.7 5.0-Volt Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
20.8 3.3-Volt Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
20.9 Clock Generation Module (CGM) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
20.9.1 CGM Component Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
20.9.2 CGM Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
20.10 5.0-Volt ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
20.11 3.3-Volt ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
20.12 5.0-Volt SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
20.13 3.3-Volt SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
20.14 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
20.15 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 17
Table of Contents
Chapter 21
Ordering Information and Mechanical Specifications
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
21.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
MC68HC908GR16A Data Sheet, Rev. 1.0
18 Freescale Semiconductor
Chapter 1 General Description
1.1 Introduction
The MC68HC908GR16A is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types.
1.2 Features
For convenience, features have been organized to reflect:
Standard features
Features of the CPU08
1.2.1 Standard Features
Features include:
High-performance M68HC08 architecture optimized for C-compilers
Fully upward-compatible object code with M6805, M146805, and M68HC05 Families
8-MHz internal bus frequency
Clock generation module supporting 1-MHz to 8-MHz crystals
FLASH program memory security
On-chip programming firmware for use with host personal computer which does not require high voltage for entry
In-system programming (ISP)
System protection features: – Optional computer operating properly (COP) reset – Low-voltage detection with optional reset and selectable trip points for 3.3-V and 5.0-V
operation – Illegal opcode detection with reset – Illegal address detection with reset
Low-power design; fully static with stop and wait modes
Standard low-power modes of operation: – Wait mode – Stop mode
Master reset pin and power-on reset (POR)
16 Kbytes of on-chip FLASH memory
1 Kbyte of on-chip random-access memory (RAM)
406 bytes of FLASH programming routines read-only memory (ROM)
(1)
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for unauthorized users.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 19
General Description
Serial peripheral interface (SPI) module
Enhanced serial communications interface (ESCI) module
Fine adjust baud rate prescalers for precise control of baud rate
Arbiter module: – Measurement of received bit timings for baud rate recovery without use of external timer – Bitwise arbitration for arbitrated UART communications
LIN specific enhanced features: – Generation of LIN 1.2 break symbols without extra software steps on each message – Break detection filtering to prevent false interrupts
Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with selectable input capture, output compare, and pulse-width modulation (PWM) capability on each channel
Up to 8-channel, 10-bit successive approximation analog-to-digital converter (ADC) depending on package choice
BREAK (BRK) module to allow single breakpoint setting during in-circuit debugging
Internal pullups on IRQ
and RST to reduce customer system cost
Up to 37 general-purpose input/output (I/O) pins, including: – 28 shared-function I/O pins – Up to nine dedicated I/O pins, depending on package choice
Selectable pullups on inputs only on ports A, C, and D. Selection is on an individual port bit basis. During output mode, pullups are disengaged.
High current 10-mA sink/source capability on all port pins
Higher current 20-mA sink/source capability on PTC0–PTC4
Timebase module (TBM) with clock prescaler circuitry for eight user selectable periodic real-time interrupts with optional active clock source during stop mode for periodic wakeup from stop using an external crystal
User selection of having the oscillator enabled or disabled during stop mode
Up to 8-bit keyboard wakeup port depending on package choice
2 mA maximum current injection on all port pins to maintain input protection
Available packages: – 32-pin quad flat pack (LQFP) – 48-pin quad flat pack (LQFP)
Specific features of the MC68HC908GR16A in 32-pin LQFP are: – Port A is only 4 bits: PTA0–PTA3; 4-pin keyboard interrupt (KBI) module – Port B is only 6 bits: PTB0–PTB5; 6-channel ADC module – Port C is only 2 bits: PTC0–PTC1 – Port D is only 7 bits: PTD0–PTD6; shared with SPI, TIM1, and TIM2 modules – Port E is only 2 bits: PTE0–PTE1; shared with ESCI module
Specific features of the MC68HC908GR16A in 48-pin LQFP are: – Port A is 8 bits: PTA0–PTA7; 8-pin KBI module – Port B is 8 bits: PTB0–PTB7; 8-channel ADC module – Port C is only 7 bits: PTC0–PTC6 – Port D is 8 bits: PTD0–PTD7; shared with SPI, TIM1, and TIM2 modules – Port E is only 6 bits: PTE0–PTE5; shared with ESCI module
MC68HC908GR16A Data Sheet, Rev. 1.0
20 Freescale Semiconductor
1.2.2 Features of the CPU08
Features of the CPU08 include:
Enhanced HC05 programming model
Extensive loop control functions
16 addressing modes (eight more than the HC05)
16-bit index register and stack pointer
Memory-to-memory data transfers
Fast 8 × 8 multiply instruction
Fast 16/8 divide instruction
Binary-coded decimal (BCD) instructions
Optimization for controller applications
Efficient C language support
1.3 MCU Block Diagram
Figure 1-1 shows the structure of the MC68HC908GR16A.
1.4 Pin Assignments
MCU Block Diagram
Figure 1-2 and Figure 1-3 illustrate the pin assignments for the 32-pin LQFP and 48-pin LQFP
respectively.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 21
General Description
M68HC08 CPU
CPU
REGISTERS
CONTROL AND STATUS REGISTERS — 64 BYTES
USER FLASH — 15,872 BYTES
USER RAM — 1024 BYTES
MONITOR ROM — 350 BYTES
FLASH PROGRAMMING ROUTINES ROM — 406 BYTES
USER FLASH VECTOR SPACE — 36 BYTES
OSC1
OSC2
CGMXFC
(3)
RST
(3)
IRQ
V
DDAD/VREFH
V
SSAD/VREFL
V
DD
V
SS
V
DDA
V
SSA
ARITHMETIC/LOGIC
UNIT (ALU)
CLOCK GENERATOR MODULE
1–8 MHz OSCILLATOR
PHASE LOCKED LOOP
SYSTEM INTEGRATION
MODULE
SINGLE EXTERNAL
INTERRUPT MODULE
10-BIT ANALOG-TO-DIGITAL
CONVERTER MODULE
POWER-ON RESET
MODULE
POWER
INTERNAL BUS
PROGRAMMABLE TIMEBASE
MODULE
SINGLE BREAKPOINT
BREAK MODULE
DUAL VOLTAGE
LOW-VOLTAGE INHIBIT
MODULE
8-BIT KEYBOARD
INTERRUPT MODULE
2-CHANNEL TIMER
INTERFACE MODULE 1
2-CHANNEL TIMER
INTERFACE MODULE 2
ENHANCED SERIAL
COMUNICATIONS
INTERFACE MODULE
COMPUTER OPERATING
PROPERLY MODULE
SERIAL PERIPHERAL
INTERFACE MODULE
MONITOR MODULE
MEMORY MAP
MODULE
CONFIGURATION
REGISTER 1–2
MODULE
PTA7/KBD7–
DDRA
PTA0/KBD0
PORTA
PTB7/AD7
PTB6/AD6
PTB5/AD5
PTB4/AD4
DDRB
PORTB
PTB3/AD3
PTB2/AD2
PTB1/AD1
PTB0/AD0
PTC6
PTC5
PTC4
DDRC
PORTC
PTC3
PTC2
PTC1
PTC0
PTD7/T2CH1
PTD6/T2CH0
PTD5/T1CH1
PTD4/T1CH0
DDRD
PORTD
PTD3/SPSCK
PTD2/MOSI
PTD1/MISO
PTD0/SS
PTE5–PTE2
DDRE
PORTE
PTE1/RxD
PTE0/TxD
SECURITY MODULE
MONITOR MODE ENTRY
MODULE
(1)
(1)
(1)
(1), (2)
(1), (2)
(1), (2)
(1), (2)
(1), (2)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
1. Ports are software configurable with pullup device if input port.
2. Higher current drive port pins
3. Pin contains integrated pullup device
Figure 1-1. MCU Block Diagram
MC68HC908GR16A Data Sheet, Rev. 1.0
22 Freescale Semiconductor
Pin Assignments
PTD1/MISO
PTD2/MOSI
PTD3/SPSCK
RST
PTE0/TxD
PTE1/RxD
PTE2
PTE3
PTE4
PTE5
IRQ
PTD0/SS
PTD1/MISO
PTD2/MOSI
PTD3/SPSCK
OSC1
OSC2
SSAVDDA
CGMXFC
V
PTC1
PTC0
PTA3/KBD3
32
RST
PTE0/TxD
PTE1/RxD
IRQ
PTD0/SS
1
31
2
3
4
5
6
7
8
9
10
11
12
13
14
SS
DD
V
V
PTB0/AD0
PTD4/T1CH0
PTD5/T1CH1
PTD6/T2CH0
15
PTB1/AD1
24
23
22
21
20
19
18
17
16
PTB2/AD2
25
26
27
28
29
30
Figure 1-2. 32-Pin LQFP Pin Assignments
OSC1
OSC2
48
1
47
2
3
4
5
6
7
8
9
10
11
12
14
13
SS
DD
V
V
SSAVDDA
CGMXFC
V
46
45
15
16
PTD5/T1CH1
PTD4/T1CH0
17
PTD6/T2CH0
PTA5/KBD5
PTC3
PTA6/KBD6
PTA7/KBD7
41
40
39
20
21
23
22
PTC4
PTB0/AD0
PTB1/AD1
PTC1
PTC0
44
43
42
18
19
PTC2
PTD7/T2CH1
Figure 1-3. 48-Pin LQFP Pin Assignments
PTA2/KBD2
PTA1/KBD1
PTA0/KBD0
V
SSAD/VREFL
V
DDAD/VREFH
PTB5/AD5
PTB4/AD4
PTB3/AD3
PTA3/KBD3
PTA4/KBD4
38
35
34
33
32
31
30
29
28
27
26
24
PTB2/AD2
37
PTA2/KBD2
36
PTA1/KBD1
PTA0/KBD0
PTC6
PTC5
V
V
PTB7/AD7
PTB6/AD6
PTB5/AD5
PTB4/AD4
PTB3/AD3
25
SSAD/VREFL
DDAD/VREFH
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 23
General Description
1.5 Pin Functions
Descriptions of the pin functions are provided here.
1.5.1 Power Supply Pins (VDD and VSS)
VDD and VSS are the power supply and ground pins. The MCU operates from a single power supply.
Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-4 shows. Place the C1 bypass capacitor as close to the MCU as possible. Use a high-frequency-response ceramic capacitor for C1. C2 is an optional bulk current bypass capacitor for use in applications that require the port pins to source high current levels.
MCU
V
DD
C1
0.1 µF
+
C2
V
DD
Note: Component values shown represent typical applications.
V
SS
Figure 1-4. Power Supply Bypassing
1.5.2 Oscillator Pins (OSC1 and OSC2)
OSC1 and OSC2 are the connections for an external crystal, resonator, or clock circuit. See Chapter 4
Clock Generator Module (CGM).
1.5.3 External Reset Pin (RST)
A 0 on the RST pin forces the MCU to a known startup state. RST is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted. This pin contains an internal pullup resistor. See Chapter 15 System Integration Module (SIM).
1.5.4 External Interrupt Pin (IRQ)
IRQ is an asynchronous external interrupt pin. This pin contains an internal pullup resistor. See
Chapter 8 External Interrupt (IRQ).
MC68HC908GR16A Data Sheet, Rev. 1.0
24 Freescale Semiconductor
Pin Functions
1.5.5 CGM Power Supply Pins (V
V
DDA
and V
are the power supply pins for the analog portion of the clock generator module (CGM).
SSA
DDA
and V
SSA
)
Decoupling of these pins should be as per the digital supply. See Chapter 4 Clock Generator Module
(CGM).
1.5.6 External Filter Capacitor Pin (V
CGMXFC
)
CGMXFC is an external filter capacitor connection for the CGM. See Chapter 4 Clock Generator Module
(CGM).
1.5.7 ADC Power Supply/Reference Pins (V
V are the reference voltage pins for the ADC. V the V V to the same voltage potential as V
and V
DDAD
DDAD/VREFH
is the low reference supply for the ADC, and by default the V
REFL
are the power supply pins to the analog-to-digital converter (ADC). V
SSAD
REFH
pin should be externally filtered and connected to the same voltage potential as VDD.
. See Chapter 3 Analog-to-Digital Converter (ADC).
SS
DDAD/VREFH
is the high reference supply for the ADC, and by default
and V
SSAD/VREFL
SSAD/VREFL
)
and V
REFH
pin should be connected
REFL
1.5.8 Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0)
PTA7–PTA0 are general-purpose, bidirectional I/O port pins. Any or all of the port A pins can be programmed to serve as keyboard interrupt pins. PTA7–PTA4 are only available on the 48-pin LQFP package. See Chapter 12 Input/Output (I/O) Ports and Chapter 9 Keyboard Interrupt Module (KBI).
These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis.
1.5.9 Port B I/O Pins (PTB7/AD7–PTB0/AD0)
PTB7–PTB0 are general-purpose, bidirectional I/O port pins that can also be used for analog-to-digital converter (ADC) inputs. PTB7–PTB4 are only available on the 48-pin LQFP package. See Chapter 12
Input/Output (I/O) Ports and Chapter 3 Analog-to-Digital Converter (ADC).
1.5.10 Port C I/O Pins (PTC6–PTC0)
PTC6 and PTC5 are general-purpose, bidirectional I/O port pins. PTC4–PTC0 are general-purpose, bidirectional I/O port pins that contain higher current sink/source capability. PTC6–PTC2 are only available on the 48-pin LQFP package. See Chapter 12 Input/Output (I/O) Ports.
These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis.
1.5.11 Port D I/O Pins (PTD7/T2CH1–PTD0/SS)
PTD7–PTD0 are special-function, bidirectional I/O port pins. PTD3–PTD0 can be programmed to be serial peripheral interface (SPI) pins, while PTD7–PTD4 can be individually programmed to be timer interface module (TIM1 and TIM2) pins. PTD7 is only available on the 48-pin LQFP package. See
Chapter 18 Timer Interface Module (TIM1 and TIM2), Chapter 16 Serial Peripheral Interface (SPI) Module, and Chapter 12 Input/Output (I/O) Ports.
These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 25
General Description
1.5.12 Port E I/O Pins (PTE5–PTE2 and PTE0/TxD)
PTE5–PTE0 are general-purpose, bidirectional I/O port pins. PTE1 and PTE0 can also be programmed to be enhanced serial communications interface (ESCI) pins. PTE5–PTE2 are only available on the 48-pin LQFP package. See Chapter 14 Enhanced Serial Communications Interface (ESCI) Module and
Chapter 12 Input/Output (I/O) Ports.
NOTE
Any unused inputs and I/O ports should be tied to an appropriate logic level (either V not require termination, termination is recommended to reduce the possibility of static damage.
or VSS). Although the I/O ports of the MC68HC908GR16A do
DD
MC68HC908GR16A Data Sheet, Rev. 1.0
26 Freescale Semiconductor
Chapter 2 Memory
2.1 Introduction
The CPU08 can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes:
15,872 bytes of user FLASH memory
1024 bytes of random-access memory (RAM)
406 bytes of FLASH programming routines read-only memory (ROM)
36 bytes of user-defined vectors
350 bytes of monitor ROM
2.2 Unimplemented Memory Locations
Accessing an unimplemented location can cause an illegal address reset. In the memory map (Figure 2-1) and in register figures in this document, unimplemented locations are shaded.
2.3 Reserved Memory Locations
Accessing a reserved location can have unpredictable effects on microcontroller (MCU) operation. In the
Figure 2-1 and in register figures in this document, reserved locations are marked with the word Reserved
or with the letter R.
2.4 Input/Output (I/O) Section
Most of the control, status, and data registers are in the zero page area of $0000–$003F. Additional I/O registers have these addresses:
$FE00; break status register, SBSR
$FE01; SIM reset status register, SRSR
$FE02; reserved
$FE03; break flag control register, SBFCR
$FE04; interrupt status register 1, INT1
$FE05; interrupt status register 2, INT2
$FE06; interrupt status register 3, INT3
$FE07; reserved
$FE08; FLASH control register, FLCR
$FE09; break address register high, BRKH
$FE0A; break address register low, BRKL
$FE0B; break status and control register, BRKSCR
$FE0C; LVI status register, LVISR
$FF7E; FLASH block protect register, FLBPR
Data registers are shown in Figure 2-2. Table 2-1 is a list of vector locations.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 27
Memory
$0000
$FE04 INTERRUPT STATUS REGISTER 1 (INT1)
$003F $FE05 INTERRUPT STATUS REGISTER 2 (INT2)
$0040
$FE07 RESERVED
$043F $FE08 FLASH CONTROL REGISTER (FLCR)
$0440
$FE0A BREAK ADDRESS REGISTER LOW (BRKL)
$04FF $FE0B BREAK STATUS AND CONTROL REGISTER (BRKSCR)
$0500
$FE0D
$057F
$0580
$FE10
$1BFF
$1C00
$FE20
$1D95
$1D96
$FF7E FLASH BLOCK PROTECT REGISTER (FLBPR)
$BFFF $FF7F
$C000
$FFDB
$FDFF $FFDC
$FE00 BREAK STATUS REGISTER (SBSR)
$FE01 SIM RESET STATUS REGISTER (SRSR) $FFFF
$FE02 RESERVED 1. $FFF6–$FFFD used for eight security bytes
FLASH PROGRAMMING ROUTINES ROM
I/O REGISTERS
64 BYTES
RAM
1024 BYTES
UNIMPLEMENTED
192 BYTES
RESERVED
128 BYTES
UNIMPLEMENTED
5760 BYTES
406 BYTES
UNIMPLEMENTED
41,578 BYTES
FLASH MEMORY
15,872 BYTES
$FE03 BREAK FLAG CONTROL REGISTER (SBFCR)
$FE06 INTERRUPT STATUS REGISTER 3 (INT3)
$FE09 BREAK ADDRESS REGISTER HIGH (BRKH)
$FE0C LVI STATUS REGISTER (LVISR)
UNIMPLEMENTED
3 BYTES
$FE0F
UNIMPLEMENTED
16 BYTES
RESERVED FOR COMPATIBILITY WITH MONITOR CODE
$FE1F
$FF7D
(1)
FOR A-FAMILY PART
MONITOR ROM
350 BYTES
UNIMPLEMENTED
93 BYTES
FLASH VECTORS
36 BYTES
Figure 2-1. Memory Map
MC68HC908GR16A Data Sheet, Rev. 1.0
28 Freescale Semiconductor
Input/Output (I/O) Section
Addr.Register Name Bit 7654321Bit 0
Read:
Write:
(PTA)
Reset: Unaffected by reset
Read:
Write:
(PTB)
Reset: Unaffected by reset
Read: 1
Write:
(PTC)
Reset: Unaffected by reset
Read:
Write:
(PTD)
Reset: Unaffected by reset
Read:
Write:
Reset:00000000
Read:
Write:
Reset:00000000
Read: 0
Write:
Reset:00000000
Read:
Write:
Reset:00000000
Read: 0 0
Write:
(PTE)
Reset: Unaffected by reset
Read:
Write:
Reset:00000000
Read:
Write:
Reset:00000000
Read:
Write:
Reset:00000000
PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0
PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0
PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0
PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0
DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0
DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0
DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0
DDRD7 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0
PTE5 PTE4 PTE3 PTE2 PTE1 PTE0
PDS2 PDS1 PDS0 PSSB4 PSSB3 PSSB2 PSSB1 PSSB0
AM1
ARD7 ARD6 ARD5 ARD4 ARD3 ARD2 ARD1 ARD0
ALOST
AM0 ACLK
AFIN ARUN AROVFL ARD8
$0000
$0001
$0002
$0003
$0004
$0005
$0006
$0007
$0008
$0009
$000A
$000B
Port A Data Register
See page 118.
Port B Data Register
See page 120.
Port C Data Register
See page 122.
Port D Data Register
See page 124.
Data Direction Register A
(DDRA)
See page 118.
Data Direction Register B
(DDRB)
See page 121.
Data Direction Register C
(DDRC)
See page 122.
Data Direction Register D
(DDRD)
See page 125.
Port E Data Register
See page 127.
ESCI Prescaler Register
(SCPSC)
See page 166.
ESCI Arbiter Control
Register (SCIACTL)
See page 170.
ESCI Arbiter Data
Register (SCIADAT)
See page 171.
= Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 7)
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 29
Memory
Addr.Register Name Bit 7654321Bit 0
Read: 0 0
Write:
Reset:00000000
Read:
PTAPUE7 PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0
Write:
Reset:00000000
Read: 0
Write:
Reset:00000000
Read:
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0
Write:
Reset:00000000
Read:
Write:
Reset:00101000
Read: SPRF
Write:
Reset:00001000
Read: R7 R6 R5 R4 R3 R2 R1 R0
Write: T7 T6 T5 T4 T3 T2 T1 T0
Reset: Unaffected by reset
Read:
Write:
Reset:00000000
Read:
Write:
Reset:00000000
Read: R8
Write:
Reset:U0000000
Read: SCTE TC SCRF IDLE OR NF FE PE
Write:
Reset:11000000
Read: 000000BKFRPF
Write:
Reset:00000000
SPRIE R SPMSTR CPOL CPHA SPWOM SPE SPTIE
LOOPS ENSCI TXINV M WAKE ILTY PEN PTY
SCTIE TCIE SCRIE ILIE TE RE RWU SBK
PTCPUE6 PTCPUE5 PTCPUE4 PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0
ERRIE
T8 R R ORIE NEIE FEIE PEIE
1
DDRE5 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0
OVRF MODF SPTE
MODFEN SPR1 SPR0
$000C
$000D
$000E
$000F
$0010
$0011
$0012
$0013
$0014
$0015
$0016
$0017
Data Direction Register E
(DDRE)
See page 128.
Port A Input Pullup Enable
Register (PTAPUE)
See page 120.
Port C Input Pullup Enable
Register (PTCPUE)
See page 124.
Port D Input Pullup Enable
Register (PTDPUE)
See page 127.
SPI Control Register
(SPCR)
See page 207.
SPI Status and Control
Register (SPSCR)
See page 208.
SPI Data Register
(SPDR)
See page 210.
ESCI Control Register 1
(SCC1)
See page 157.
ESCI Control Register 2
(SCC2)
See page 159.
ESCI Control Register 3
(SCC3)
See page 160.
ESCI Status Register 1
(SCS1)
See page 161.
ESCI Status Register 2
(SCS2)
See page 164.
= Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 7)
MC68HC908GR16A Data Sheet, Rev. 1.0
30 Freescale Semiconductor
Input/Output (I/O) Section
Addr.Register Name Bit 7654321Bit 0
Read: R7 R6 R5 R4 R3 R2 R1 R0
Write: T7 T6 T5 T4 T3 T2 T1 T0
Reset: Unaffected by reset
Read:
Write:
LINT LINR SCP1 SCP0 R SCR2 SCR1 SCR0
Reset:00000000
Read: 0000KEYF 0
Write:
ACKK
IMASKK MODEK
Reset:00000000
Read:
Write:
KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0
Reset:00000000
Read: TBIF
Write:
TBR2 TBR1 TBR0
0
TACK
TBIE TBON R
Reset:00000000
Read: 0000IRQF0
Write:
ACK
IMASK MODE
Reset:00000000
Read: 0000
(1)
Write:
TBMCLK-
R
SEL
OSCENIN-
STOP
ESCIBD-
SRC
$0018
$0019
$001A
$001B
$001C
$001D
$001E
ESCI Data Register
(SCDR)
See page 164.
ESCI Baud Rate Register
(SCBR)
See page 165.
Keyboard Status
and Control Register
(INTKBSCR)
See page 103.
Keyboard Interrupt Enable
Register (INTKBIER)
See page 104.
Timebase Module Control
Register (TBCR)
See page 214.
IRQ Status and Control
Register (INTSCR)
See page 98.
Configuration Register 2
(CONFIG2)
See page 75.
Reset:00000001
Configuration Register 1
$001F
(CONFIG1)
See page 76.
1
.
One-time writable register after each reset, except LVI5OR3 bit. LVI5OR3 bit is only reset via POR (power-on reset).
Read:
(1)
Write:
COPRS LVISTOP LVIRSTD LVIPWRD
Reset:00000000
LVI5OR3
(Note 1)
SSREC STOP COPD
$0020
$0021
$0022
$0023
Timer 1 Status and Control
Register (T1SC)
See page 225.
Timer 1 Counter
Register High (T1CNTH)
See page 226.
Timer 1 Counter
Register Low (T1CNTL)
See page 226.
Timer 1 Counter Modulo
Register High (T1MODH)
See page 227.
Read: TOF
Write: 0 TRST
TOIE TSTOP
Reset:00100000
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
Reset:00000000
Read: Bit 7 654321Bit 0
Write:
Reset:00000000
Read:
Write:
Bit 15 14 13 12 11 10 9 Bit 8
Reset:11111111
00
PS2 PS1 PS0
= Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 7)
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 31
Memory
Addr.Register Name Bit 7654321Bit 0
Timer 1 Counter Modulo
$0024
$0025
$0026
$0027
$0028
$0029
$002A
$002B
$002C
$002D
$002E
$002F
Register Low (T1MODL)
Timer 1 Channel 0 Status and
Control Register (T1SC0)
Timer 1 Channel 0
Register High (T1CH0H)
Timer 1 Channel 0
Register Low (T1CH0L)
Timer 1 Channel 1 Status and
Control Register (T1SC1)
Timer 1 Channel 1
Register High (T1CH1H)
Timer 1 Channel 1
Register Low (T1CH1L)
Timer 2 Status and Control
Register High (T2CNTH)
Register Low (T2CNTL)
Timer 2 Counter Modulo
Register High (T2MODH)
Timer 2 Counter Modulo Register Low (T2MODL)
See page 227.
See page 230.
See page 230.
See page 230.
See page 230.
See page 230.
See page 230.
Register (T2SC)
See page 227.
Timer 2 Counter
See page 226.
Timer 2 Counter
See page 226.
See page 227.
See page 227.
Read:
Write:
Reset:11111111
Read: CH0F
Write: 0
Reset:00000000
Read:
Write:
Reset: Indeterminate after reset
Read:
Write:
Reset: Indeterminate after reset
Read: CH1F
Write: 0
Reset:00000000
Read:
Write:
Reset: Indeterminate after reset
Read:
Write:
Reset: Indeterminate after reset
Read: TOF
Write: 0 TRST
Reset:00100000
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
Reset:00000000
Read: Bit 7 654321Bit 0
Write:
Reset:00000000
Read:
Write:
Reset:11111111
Read:
Write:
Reset:11111111
Bit 7654321Bit 0
CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7654321Bit 0
CH1IE
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7654321Bit 0
TOIE TSTOP
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7654321Bit 0
0
MS1A ELS1B ELS1A TOV1 CH1MAX
00
PS2 PS1 PS0
= Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 7)
MC68HC908GR16A Data Sheet, Rev. 1.0
32 Freescale Semiconductor
Input/Output (I/O) Section
Addr.Register Name Bit 7654321Bit 0
Timer 2 Channel 0 Status and
$0030
$0031
$0032
$0033
$0034
$0035
$0036
$0037
$0038
$0039
$003A
$003B Reserved
Control Register (T2SC0)
See page 227.
Timer 2 Channel 0
Register High (T2CH0H)
See page 227.
Timer 2 Channel 0
Register Low (T2CH0L)
See page 230.
Timer 2 Channel 1 Status and
Control Register (T2SC1)
See page 225.
Timer 2 Channel 1
Register High (T2CH1H)
See page 230.
Timer 2 Channel 1
Register Low (T2CH1L)
See page 230.
PLL Control Register
(PCTL)
See page 67.
PLL Bandwidth Control
Register (PBWC)
See page 68.
PLL Multiplier Select High
Register (PMSH)
See page 69.
PLL Multiplier Select Low
Register (PMSL)
See page 70.
PLL VCO Select Range
Register (PMRS)
See page 70.
Read: CH0F
Write: 0
Reset:00000000
Read:
Write:
Reset: Indeterminate after reset
Read:
Write:
Reset: Indeterminate after reset
Read: CH1F
Write: 0
Reset:00000000
Read:
Write:
Reset: Indeterminate after reset
Read:
Write:
Reset: Indeterminate after reset
Read:
Write:
Reset:00100000
Read:
Write:
Reset:00000000
Read: 0000
Write:
Reset:00000000
Read:
Write:
Reset:01000000
Read:
Write:
Reset:01000000
Read: 0000
Write:
Reset:00000001
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7654321Bit 0
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7654321Bit 0
PLLIE
AUTO
MUL7 MUL6 MUL5 MUL4 MUL3 MUL2 MUL1 MUL0
VRS7 VRS6 VRS5 VRS4 VRS3 VRS2 VRS1 VRS0
CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX
CH1IE
PLLF
LOCK
0
PLLON BCS R R VPR1 VPR0
ACQ
MS1A ELS1B ELS1A TOV1 CH1MAX
0000
MUL11 MUL10 MUL9 MUL8
RRRR
R
= Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 7)
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 33
Memory
Addr.Register Name Bit 7654321Bit 0
ADC Status and Control
$003C
$003D
$003E
$003F
$FE00
1. Writing a 0 clears SBSW.
$FE01
$FE02 Reserved
$FE03
$FE04
$FE05
$FE06
$FE07 Reserved
Register (ADSCR)
See page 51.
ADC Data High Register
(ADRH)
See page 53.
ADC Data Low Register
(ADRL)
See page 53.
ADC Clock Register
(ADCLK)
See page 55.
SIM Break Status Register
(SBSR)
See page 236.
SIM Reset Status Register
(SRSR)
See page 188.
SIM Break Flag Control
Register (SBFCR)
See page 236.
Interrupt Status Register 1
See page 183.
Interrupt Status Register 2
See page 184.
Interrupt Status Register 3
See page 184.
Read: COCO
Write: R
Reset:00011111
Read: 000000AD9AD8
Write:
Reset: Unaffected by reset
Read: AD7 AD6 AD5 AD4 A3 AD2 AD1 AD0
Write:
Reset: Unaffected by reset
Read:
Write:
Reset:00000100
Read:
Write: (Note 1)
Reset:00000000
Read: POR PIN COP ILOP ILAD MODRST LVI 0
Write:
POR:10000000
Read:
Write:
Reset:00000000
Read:
Write:
Reset:00000000
Read: IF6 IF5 IF4 IF3 IF2 IF1 0 0
(INT1)
Write:RRRRRRRR
Reset:00000000
Read: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7
(INT2)
Write:RRRRRRRR
Reset:00000000
Read: 0 0 IF20 IF19 IF18 IF17 IF16 IF15
(INT3)
Write:RRRRRRRR
Reset:00000000
Read:
Write:
Reset:00000000
ADIV2 ADIV1 ADIV0 ADICLK MODE1 MODE0 R
RRRRRR
RRRRRRRR
BCFERRRRRRR
RRRRRRRR
AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0
SBSW
0
R
= Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 7)
MC68HC908GR16A Data Sheet, Rev. 1.0
34 Freescale Semiconductor
Input/Output (I/O) Section
Addr.Register Name Bit 7654321Bit 0
FLASH Control Register
$FE08
Break Address Register High
$FE09
Break Address Register Low
$FE0A
Break Status and Control
$FE0B
$FE0C
$FF7E
1. Non-volatile FLASH register
$FFFF
Register (BRKSCR)
LVI Status Register (LVISR)
FLASH Block Protect
Register (FLBPR)
COP Control Register
(FLCR)
See page 38.
(BRKH)
See page 235.
(BRKL)
See page 235.
See page 235.
See page 113.
See page 43.
(COPCTL)
See page 81.
Read: 0000
Write:
Reset:00000000
Read:
Write:
Reset:00000000
Read:
Write:
Reset:00000000
Read:
Write:
Reset:00000000
Read: LVIOUT 0000000
Write:
Reset:00000000
Read:
(1)
Write:
Reset: Unaffected by reset
Read: Low byte of reset vector
Write: Writing clears COP counter (any value)
Reset: Unaffected by reset
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7654321Bit 0
BRKE BRKA
BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0
000000
HVEN MASS ERASE PGM
= Unimplemented R = Reserved U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 7)
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 35
Memory
Table 2-1. Vector Addresses
.
Vector Priority Vector Address Vector
Lowest
IF16
IF15
IF14
IF13
IF12
IF11
IF10
IF9
IF8
IF7
IF6
IF5
IF4
IF3
IF2
IF1
Highest $FFFF Reset Vector (Low)
$FFDC Timebase Vector (High)
$FFDD Timebase Vector (Low)
$FFDE ADC Conversion Complete Vector (High)
$FFDF ADC Conversion Complete Vector (Low)
$FFE0 Keyboard Vector (High)
$FFE1 Keyboard Vector (Low)
$FFE2 ESCI Transmit Vector (High)
$FFE3 ESCI Transmit Vector (Low)
$FFE4 ESCI Receive Vector (High)
$FFE5 ESCI Receive Vector (Low)
$FFE6 ESCI Error Vector (High)
$FFE7 ESCI Error Vector (Low)
$FFE8 SPI Transmit Vector (High)
$FFE9 SPI Transmit Vector (Low)
$FFEA SPI Receive Vector (High)
$FFEB SPI Receive Vector (Low)
$FFEC TIM2 Overflow Vector (High)
$FFED TIM2 Overflow Vector (Low)
$FFEE TIM2 Channel 1 Vector (High)
$FFEF TIM2 Channel 1 Vector (Low)
$FFF0 TIM2 Channel 0 Vector (High)
$FFF1 TIM2 Channel 0 Vector (Low)
$FFF2 TIM1 Overflow Vector (High)
$FFF3 TIM1 Overflow Vector (Low)
$FFF4 TIM1 Channel 1 Vector (High)
$FFF5 TIM1 Channel 1 Vector (Low)
$FFF6 TIM1 Channel 0 Vector (High)
$FFF7 TIM1 Channel 0 Vector (Low)
$FFF8 PLL Vector (High)
$FFF9 PLL Vector (Low)
$FFFA IRQ
$FFFB IRQ
Vector (High)
Vector (Low)
$FFFC SWI Vector (High)
$FFFD SWI Vector (Low)
$FFFE Reset Vector (High)
MC68HC908GR16A Data Sheet, Rev. 1.0
36 Freescale Semiconductor
Random-Access Memory (RAM)
2.5 Random-Access Memory (RAM)
Addresses $0040 through $043F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.
NOTE
For correct operation, the stack pointer must point only to RAM locations.
Within page zero are 192 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at $00FF out of page zero, direct addressing mode instructions can efficiently access all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables.
Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers.
NOTE
For M6805 compatibility, the H register is not stacked.
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.
NOTE
Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.
2.6 FLASH Memory (FLASH)
This subsection describes the operation of the embedded FLASH memory. This memory can be read, programmed, and erased from a single external supply. The program, erase, and read operations are enabled through the use of an internal charge pump.
2.6.1 Functional Description
The FLASH memory is an array of 15,872 bytes with an additional 36 bytes of user vectors and one byte of block protection. An erased bit reads as 1 and a programmed bit reads as a 0. Memory in the FLASH array is organized into two rows per page basis. For the 16-K word by 8-bit embedded FLASH memory, the page size is 64 bytes per page and the row size is 32 bytes per row. Hence the minimum erase page size is 64 bytes and the minimum program row size is 32 bytes. Program and erase operation operations are facilitated through control bits in FLASH control register (FLCR). Details for these operations appear later in this section.
The address ranges for the user memory and vectors are:
$C000–$FDFF; user memory
•$FE08
$FF7E; FLASH block protect register
$FFDC–$FFFF; these locations are reserved for user-defined interrupt and reset vectors
; FLASH control register
A security feature prevents viewing of the FLASH contents.
NOTE
(1)
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 37
Memory
2.6.2 FLASH Control Register
The FLASH control register (FLCR) controls FLASH program and erase operations.
Address: $FE08
Bit 7654321Bit 0
Read:0000
Write:
Reset:00000000
= Unimplemented
Figure 2-3. FLASH Control Register (FLCR)
HVEN — High-Voltage Enable Bit
This read/write bit enables the charge pump to drive high voltages for program and erase operations in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for program or erase is followed.
1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off
MASS — Mass Erase Control Bit
Setting this read/write bit configures the 16-Kbyte FLASH array for mass erase operation.
1 = MASS erase operation selected 0 = PAGE erase operation selected
HVEN MASS ERASE PGM
ERASE — Erase Control Bit
This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time.
1 = Erase operation selected 0 = Erase operation unselected
PGM — Program Control Bit
This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time.
1 = Program operation selected 0 = Program operation unselected
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for unauthorized users.
MC68HC908GR16A Data Sheet, Rev. 1.0
38 Freescale Semiconductor
FLASH Memory (FLASH)
2.6.3 FLASH Page Erase Operation
Use this step-by-step procedure to erase a page (64 bytes) of FLASH memory. A page consists of 64 consecutive bytes starting from addresses $XX00, $XX40, $XX80, or $XXC0. The 36-byte user interrupt vectors area also forms a page. Any FLASH memory page can be erased alone.
1. Set the ERASE bit, and clear the MASS bit in the FLASH control register.
2. Read the FLASH block protect register.
3. Write any data to any FLASH location within the page address range of the block to be erased.
4. Wait for a time, t
5. Set the HVEN bit.
6. Wait for a time, t
7. Clear the ERASE bit.
8. Wait for a time, t
9. Clear the HVEN bit.
10. After a time, t
RCV
Programming and erasing of FLASH locations cannot be performed by code being executed from FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps.
(minimum 10 µs)
NVS
(minimum 1 ms or 4 ms)
Erase
(minimum 5 µs)
NVH
(typical 1 µs), the memory can be accessed in read mode again.
NOTE
In applications that need more than 1000 program/erase cycles, use the 4-ms page erase specification to get improved long-term reliability. Any application can use this 4-ms page erase specification. However, in applications where a FLASH location will be erased and reprogrammed less than 1000 times, and speed is important, use the 1-ms page erase specification to get a shorter cycle time.
2.6.4 FLASH Mass Erase Operation
Use this step-by-step procedure to erase entire FLASH memory:
1. Set both the ERASE bit, and the MASS bit in the FLASH control register.
2. Read the FLASH block protect register.
3. Write any data to any FLASH address
4. Wait for a time, t
(minimum 10 µs)
NVS
5. Set the HVEN bit.
6. Wait for a time, t
MErase
(minimum 4 ms)
7. Clear the ERASE and MASS bits.
Mass erase is disabled whenever any block is protected (FLBPR does not equal $FF).
8. Wait for a time, t
(minimum 100 µs)
NVHL
9. Clear the HVEN bit.
10. After a time, t
(typical 1 µs), the memory can be accessed in read mode again.
RCV
(1)
within the FLASH memory address range.
NOTE
1. When in monitor mode, with security sequence failed (see 19.3.2 Security), write to the FLASH block protect register instead of any FLASH address.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 39
Memory
NOTE
Programming and erasing of FLASH locations cannot be performed by code being executed from FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps.
2.6.5 FLASH Program/Read Operation
Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, and $XXE0.
During the programming cycle, make sure that all addresses being written to fit within one of the ranges specified above. Attempts to program addresses in different row ranges in one programming cycle will fail. Use this step-by-step procedure to program a row of FLASH memory (Figure 2-4 is a flowchart representation).
NOTE
Only bytes which are currently $FF may be programmed.
1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming.
2. Read the FLASH block protect register.
3. Write any data to any FLASH address within the row address range desired.
4. Wait for a time, t
5. Set the HVEN bit.
6. Wait for a time, t
7. Write data to the FLASH address to be programmed.
8. Wait for a time, t
9. Repeat step 7 and 8 until all the bytes within the row are programmed.
10. Clear the PGM bit.
11. Wait for a time, t
12. Clear the HVEN bit.
13. After time, t
RCV
This program sequence is repeated throughout the memory until all data is programmed.
(minimum 10 µs).
NVS
(minimum 5 µs).
PGS
(minimum 30 µs).
PROG
(1)
(minimum 5 µs).
NVH
(typical 1 µs), the memory can be accessed in read mode again.
NOTE
Programming and erasing of FLASH locations can not be performed by code being executed from the same FLASH array.
NOTE
While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Care must be taken within the FLASH array memory space such as the COP control register (COPCTL) at $FFFF.
NOTE
It is highly recommended that interrupts be disabled during program/ erase operations.
MC68HC908GR16A Data Sheet, Rev. 1.0
40 Freescale Semiconductor
Do not exceed t
PROG
cumulative high voltage programming time to the same row before next erase. t
must satisfy this condition:
HV
+ t
t
NVS
Refer to 20.15 Memory Characteristics.
The time between programming the FLASH address change (step 7 to step 7), or the time between the last FLASH programmed to clearing the PGM bit (step 7 to step 10) must not exceed the maximum programming time, t
PROG
maximum.
Be cautious when programming the FLASH array to ensure that non-FLASH locations are not used as the address that is written to when selecting either the desired row address range in step 3 of the algorithm or the byte to be programmed in step 7 of the algorithm. This applies particularly to $FFD4–$FFDF.
2.6.6 FLASH Block Protection
NOTE
maximum or tHV maximum. tHV is defined as the
NVH
+ t
PGS
+ (t
x 32) ≤ tHV maximum
PROG
NOTE
CAUTION
FLASH Memory (FLASH)
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made for protecting a block of memory from unintentional erase or program operations due to system malfunction. This protection is done by using of a FLASH block protect register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends at the bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations.
NOTE
In performing a program or erase operation, the FLASH block protect register must be read after setting the PGM or ERASE bit and before asserting the HVEN bit
When the FLBPR is program with all 0’s, the entire memory is protected from being programmed and erased. When all the bits are erased (all 1’s), the entire memory is accessible for program and erase.
When bits within the FLBPR are programmed, they lock a block of memory, address ranges as shown in
2.6.7 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF or $FE,
any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass erase is disabled whenever any block is protected (FLBPR does not equal $FF). The presence of a V IRQ
pin will bypass the block protection so that all of the memory included in the block protect register is
TST
on the
open for program and erase operations.
NOTE
The FLASH block protect register is not protected with special hardware or software. Therefore, if this page is not protected by FLBPR the register is erased by either a page or mass erase operation.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 41
Memory
Algorithm for programming a row (32 bytes) of FLASH memory
1
2
READ THE FLASH BLOCK PROTECT REGISTER
3
WRITE ANY DATA TO ANY FLASH ADDRESS
WITHIN THE ROW ADDRESS RANGE DESIRED
4
5
6
7
WRITE DATA TO THE FLASH ADDRESS
SET PGM BIT
WAIT FOR A TIME, t
SET HVEN BIT
WAIT FOR A TIME, t
TO BE PROGRAMMED
NVS
PGS
8
WAIT FOR A TIME, t
COMPLETED
PROGRAMMING
THIS ROW?
Note:
The time between each FLASH address change (step 7 to step 7), or the time between the last FLASH address programmed to clearing PGM bit (step 7 to step 10) must not exceed the maximum programming
PROG
max.
time, t
This row program algorithm assumes the row/s to be programmed are initially erased.
Figure 2-4. FLASH Programming Flowchart
PROG
Y
N
10
11
12
13
CLEAR PGM BIT
WAIT FOR A TIME, t
CLEAR HVEN BIT
WAIT FOR A TIME, t
END OF PROGRAMMING
NVH
RCV
MC68HC908GR16A Data Sheet, Rev. 1.0
42 Freescale Semiconductor
FLASH Memory (FLASH)
2.6.7 FLASH Block Protect Register
The FLASH block protect register (FLBPR) is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. The value in this register determines the starting location of the protected range within the FLASH memory.
Address: $FF7E
Bit 7654321Bit 0
Read:
Write:
Reset: Unaffected by reset. Initial value from factory is 1.
BPR[7:0] — FLASH Block Protect Bits
These eight bits represent bits [13:6] of a 16-bit memory address. Bit 15 and Bit 14 are 1s and bits [5:0] are 0s.
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. With this mechanism, the protect start address can be $XX00, $XX40, $XX80, and $XXC0 (64 bytes page boundaries) within the FLASH memory.
BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0
Write to this register is by a programming sequence to the FLASH memory.
Figure 2-5. FLASH Block Protect Register (FLBPR)
16-BIT MEMORY ADDRESS
START ADDRESS OF FLASH
BLOCK PROTECT
1
1
FLBPR VALUE
000000
Figure 2-6. FLASH Block Protect Start Address
Table 2-2. Examples of Protect Address Ranges
BPR[7:0] Addresses of Protect Range
$00 The entire FLASH memory is protected.
$01 (0000 0001)$C040 (1100 0000 0100 0000) — $FFFF
$02 (0000 0010)$C080 (1100 0000 1000 0000) — $FFFF
$03 (0000 0011) $C0C0 (1100 0000 1100 0000) — $FFFF
$04 (0000 0100)$C100 (1100 0001 0000 0000) — $FFFF
and so on...
$FC (1111 1100) $FF00 (1111 1111 0000 0000) — FFFF
$FD (1111 1101)
$FE (1111 1110)
$FF The entire FLASH memory is not protected.
$FF40 (1111 1111 0100 0000) — $FFFF
FLBPR and vectors are protected
$FF80 (111 1111 1000 0000) — FFFF
Vectors are protected
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 43
Memory
2.6.8 Wait Mode
Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive.
The WAIT instruction should not be executed while performing a program or erase operation on the FLASH, otherwise the operation will discontinue, and the FLASH will be on standby mode.
2.6.9 Stop Mode
Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive.
The STOP instruction should not be executed while performing a program or erase operation on the FLASH, otherwise the operation will discontinue, and the FLASH will be on standby mode
NOTE
Standby mode is the power saving mode of the FLASH module in which all internal control signals to the FLASH are inactive and the current consumption of the FLASH is at a minimum.
MC68HC908GR16A Data Sheet, Rev. 1.0
44 Freescale Semiconductor
Chapter 3 Analog-to-Digital Converter (ADC)
3.1 Introduction
This section describes the 10-bit analog-to-digital converter (ADC).
3.2 Features
Features of the ADC module include:
Eight channels with multiplexed input
Linear successive approximation with monotonicity
10-bit resolution
Single or continuous conversion
Conversion complete flag or conversion complete interrupt
Selectable ADC clock
Left or right justified result
Left justified sign data mode
3.3 Functional Description
The ADC provides eight pins for sampling external sources at pins PTB7/KBD7–PTB0/KBD0. An analog multiplexer allows the single ADC converter to select one of eight ADC channels as ADC voltage in
ADIN
). V
(V When the conversion is completed, ADC places the result in the ADC data register and sets a flag or generates an interrupt. See Figure 3-2.
is converted by the successive approximation register-based analog-to-digital converter.
ADIN
3.3.1 ADC Port I/O Pins
PTB7/AD7–PTB0/AD0 are general-purpose I/O (input/output) pins that share with the ADC channels. The channel select bits define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or data direction register (DDR) will not have any affect on the port pin that is selected by the ADC. A read of a port pin in use by the ADC will return a 0.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 45
Analog-to-Digital Converter (ADC)
M68HC08 CPU
CPU
REGISTERS
CONTROL AND STATUS REGISTERS — 64 BYTES
USER FLASH — 15,872 BYTES
USER RAM — 1024 BYTES
MONITOR ROM — 350 BYTES
FLASH PROGRAMMING ROUTINES ROM — 406 BYTES
USER FLASH VECTOR SPACE — 36 BYTES
OSC1
OSC2
CGMXFC
(3)
RST
(3)
IRQ
V
DDAD/VREFH
V
SSAD/VREFL
V
DD
V
SS
V
DDA
V
SSA
ARITHMETIC/LOGIC
UNIT (ALU)
CLOCK GENERATOR MODULE
1–8 MHz OSCILLATOR
PHASE LOCKED LOOP
SYSTEM INTEGRATION
MODULE
SINGLE EXTERNAL
INTERRUPT MODULE
10-BIT ANALOG-TO-DIGITAL
CONVERTER MODULE
POWER-ON RESET
MODULE
POWER
INTERNAL BUS
PROGRAMMABLE TIMEBASE
MODULE
SINGLE BREAKPOINT
BREAK MODULE
DUAL VOLTAGE
LOW-VOLTAGE INHIBIT
MODULE
8-BIT KEYBOARD
INTERRUPT MODULE
2-CHANNEL TIMER
INTERFACE MODULE 1
2-CHANNEL TIMER
INTERFACE MODULE 2
ENHANCED SERIAL
COMUNICATIONS
INTERFACE MODULE
COMPUTER OPERATING
PROPERLY MODULE
SERIAL PERIPHERAL
INTERFACE MODULE
MONITOR MODULE
MEMORY MAP
MODULE
CONFIGURATION
REGISTER 1–2
MODULE
PTA7/KBD7–
DDRA
PORTA
PTA0/KBD0
PTB7/AD7
PTB6/AD6
PTB5/AD5
PTB4/AD4
DDRB
PORTB
PTB3/AD3
PTB2/AD2
PTB1/AD1
PTB0/AD0
PTC6
PTC5
PTC4
DDRC
PORTC
PTC3
PTC2
PTC1
PTC0
PTD7/T2CH1
PTD6/T2CH0
PTD5/T1CH1
PTD4/T1CH0
DDRD
PORTD
PTD3/SPSCK
PTD2/MOSI
PTD1/MISO
PTD0/SS
PTE5–PTE2
DDRE
PORTE
PTE1/RxD
PTE0/TxD
SECURITY MODULE
MONITOR MODE ENTRY
MODULE
(1)
(1)
(1)
(1), (2)
(1), (2)
(1), (2)
(1), (2)
(1), (2)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
1. Ports are software configurable with pullup device if input port.
2. Higher current drive port pins
3. Pin contains integrated pullup device
Figure 3-1. Block Diagram Highlighting ADC Block and Pins
MC68HC908GR16A Data Sheet, Rev. 1.0
46 Freescale Semiconductor
INTERNAL
DATA BUS
Functional Description
READ DDRBx
WRITE DDRBx
WRITE PTBx
READ PTBx
INTERRUPT
LOGIC
AIEN COCO
RESET
CONVERSION
COMPLETE
CGMXCLK
BUS CLOCK
DDRBx
PTBx
ADC DATA REGISTER
ADC
ADC CLOCK
CLOCK
GENERATOR
DISABLE
ADC
VOLTAGE IN
)
(V
ADIN
DISABLE
CHANNEL
SELECT
PTBx
ADC CHANNEL x
ADCH4–ADCH0
ADIV2–ADIV0 ADICLK
Figure 3-2. ADC Block Diagram
3.3.2 Voltage Conversion
When the input voltage to the ADC equals V input voltage equals V straight-line linear conversion.
The ADC input voltage must always be greater than V V
DDAD
pin, and connect the V The V
, the ADC converts it to $000. Input voltages between V
REFL
. Connect the V
pin should be routed carefully for maximum noise immunity.
DDAD
pin to the same voltage potential as the VDD
DDAD
pin to the same voltage potential as the VSS pin.
SSAD
MC68HC908GR16A Data Sheet, Rev. 1.0
, the ADC converts the signal to $3FF (full scale). If the
REFH
and V
REFH
NOTE
and less than
SSAD
REFL
are a
Freescale Semiconductor 47
Analog-to-Digital Converter (ADC)
3.3.3 Conversion Time
Conversion starts after a write to the ADC status and control register (ADSCR). One conversion will take between 16 and 17 ADC clock cycles. The ADIVx and ADICLK bits should be set to provide a 1-MHz ADC clock frequency.
Conversion time =
16 to 17 ADC cycles
ADC frequency
Number of bus cycles = conversion time × bus frequency
3.3.4 Conversion
In continuous conversion mode, the ADC data register will be filled with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit is set after each conversion and will stay set until the next read of the ADC data register.
In single conversion mode, conversion begins with a write to the ADSCR. Only one conversion occurs between writes to the ADSCR.
When a conversion is in process and the ADSCR is written, the current conversion data should be discarded to prevent an incorrect reading.
3.3.5 Accuracy and Precision
The conversion process is monotonic and has no missing codes.
3.3.6 Result Justification
The conversion result may be formatted in four different ways:
1. Left justified
2. Right justified
3. Left Justified sign data mode
4. 8-bit truncation mode
All four of these modes are controlled using MODE0 and MODE1 bits located in the ADC clock register (ADCLK).
Left justification will place the eight most significant bits (MSB) in the corresponding ADC data register high, ADRH. This may be useful if the result is to be treated as an 8-bit result where the two least significant bits (LSB), located in the ADC data register low, ADRL, can be ignored. However, ADRL must be read after ADRH or else the interlocking will prevent all new conversions from being stored.
Right justification will place only the two MSBs in the corresponding ADC data register high, ADRH, and the eight LSBs in ADC data register low, ADRL. This mode of operation typically is used when a 10-bit unsigned result is desired.
Left justified sign data mode is similar to left justified mode with one exception. The MSB of the 10-bit result, AD9 located in ADRH, is complemented. This mode of operation is useful when a result, represented as a signed magnitude from mid-scale, is needed. Finally, 8-bit truncation mode will place the eight MSBs in the ADC data register low, ADRL. The two LSBs are dropped. This mode of operation
MC68HC908GR16A Data Sheet, Rev. 1.0
48 Freescale Semiconductor
Monotonicity
is used when compatibility with 8-bit ADC designs are required. No interlocking between ADRH and ADRL is present.
NOTE
Quantization error is affected when only the most significant eight bits are used as a result. See Figure 3-3.
8-BIT
RESULT
003
10-BIT
RESULT
00B
00A
009
IDEAL 8-BIT CHARACTERISTIC WITH QUANTIZATION = ±1/2
10-BIT TRUNCATED TO 8-BIT RESULT
IDEAL 10-BIT CHARACTERISTIC WITH QUANTIZATION = ±1/2
002
001
000
008
007
006
005
004
003
002
001
000
1/2 2 1/2 4 1/2 6 1/2 8 1/2
1 1/2 3 1/2 5 1/2 7 1/2 9 1/2
1/2 2 1/21 1/2
WHEN TRUNCATION IS USED, ERROR FROM IDEAL 8-BIT = 3/8 LSB DUE TO NON-IDEAL QUANTIZATION.
Figure 3-3. Bit Truncation Mode Error
3.4 Monotonicity
The conversion process is monotonic and has no missing codes.
3.5 Interrupts
INPUT VOLTAGE REPRESENTED AS 10-BIT
INPUT VOLTAGE REPRESENTED AS 8-BIT
When the AIEN bit is set, the ADC module is capable of generating CPU interrupts after each ADC conversion. A CPU interrupt is generated if the COCO bit is at 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled.
3.6 Low-Power Modes
The WAIT and STOP instruction can put the MCU in low power-consumption standby modes.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 49
Analog-to-Digital Converter (ADC)
3.6.1 Wait Mode
The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting ADCH4–ADCH0 bits in the ADC status and control register before executing the WAIT instruction.
3.6.2 Stop Mode
The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode after an external interrupt. Allow one conversion cycle to stabilize the analog circuitry.
3.7 I/O Signals
The ADC module has eight pins shared with port B, PTB7/AD7–PTB0/AD0.
3.7.1 ADC Analog Power Pin (V
The ADC analog portion uses V potential as V
. External filtering may be necessary to ensure clean V
DD
DDAD
)
DDAD
as its power pin. Connect the V
pin to the same voltage
DDAD
for good results.
DDAD
NOTE
For maximum noise immunity, route V
carefully and place bypass
DDAD
capacitors as close as possible to the package.
DDAD
and V
V
3.7.2 ADC Analog Ground Pin (V
The ADC analog portion uses V potential as V
are double-bonded on the MC68HC908GR16A.
REFH
)
SSAD
as its ground pin. Connect the V
SSAD
.
SS
pin to the same voltage
SSAD
NOTE
Route V
V
SSAD
and V
are double-bonded on the MC68HC908GR16A.
REFL
3.7.3 ADC Voltage Reference High Pin (V
The ADC analog portion uses V pin to the same voltage potential as V
REFH
cleanly to avoid any offset errors.
SSAD
)
REFH
as its upper voltage reference pin. By default, connect the V
. External filtering is often necessary to ensure a clean V
DD
REFH
REFH
good results. Any noise present on this pin will be reflected and possibly magnified in A/D conversion values.
for
NOTE
For maximum noise immunity, route V capacitors as close as possible to the package. Routing V parallel to V
DDAD
and V
V
50 Freescale Semiconductor
are double-bonded on the MC68HC908GR16A.
REFH
may improve common mode noise rejection.
REFL
MC68HC908GR16A Data Sheet, Rev. 1.0
carefully and place bypass
REFH
REFH
close and
I/O Registers
3.7.4 ADC Voltage Reference Low Pin (V
The ADC analog portion uses V to the same voltage potential as V
as its lower voltage reference pin. By default, connect the V
REFL
. External filtering is often necessary to ensure a clean V
SS
REFL
)
pin
REFH
for good
REFL
results. Any noise present on this pin will be reflected and possibly magnified in A/D conversion values.
NOTE
For maximum noise immunity, route V to V Routing V
, place bypass capacitors as close as possible to the package.
SS
close and parallel to V
REFH
carefully and, if not connected
REFL
may improve common mode
REFL
noise rejection.
V
3.7.5 ADC Voltage In (V
V
and V
SSAD
is the input voltage signal from one of the eight ADC channels to the ADC module.
ADIN
are double-bonded on the MC68HC908GR16A.
REFL
)
ADIN
3.8 I/O Registers
These I/O registers control and monitor ADC operation:
ADC status and control register (ADSCR)
ADC data register (ADRH and ADRL)
ADC clock register (ADCLK)
3.8.1 ADC Status and Control Register
Function of the ADC status and control register (ADSCR) is described here.
Address: $003C
Bit 7654321Bit 0
Read: COCO
Write: R
Reset:00011111
R= Reserved
Figure 3-4. ADC Status and Control Register (ADSCR)
COCO — Conversions Complete Bit
In non-interrupt mode (AIEN = 0), COCO is a read-only bit that is set at the end of each conversion. COCO will stay set until cleared by a read of the ADC data register. Reset clears this bit.
In interrupt mode (AIEN = 1), COCO is a read-only bit that is not set at the end of a conversion. It always reads as a 0.
1 = Conversion completed (AIEN = 0) 0 = Conversion not completed (AIEN = 0) or CPU interrupt enabled (AIEN = 1)
The write function of the COCO bit is reserved. When writing to the ADSCR register, always have a 0 in the COCO bit position.
AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0
NOTE
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 51
Analog-to-Digital Converter (ADC)
AIEN — ADC Interrupt Enable Bit
When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit.
1 = ADC interrupt enabled 0 = ADC interrupt disabled
ADCO — ADC Continuous Conversion Bit
When set, the ADC will convert samples continuously and update the ADR register at the end of each conversion. Only one conversion is completed between writes to the ADSCR when this bit is cleared. Reset clears the ADCO bit.
1 = Continuous ADC conversion 0 = One ADC conversion
ADCH4–ADCH0 — ADC Channel Select Bits
ADCH4–ADCH0 form a 5-bit field which is used to select one of 32 ADC channels. Only eight channels, AD7–AD0, are available on this MCU. The channels are detailed in Table 3-1. Care should be taken when using a port pin as both an analog and digital input simultaneously to prevent switching noise from corrupting the analog signal. See Table 3-1.
The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for reduced power consumption for the MCU when the ADC is not being used.
NOTE
Recovery from the disabled state requires one conversion cycle to stabilize.
The voltage levels supplied from internal reference nodes, as specified in
Table 3-1, are used to verify the operation of the ADC converter both in production testing and for user
applications.
Table 3-1. Mux Channel Select
ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 Input Select
00000 PTB0/AD0
00001 PTB1/AD1
00010 PTB2/AD2
00011 PTB3/AD3
00100 PTB4/AD4
00101 PTB5/AD5
00110 PTB6/AD6
00111 PTB7/AD7
01000
11100
11101
11110
11111 ADC power off
1. If any unused channels are selected, the resulting ADC conversion will be unknown or reserved.
(1)
Unused↓↓↓↓↓
V
REFH
V
REFL
MC68HC908GR16A Data Sheet, Rev. 1.0
52 Freescale Semiconductor
I/O Registers
3.8.2 ADC Data Register High and Data Register Low
3.8.2.1 Left Justified Mode
In left justified mode, the ADRH register holds the eight MSBs of the 10-bit result. The only difference from left justified mode is that the AD9 is complemented. The ADRL register holds the two LSBs of the 10-bit result. All other bits read as 0. ADRH and ADRL are updated each time an ADC single channel conversion completes. Reading ADRH latches the contents of ADRL until ADRL is read. All subsequent results will be lost until the ADRH and ADRL reads are completed.
Address: $003D ADRH
Bit 7654321Bit 0
Read: AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2
Write:
Reset: Unaffected by reset
Address: $003E ADRL
Read:AD1AD0000000
Write:
Reset: Unaffected by reset
= Unimplemented
Figure 3-5. ADC Data Register High (ADRH) and Low (ADRL)
3.8.2.2 Right Justified Mode
In right justified mode, the ADRH register holds the two MSBs of the 10-bit result. All other bits read as 0. The ADRL register holds the eight LSBs of the 10-bit result. ADRH and ADRL are updated each time an ADC single channel conversion completes. Reading ADRH latches the contents of ADRL until ADRL is read. All subsequent results will be lost until the ADRH and ADRL reads are completed.
Address: $003D ADRH
Bit 7654321Bit 0
Read:000000AD9AD8
Write:
Reset: Unaffected by reset
Address: $003E ADRL
Read: AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0
Write:
Reset: Unaffected by reset
= Unimplemented
Figure 3-6. ADC Data Register High (ADRH) and Low (ADRL)
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 53
Analog-to-Digital Converter (ADC)
3.8.2.3 Left Justified Signed Data Mode
In left justified signed data mode, the ADRH register holds the eight MSBs of the 10-bit result. The only difference from left justified mode is that the AD9 is complemented. The ADRL register holds the two LSBs of the 10-bit result. All other bits read as 0. ADRH and ADRL are updated each time an ADC single channel conversion completes. Reading ADRH latches the contents of ADRL until ADRL is read. All subsequent results will be lost until the ADRH and ADRL reads are completed.
Address: $003D ADRH
Bit 7654321Bit 0
Read: AD9
Write:
Reset: Unaffected by reset
Address: $003E ADRL
Read:AD1AD0000000
Write:
Reset: Unaffected by reset
AD8 AD7 AD6 AD5 AD4 AD3 AD2
= Unimplemented
Figure 3-7. ADC Data Register High (ADRH) and Low (ADRL)
3.8.2.4 Eight Bit Truncation Mode
In 8-bit truncation mode, the ADRL register holds the eight MSBs of the 10-bit result. The ADRH register is unused and reads as 0. The ADRL register is updated each time an ADC single channel conversion completes. In 8-bit mode, the ADRL register contains no interlocking with ADRH.
Address: $003D ADRH
Bit 7654321Bit 0
Read:00000000
Write:
Reset: Unaffected by reset
Address: $003E ADRL
Read: AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2
Write:
Reset: Unaffected by reset
= Unimplemented
Figure 3-8. ADC Data Register High (ADRH) and Low (ADRL)
MC68HC908GR16A Data Sheet, Rev. 1.0
54 Freescale Semiconductor
I/O Registers
3.8.3 ADC Clock Register
The ADC clock register (ADCLK) selects the clock frequency for the ADC.
Address: $003F
Bit 7654321Bit 0
Read:
Write:
Reset:00000100
ADIV2 ADIV1 ADIV0 ADICLK MODE1 MODE0 R
R=Reserved
= Unimplemented
Figure 3-9. ADC Clock Register (ADCLK)
ADIV2–ADIV0 — ADC Clock Prescaler Bits
ADIV2–ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 3-2 shows the available clock configurations. The ADC clock should be set to approximately 1 MHz.
Table 3-2. ADC Clock Divide Ratio
ADIV2 ADIV1 ADIV0 ADC Clock Rate
0 0 0 ADC input clock ÷ 1 0 0 1 ADC input clock ÷ 2 0 1 0 ADC input clock ÷ 4 0 1 1 ADC input clock ÷ 8
1
1. X = Don’t care
(1)
X
(1)
X
ADC input clock ÷ 16
0
ADICLK — ADC Input Clock Select Bit
ADICLK selects either the bus clock or the oscillator output clock (CGMXCLK) as the input clock source to generate the internal ADC clock. Reset selects CGMXCLK as the ADC clock source.
1 = Internal bus clock 0 = Oscillator output clock (CGMXCLK)
The ADC requires a clock rate of approximately 1 MHz for correct operation. If the selected clock source is not fast enough, the ADC will generate incorrect conversions. See 20.10 5.0-Volt ADC
Characteristics.
f
ADIC
=
f
CGMXCLK
or bus frequency
1 MHz
ADIV[2:0]
MODE1 and MODE0 — Modes of Result Justification Bits
MODE1 and MODE0 select among four modes of operation. The manner in which the ADC conversion results will be placed in the ADC data registers is controlled by these modes of operation. Reset returns right-justified mode.
00 = 8-bit truncation mode 01 = Right justified mode 10 = Left justified mode 11 = Left justified signed data mode
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 55
Analog-to-Digital Converter (ADC)
MC68HC908GR16A Data Sheet, Rev. 1.0
56 Freescale Semiconductor
Chapter 4 Clock Generator Module (CGM)
4.1 Introduction
This section describes the clock generator module (CGM). The CGM generates the crystal clock signal, CGMXCLK, which operates at the frequency of the crystal. The CGM also generates the base clock signal, CGMOUT, which is based on either the crystal clock divided by two or the phase-locked loop (PLL) clock, CGMVCLK, divided by two. In user mode, CGMOUT is the clock from which the SIM derives the system clocks, including the bus clock, which is at a frequency of CGMOUT/2. The PLL is a fully functional frequency generator designed for use with crystals or ceramic resonators. The PLL can generate a maximum bus frequency of 8 MHz using a 1-8MHz crystal or external clock source.
4.2 Features
Features of the CGM include:
Phase-locked loop with output frequency in integer multiples of an integer dividend of the crystal reference
High-frequency crystal operation with low-power operation and high-output frequency resolution
Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation
Automatic bandwidth control mode for low-jitter operation
Automatic frequency lock detector
CPU interrupt on entry or exit from locked condition
Configuration register bit to allow oscillator operation during stop mode
4.3 Functional Description
The CGM consists of three major submodules:
Crystal oscillator circuit — The crystal oscillator circuit generates the constant crystal frequency clock, CGMXCLK.
Phase-locked loop (PLL) — The PLL generates the programmable VCO frequency clock, CGMVCLK.
Base clock selector circuit — This software-controlled circuit selects either CGMXCLK divided by two or the VCO clock, CGMVCLK, divided by two as the base clock, CGMOUT. The SIM derives the system clocks from either CGMOUT or CGMXCLK.
Figure 4-1 shows the structure of the CGM.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 57
Clock Generator Module (CGM)
OSCILLATOR (OSC)
OSC2
OSC1
SIMOSCEN
(FROM SIM)
OSCENINSTOP
(FROM CONFIG)
PHASE-LOCKED LOOP (PLL)
CGMXCLK
(TO: SIM, TIMEBASE, ADC)
CGMRCLK
V
DDA
PHASE
DETECTOR
LOCK
DETECTOR
LOCK AUTO ACQ
MUL11–MUL0
CGMXFC V
LOOP
FILTER
AUTOMATIC
MODE
CONTROL
SSA
VRS7–VRS0
PLL ANALOG
BCS
VPR1–VPR0
VOLTAGE
CONTROLLED
OSCILLATOR
INTERRUPT
CONTROL
PLLIE PLLF
CLOCK SELECT CIRCUIT
CGMVCLK
A
÷
2
B
S
*
WHEN S = 1,
*
CGMOUT = B
CGMOUT
(TO SIM)
PTB4
MONITOR MODE
USER MODE
CGMINT
(TO SIM)
CGMVDV
FREQUENCY
DIVIDER
Figure 4-1. CGM Block Diagram
MC68HC908GR16A Data Sheet, Rev. 1.0
58 Freescale Semiconductor
Functional Description
4.3.1 Crystal Oscillator Circuit
The crystal oscillator circuit consists of an inverting amplifier and an external crystal. The OSC1 pin is the input to the amplifier and the OSC2 pin is the output. The SIMOSCEN signal from the system integration module (SIM) or the OSCENINSTOP bit in the CONFIG register enable the crystal oscillator circuit.
The CGMXCLK signal is the output of the crystal oscillator circuit and runs at a rate equal to the crystal frequency. CGMXCLK is then buffered to produce CGMRCLK, the PLL reference clock.
CGMXCLK can be used by other modules which require precise timing for operation. The duty cycle of CGMXCLK is not guaranteed to be 50% and depends on external factors, including the crystal and related external components. An externally generated clock also can feed the OSC1 pin of the crystal oscillator circuit. Connect the external clock to the OSC1 pin and let the OSC2 pin float.
4.3.2 Phase-Locked Loop Circuit (PLL)
The PLL is a frequency generator that can operate in either acquisition mode or tracking mode, depending on the accuracy of the output frequency. The PLL can change between acquisition and tracking modes either automatically or manually.
4.3.3 PLL Circuits
The PLL consists of these circuits:
Voltage-controlled oscillator (VCO)
Modulo VCO frequency divider
Phase detector
Loop filter
Lock detector
The operating range of the VCO is programmable for a wide range of frequencies and for maximum immunity to external noise, including supply and CGMXFC noise. The VCO frequency is bound to a range from roughly one-half to twice the center-of-range frequency, f CGMXFC pin changes the frequency within this range. By design, f center-of-range frequency, f
E
)f
(L × 2
NOM
.
, (71.4 kHz) times a linear factor, L, and a power-of-two factor, E, or
NOM
. Modulating the voltage on the
VRS
is equal to the nominal
VRS
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency,
. The VCO’s output clock, CGMVCLK, running at a frequency, f
f
RCLK
, is fed back through a
VCLK
programmable modulo divider. The modulo divider reduces the VCO clock by a factor, N. The dividers output is the VCO feedback clock, CGMVDV, running at a frequency, f
VDV=fVCLK
/(N). For more
information, see 4.3.6 Programming the PLL.
The phase detector then compares the VCO feedback clock, CGMVDV, with the final reference clock, CGMRDV. A correction pulse is generated based on the phase difference between the two signals. The loop filter then slightly alters the DC voltage on the external capacitor connected to CGMXFC based on the width and direction of the correction pulse. The filter can make fast or slow corrections depending on its mode, described in 4.3.4 Acquisition and Tracking Modes. The value of the external capacitor and the reference frequency determines the speed of the corrections and the stability of the PLL.
The lock detector compares the frequencies of the VCO feedback clock, CGMVDV, and the reference clock, CGMRCLK. Therefore, the speed of the lock detector is directly proportional to the reference frequency, f
. The circuit determines the mode of the PLL and the lock condition based on this
RCLK
comparison.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 59
Clock Generator Module (CGM)
4.3.4 Acquisition and Tracking Modes
The PLL filter is manually or automatically configurable into one of two operating modes:
Acquisition mode — In acquisition mode, the filter can make large frequency corrections to the VCO. This mode is used at PLL start up or when the PLL has suffered a severe noise hit and the VCO frequency is far off the desired frequency. When in acquisition mode, the ACQ bit is clear in the PLL bandwidth control register. (See 4.5.2 PLL Bandwidth Control Register.)
Tracking mode — In tracking mode, the filter makes only small corrections to the frequency of the VCO. PLL jitter is much lower in tracking mode, but the response to noise is also slower. The PLL enters tracking mode when the VCO frequency is nearly correct, such as when the PLL is selected as the base clock source. (See 4.3.8 Base Clock Selector Circuit.) The PLL is automatically in tracking mode when not in acquisition mode or when the ACQ
bit is set.
4.3.5 Manual and Automatic PLL Bandwidth Modes
The PLL can change the bandwidth or operational mode of the loop filter manually or automatically. Automatic mode is recommended for most users.
In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the VCO clock, CGMVCLK, is safe to use as the source for the base clock, CGMOUT. (See 4.5.2 PLL
Bandwidth Control Register.) If PLL interrupts are enabled, the software can wait for a PLL interrupt
request and then check the LOCK bit. If interrupts are disabled, software can poll the LOCK bit continuously (for example, during PLL start up) or at periodic intervals. In either case, when the LOCK bit is set, the VCO clock is safe to use as the source for the base clock. (See 4.3.8 Base Clock Selector
Circuit.) If the VCO is selected as the source for the base clock and the LOCK bit is clear, the PLL has
suffered a severe noise hit and the software must take appropriate action, depending on the application. (See 4.6 Interrupts for information and precautions on using interrupts.)
The following conditions apply when the PLL is in automatic bandwidth control mode:
•The ACQ
bit (See 4.5.2 PLL Bandwidth Control Register.) is a read-only indicator of the mode of
the filter. (See 4.3.4 Acquisition and Tracking Modes.)
•The ACQ
bit is set when the VCO frequency is within a certain tolerance and is cleared when the VCO frequency is out of a certain tolerance. (See 4.8 Acquisition/Lock Time Specifications for more information.)
The LOCK bit is a read-only indicator of the locked state of the PLL.
The LOCK bit is set when the VCO frequency is within a certain tolerance and is cleared when the VCO frequency is out of a certain tolerance. (See 4.8 Acquisition/Lock Time Specifications for more information.)
CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s lock condition changes, toggling the LOCK bit. (See 4.5.1 PLL Control Register.)
The PLL also may operate in manual mode (AUTO = 0). Manual mode is used by systems that do not require an indicator of the lock condition for proper operation. Such systems typically operate well below f
BUSMAX
.
MC68HC908GR16A Data Sheet, Rev. 1.0
60 Freescale Semiconductor
Functional Description
The following conditions apply when in manual mode:
•ACQ
Before entering tracking mode (ACQ
is a writable control bit that controls the mode of the filter. Before turning on the PLL in manual
mode, the ACQ
bit must be clear.
= 1), software must wait a given time, t
ACQ
(See 4.8
Acquisition/Lock Time Specifications.), after turning on the PLL by setting PLLON in the PLL
control register (PCTL).
Software must wait a given time, t
, after entering tracking mode before selecting the PLL as the
AL
clock source to CGMOUT (BCS = 1).
The LOCK bit is disabled.
CPU interrupts from the CGM are disabled.
4.3.6 Programming the PLL
Use the following procedure to program the PLL. For reference, the variables used and their meaning are shown in Table 4-1.
Table 4-1. Variable Definitions
Variable Definition
f
BUSDES
f
VCLKDES
f
RCLK
f
VCLK
f
BUS
f
NOM
f
VRS
Desired bus clock frequency
Desired VCO clock frequency
Chosen reference crystal frequency
Calculated VCO clock frequency
Calculated bus clock frequency
Nominal VCO center frequency
Programmed VCO center frequency
NOTE
The round function in the following equations means that the real number should be rounded to the nearest integer number.
1. Choose the desired bus frequency, f
BUSDES
.
2. Calculate the desired VCO frequency (four times the desired bus frequency). f
VCLKDES
3. Choose a practical PLL (crystal) reference frequency, f
= 4 x f
BUSDES
RCLK
. Typically, the reference crystal is 1–8
MHz. Frequency errors to the PLL are corrected at a rate of f
. For stability and lock time reduction,
RCLK
this rate must be as fast as possible. The VCO frequency must be an integer multiple of this rate. The relationship between the VCO frequency, f
= (N) (f
f
VCLK
, and the reference frequency, f
VCLK
)
RCLK
RCLK,
N, the range multiplier, must be an integer. In cases where desired bus frequency has some tolerance, choose f
to a value determined
RCLK
either by other module requirements (such as modules which are clocked by CGMXCLK), cost requirements, or ideally, as high as the specified range allows. See Chapter 20 Electrical
Specifications. After choosing N, the actual bus frequency can be determined using equation in 2
above.
is:
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 61
Clock Generator Module (CGM)
4. Select a VCO frequency multiplier, N.
N round
=
f
⎛⎞
VCLKDES
--------------------------
⎜⎟
f
⎝⎠
RCLK
5. Calculate and verify the adequacy of the VCO and bus frequencies f
N() f
f
()4=
VCLK
×=
RCLK
f
VCLK
f
BUS
VCLK
and f
BUS
.
6. Select the VCO’s power-of-two range multiplier E, according to Table 4-2.
Table 4-2. Power-of-Two Range Selectors
Frequency Range E
0 < f
8 MHz< f
16 MHz< f
1. Do not program E to a value of 3.
7. Select a VCO linear range multiplier, L, where f
8 MHz
VCLK
16 MHz
VCLK
32 MHz
VCLK
L = Round
= 71.4 kHz
NOM
f
VCLK
2E x f
NOM
0
1
(1)
2
8. Calculate and verify the adequacy of the VCO programmed center-of-range frequency, f
center-of-range frequency is the midpoint between the minimum and maximum frequencies attainable by the PLL.
f
= (L x 2E) f
VRS
NOM
VRS
. The
9. For proper operation,
f
VRSfVCLK
10. Verify the choice of N, E, and L by comparing f f
must be within the application’s tolerance of f
VCLK
to f
VCLK
.
NOTE
Exceeding the recommended maximum bus frequency or VCO frequency can crash the MCU.
11. Program the PLL registers accordingly:
a. In the VPR bits of the PLL control register (PCTL), program the binary equivalent of E.
b. In the PLL multiplier select register low (PMSL) and the PLL multiplier select register high
(PMSH), program the binary equivalent of N. If using a 1–8 MHz reference, the PMSL register must be reprogrammed from the reset value before enabling the PLL.
c. In the PLL VCO range select register (PMRS), program the binary coded equivalent of L.
MC68HC908GR16A Data Sheet, Rev. 1.0
f
NOM
-------------------------- -
VCLK
VCLKDES
2
to f
2E×
VRS
and f
, and f
VCLKDES
VRS
. For proper operation,
must be as close as possible
62 Freescale Semiconductor
Table 4-3 provides numeric examples (register values are in hexadecimal notation):
Table 4- 3. Nu meri c Ex ampl e
Functional Description
f
(MHz) f
BUS
1.0 2.0 0 002 38
2.0 2.0 0 004 70
4.0 2.0 1 008 70
8.0 2.0 2 010 70
2.0 4.0 0 002 70
4.0 4.0 1 004 70
5.0 4.0 2 005 46
8.0 4.0 2 008 70
2.4576 4.9152 1 002 45
4.9152 4.9152 2 004 45
7.3728 4.9152 2 006 67
2.0 8.0 0 001 70
4.0 8.0 1 002 70
6.0 8.0 2 003 54
8.0 8.0 2 004 70
RCLK
(MHz)
PCTL
E
PMSH,L
N
PMRS
L
4.3.7 Special Programming Exceptions
The programming method described in 4.3.6 Programming the PLL does not account for two possible exceptions. A value of 0 for N or L is meaningless when used in the equations given. To account for these exceptions:
A 0 value for N is interpreted exactly the same as a value of 1.
A 0 value for L disables the PLL and prevents its selection as the source for the base clock.
See 4.3.8 Base Clock Selector Circuit.
4.3.8 Base Clock Selector Circuit
This circuit is used to select either the crystal clock, CGMXCLK, or the VCO clock, CGMVCLK, as the source of the base clock, CGMOUT. The two input clocks go through a transition control circuit that waits up to three CGMXCLK cycles and three CGMVCLK cycles to change from one clock source to the other. During this time, CGMOUT is held in stasis. The output of the transition control circuit is then divided by two to correct the duty cycle. Therefore, the bus clock frequency, which is one-half of the base clock frequency, is one-fourth the frequency of the selected clock (CGMXCLK or CGMVCLK).
The BCS bit in the PLL control register (PCTL) selects which clock drives CGMOUT. The VCO clock cannot be selected as the base clock source if the PLL is not turned on. The PLL cannot be turned off if the VCO clock is selected. The PLL cannot be turned on or off simultaneously with the selection or deselection of the VCO clock. The VCO clock also cannot be selected as the base clock source if the factor L is programmed to a 0. This value would set up a condition inconsistent with the operation of the PLL, so that the PLL would be disabled and the crystal clock would be forced as the source of the base clock.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 63
Clock Generator Module (CGM)
4.3.9 CGM External Connections
In its typical configuration, the CGM requires external components. Five of these are for the crystal oscillator and two or four are for the PLL.
The crystal oscillator is normally connected in a Pierce oscillator configuration, as shown in Figure 4-2.
Figure 4-2 shows only the logical representation of the internal components and may not represent actual
circuitry. The oscillator configuration uses five components:
•Crystal, X
Fixed capacitor, C
Tuning capacitor, C2 (can also be a fixed capacitor)
Feedback resistor, R
Series resistor, RS
1
1
B
The series resistor (R
) is included in the diagram to follow strict Pierce oscillator guidelines. Refer to the
S
crystal manufacturer’s data for more information regarding values for C1 and C2.
Figure 4-2 also shows the external components for the PLL:
Bypass capacitor, C
BYP
Filter network
Routing should be done with great care to minimize signal cross talk and noise.
SIMOSCEN
OSCENINSTOP
(FROM CONFIG)
CGMXCLK
OSC1
RB
OSC2
RS
CGMXFC
R
F1
C
F2
V
SSA
V
DDA
CBYP
0.1 µF
V
DD
C
F1
X1
C
1
C
2
3 Component Filter
Note: Filter network in box can be replaced with a single capacitor, but will degrade stability.
Figure 4-2. CGM External Connections
MC68HC908GR16A Data Sheet, Rev. 1.0
64 Freescale Semiconductor
I/O Signals
4.4 I/O Signals
The following paragraphs describe the CGM I/O signals.
4.4.1 Crystal Amplifier Input Pin (OSC1)
The OSC1 pin is an input to the crystal oscillator amplifier.
4.4.2 Crystal Amplifier Output Pin (OSC2)
The OSC2 pin is the output of the crystal oscillator inverting amplifier.
4.4.3 External Filter Capacitor Pin (CGMXFC)
The CGMXFC pin is required by the loop filter to filter out phase corrections. An external filter network is connected to this pin. (See Figure 4-2.)
NOTE
To prevent noise problems, the filter network should be placed as close to the CGMXFC pin as possible, with minimum routing distances and no routing of other signals across the network.
4.4.4 PLL Analog Power Pin (V
V
is a power pin used by the analog portions of the PLL. Connect the V
DDA
potential as the V
DD
pin.
DDA
)
pin to the same voltage
DDA
NOTE
Route V
carefully for maximum noise immunity and place bypass
DDA
capacitors as close as possible to the package.
4.4.5 PLL Analog Ground Pin (V
V
is a ground pin used by the analog portions of the PLL. Connect the V
SSA
potential as the V
SS
pin.
SSA
)
pin to the same voltage
SSA
NOTE
Route V
carefully for maximum noise immunity and place bypass
SSA
capacitors as close as possible to the package.
4.4.6 Oscillator Enable Signal (SIMOSCEN)
The SIMOSCEN signal comes from the system integration module (SIM) and enables the oscillator and PLL.
4.4.7 Oscillator Enable in Stop Mode Bit (OSCENINSTOP)
OSCENINSTOP is a bit in the CONFIG2 register that enables the oscillator to continue operating during stop mode. If this bit is set, the oscillator continues running during stop mode. If this bit is not set (default), the oscillator is controlled by the SIMOSCEN signal which will disable the oscillator during stop mode.
4.4.8 Crystal Output Frequency Signal (CGMXCLK)
CGMXCLK is the crystal oscillator output signal. It runs at the full speed of the crystal (f directly from the crystal oscillator circuit. Figure 4-2 shows only the logical relation of CGMXCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of CGMXCLK is unknown and may
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 65
) and comes
XCLK
Clock Generator Module (CGM)
depend on the crystal and other external factors. Also, the frequency and amplitude of CGMXCLK can be unstable at start up.
4.4.9 CGM Base Clock Output (CGMOUT)
CGMOUT is the clock output of the CGM. This signal goes to the SIM, which generates the MCU clocks. CGMOUT is a 50 percent duty cycle clock running at twice the bus frequency. CGMOUT is software programmable to be either the oscillator output, CGMXCLK, divided by two or the VCO clock, CGMVCLK, divided by two.
4.4.10 CGM CPU Interrupt (CGMINT)
CGMINT is the interrupt signal generated by the PLL lock detector.
4.5 CGM Registers
These registers control and monitor operation of the CGM:
PLL control register (PCTL) — See 4.5.1 PLL Control Register
PLL bandwidth control register (PBWC) — see 4.5.2 PLL Bandwidth Control Register
PLL multiplier select register high (PMSH) — see 4.5.3 PLL Multiplier Select Register High
PLL multiplier select register low (PMSL) — see 4.5.4 PLL Multiplier Select Register Low
PLL VCO range select register (PMRS) — see 4.5.5 PLL VCO Range Select Register
Figure 4-3 is a summary of the CGM registers.
Addr.Register Name Bit 7654321Bit 0
PLL Control Register
$0036
PLL Bandwidth Control
$0037
$0038
$0039
$003A
$003B Reserved Register
NOTES:
1. When AUTO = 0, PLLIE is forced clear and is read-only.
2. When AUTO = 0, PLLF and LOCK read as clear.
3. When AUTO = 1, ACQ
4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only.
5. When PLLON = 1, the PLL programming register is read-only.
6. When BCS = 1, PLLON is forced set and is read-only.
Register (PBWC)
PLL Multiplier Select High
Register (PMSH)
PLL Multiplier Select Low
PLL VCO Select Range
Register (PMRS)
(PCTL)
See page 67.
See page 68.
See page 69.
Register (PMSL)
See page 70.
See page 70.
is read-only.
Read:
Write:
Reset:00100000
Read:
Write:
Reset:00000000
Read:0000
Write:
Reset:00000000
Read:
Write:
Reset:01000000
Read:
Write:
Reset:01000000
Read:0000
Write:
Reset:00000001
PLLIE
AUTO
MUL7 MUL6 MUL5 MUL4 MUL3 MUL2 MUL1 MUL0
VRS7 VRS6 VRS5 VRS4 VRS3 VRS2 VRS1 VRS0
PLLF
LOCK
= Unimplemented R = Reserved
PLLON BCS R R VPR1 VPR0
ACQ
0000
MUL11 MUL10 MUL9 MUL8
RRRR
R
Figure 4-3. CGM I/O Register Summary
MC68HC908GR16A Data Sheet, Rev. 1.0
66 Freescale Semiconductor
CGM Registers
4.5.1 PLL Control Register
The PLL control register (PCTL) contains the interrupt enable and flag bits, the on/off switch, the base clock selector bit, and the VCO power-of-two range selector bits.
Address: $0036
Bit 7 6 5 4 3 2 1 Bit 0
Read:
Write:
Reset:00100 0 00
PLLIE
PLLIE — PLL Interrupt Enable Bit
This read/write bit enables the PLL to generate an interrupt request when the LOCK bit toggles, setting the PLL flag, PLLF. When the AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE cannot be written and reads as 0. Reset clears the PLLIE bit.
1 = PLL interrupts enabled 0 = PLL interrupts disabled
PLLF — PLL Interrupt Flag Bit
This read-only bit is set whenever the LOCK bit toggles. PLLF generates an interrupt request if the PLLIE bit also is set. PLLF always reads as 0 when the AUTO bit in the PLL bandwidth control register (PBWC) is clear. Clear the PLLF bit by reading the PLL control register. Reset clears the PLLF bit.
1 = Change in lock condition 0 = No change in lock condition
PLLF
= Unimplemented R = Reserved
PLLON BCS R R VPR1 VPR0
Figure 4-4. PLL Control Register (PCTL)
NOTE
Do not inadvertently clear the PLLF bit. Any read or read-modify-write operation on the PLL control register clears the PLLF bit.
PLLON — PLL On Bit
This read/write bit activates the PLL and enables the VCO clock, CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the base clock, CGMOUT (BCS = 1). (See 4.3.8 Base Clock Selector
Circuit.) Reset sets this bit so that the loop can stabilize as the MCU is powering up.
1 = PLL on 0 = PLL off
BCS — Base Clock Select Bit
This read/write bit selects either the crystal oscillator output, CGMXCLK, or the VCO clock, CGMVCLK, as the source of the CGM output, CGMOUT. CGMOUT frequency is one-half the frequency of the selected clock. BCS cannot be set while the PLLON bit is clear. After toggling BCS, it may take up to three CGMXCLK and three CGMVCLK cycles to complete the transition from one source clock to the other. During the transition, CGMOUT is held in stasis. (See 4.3.8 Base Clock
Selector Circuit.) Reset clears the BCS bit.
1 = CGMVCLK divided by two drives CGMOUT 0 = CGMXCLK divided by two drives CGMOUT
NOTE
PLLON and BCS have built-in protection that prevents the base clock selector circuit from selecting the VCO clock as the source of the base clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 67
Clock Generator Module (CGM)
BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0), selecting CGMVCLK requires two writes to the PLL control register. (See
4.3.8 Base Clock Selector Circuit.).
VPR1 and VPR0 — VCO Power-of-Two Range Select Bits
These read/write bits control the VCO’s hardware power-of-two range multiplier E that, in conjunction with L controls the hardware center-of-range frequency, f
. VPR1:VPR0 cannot be written when the
VRS
PLLON bit is set. Reset clears these bits. (See 4.3.3 PLL Circuits, 4.3.6 Programming the PLL, and
4.5.5 PLL VCO Range Select Register.)
Table 4-4. VPR1 and VPR0 Programming
VPR1 and VPR0 E
00 0 1
01 1 2
10
1. Do not program E to a value of 3.
(1)
2
VCO Power-of-Two
Range Multiplier
4
NOTE
Verify that the value of the VPR1 and VPR0 bits in the PCTL register are appropriate for the given reference and VCO clock frequencies before enabling the PLL. See 4.3.6 Programming the PLL for detailed instructions on selecting the proper value for these control bits.
4.5.2 PLL Bandwidth Control Register
The PLL bandwidth control register (PBWC):
Selects automatic or manual (software-controlled) bandwidth control mode
Indicates when the PLL is locked
In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode
In manual operation, forces the PLL into acquisition or tracking mode
Address: $0037
Bit 7654321Bit 0
Read:
Write:
Reset:00000000
AUTO
LOCK
= Unimplemented R= Reserved
ACQ
0000
R
Figure 4-5. PLL Bandwidth Control Register (PBWC)
AUTO — Automatic Bandwidth Control Bit
This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual operation (AUTO = 0), clear the ACQ
bit before turning on the PLL. Reset clears the AUTO bit. 1 = Automatic bandwidth control 0 = Manual bandwidth control
MC68HC908GR16A Data Sheet, Rev. 1.0
68 Freescale Semiconductor
CGM Registers
LOCK — Lock Indicator Bit
When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock, CGMVCLK, is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as 0 and has no meaning. The write one function of this bit is reserved for test, so this bit must always be written as a 0. Reset clears the LOCK bit.
1 = VCO frequency correct or locked 0 = VCO frequency incorrect or unlocked
ACQ
— Acquisition Mode Bit
When the AUTO bit is set, ACQ or tracking mode. When the AUTO bit is clear, ACQ
is a read-only bit that indicates whether the PLL is in acquisition mode
is a read/write bit that controls whether the PLL is in acquisition or tracking mode. In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit, enabling acquisition mode.
1 = Tracking mode 0 = Acquisition mode
4.5.3 PLL Multiplier Select Register High
The PLL multiplier select register high (PMSH) contains the programming information for the high byte of the modulo feedback divider.
Address: $0038
Bit 7654321Bit 0
Read:0000
Write:
Reset:00000000
= Unimplemented
MUL11 MUL10 MUL9 MUL8
Figure 4-6. PLL Multiplier Select Register High (PMSH)
MUL11–MUL8 — Multiplier Select Bits
These read/write bits control the high byte of the modulo feedback divider that selects the VCO frequency multiplier N. (See 4.3.3 PLL Circuits and 4.3.6 Programming the PLL.) A value of $0000 in the multiplier select registers configures the modulo feedback divider the same as a value of $0001. Reset initializes the registers to $0040 for a default multiply value of 64.
NOTE
The multiplier select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1).
PMSH[7:4] — Unimplemented Bits
These bits have no function and always read as 0s.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 69
Clock Generator Module (CGM)
4.5.4 PLL Multiplier Select Register Low
The PLL multiplier select register low (PMSL) contains the programming information for the low byte of the modulo feedback divider.
Address: $0038
Bit 7654321Bit 0
Read:
Write:
Reset:01000000
For applications using 1–8 MHz reference frequencies this register must be reprogrammed before enabling the PLL. The reset value of this register will cause applications using 1–8 MHz reference frequencies to become unstable if the PLL is enabled without programming an appropriate value. The programmed value must not allow the VCO clock to exceed 32 MHz. See 4.3.6 Programming the PLL for detailed instructions on choosing the proper value for PMSL.
MUL7 MUL6 MUL5 MUL4 MUL3 MUL2 MUL1 MUL0
Figure 4-7. PLL Multiplier Select Register Low (PMSL)
NOTE
MUL7–MUL0 — Multiplier Select Bits
These read/write bits control the low byte of the modulo feedback divider that selects the VCO frequency multiplier, N. (See 4.3.3 PLL Circuits and 4.3.6 Programming the PLL.) MUL7–MUL0 cannot be written when the PLLON bit in the PCTL is set. A value of $0000 in the multiplier select registers configures the modulo feedback divider the same as a value of $0001. Reset initializes the register to $40 for a default multiply value of 64.
NOTE
The multiplier select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1).
4.5.5 PLL VCO Range Select Register
The PLL VCO range select register (PMRS) contains the programming information required for the hardware configuration of the VCO.
Address: $003A
Bit 7654321Bit 0
Read:
Write:
Reset:01000000
VRS7 VRS6 VRS5 VRS4 VRS3 VRS2 VRS1 VRS0
Figure 4-8. PLL VCO Range Select Register (PMRS)
NOTE
Verify that the value of the PMRS register is appropriate for the given reference and VCO clock frequencies before enabling the PLL. See 4.3.6
Programming the PLL for detailed instructions on selecting the proper value
for these control bits.
MC68HC908GR16A Data Sheet, Rev. 1.0
70 Freescale Semiconductor
Interrupts
VRS7–VRS0 — VCO Range Select Bits
These read/write bits control the hardware center-of-range linear multiplier L which, in conjunction with E (See 4.3.3 PLL Circuits, 4.3.6 Programming the PLL, and 4.5.1 PLL Control Register.), controls the hardware center-of-range frequency, f
. VRS7–VRS0 cannot be written when the PLLON bit in the
VRS
PCTL is set. (See 4.3.7 Special Programming Exceptions.) A value of $00 in the VCO range select register disables the PLL and clears the BCS bit in the PLL control register (PCTL). (See 4.3.8 Base
Clock Selector Circuit and 4.3.7 Special Programming Exceptions.). Reset initializes the register to $40
for a default range multiply value of 64.
NOTE
The VCO range select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1) and such that the VCO clock cannot be selected as the source of the base clock (BCS = 1) if the VCO range select bits are all clear. The PLL VCO range select register must be programmed correctly. Incorrect programming can result in failure of the PLL to achieve lock.
4.6 Interrupts
When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL can generate a CPU interrupt request every time the LOCK bit changes state. The PLLIE bit in the PLL control register (PCTL) enables CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL, becomes set whether interrupts are enabled or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and PLLF reads as 0.
Software should read the LOCK bit after a PLL interrupt request to see if the request was due to an entry into lock or an exit from lock. When the PLL enters lock, the VCO clock, CGMVCLK, divided by two can be selected as the CGMOUT source by setting BCS in the PCTL. When the PLL exits lock, the VCO clock frequency is corrupt, and appropriate precautions should be taken. If the application is not frequency sensitive, interrupts should be disabled to prevent PLL interrupt service routines from impeding software performance or from exceeding stack limitations.
NOTE
Software can select the CGMVCLK divided by two as the CGMOUT source even if the PLL is not locked (LOCK = 0). Therefore, software should make sure the PLL is locked before setting the BCS bit.
4.7 Special Modes
The WAIT instruction puts the MCU in low power-consumption standby modes.
4.7.1 Wait Mode
The WAIT instruction does not affect the CGM. Before entering wait mode, software can disengage and turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL) to save power. Less power-sensitive applications can disengage the PLL without turning it off, so that the PLL clock is immediately available at WAIT exit. This would be the case also when the PLL is to wake the MCU from wait mode, such as when the PLL is first enabled and waiting for LOCK or LOCK is lost.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 71
Clock Generator Module (CGM)
4.7.2 Stop Mode
If the OSCENINSTOP bit in the CONFIG2 register is cleared (default), then the STOP instruction disables the CGM (oscillator and phase locked loop) and holds low all CGM outputs (CGMXCLK, CGMOUT, and CGMINT).
If the OSCENINSTOP bit in the CONFIG2 register is set, then the phase locked loop is shut off but the oscillator will continue to operate in stop mode.
4.7.3 CGM During Break Interrupts
The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. See 19.2.2.4 SIM Break Flag Control Register.
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.
To protect the PLLF bit during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), software can read and write the PLL control register during the break state without affecting the PLLF bit.
4.8 Acquisition/Lock Time Specifications
The acquisition and lock times of the PLL are, in many applications, the most critical PLL design parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock times.
4.8.1 Acquisition/Lock Time Definitions
Typical control systems refer to the acquisition time or lock time as the reaction time, within specified tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or when it suffers a noise hit. The tolerance is usually specified as a percent of the step input or when the output settles to the desired value plus or minus a percent of the frequency change. Therefore, the reaction time is constant in this definition, regardless of the size of the step input. For example, consider a system with a 5 percent acquisition time tolerance. If a command instructs the system to change from 0 Hz to 1 MHz, the acquisition time is the time taken for the frequency to reach 1 MHz ±50 kHz. Fifty kHz = 5% of the 1-MHz step input. If the system is operating at 1 MHz and suffers a –100-kHz noise hit, the acquisition time is the time taken to return from 900 kHz to 1 MHz ±5 kHz. Five kHz = 5% of the 100-kHz step input.
Other systems refer to acquisition and lock times as the time the system takes to reduce the error between the actual output and the desired output to within specified tolerances. Therefore, the acquisition or lock time varies according to the original error in the output. Minor errors may not even be registered. Typical PLL applications prefer to use this definition because the system requires the output frequency to be within a certain tolerance of the desired frequency regardless of the size of the initial error.
4.8.2 Parametric Influences on Reaction Time
Acquisition and lock times are designed to be as short as possible while still providing the highest possible stability. These reaction times are not constant, however. Many factors directly and indirectly affect the acquisition time.
MC68HC908GR16A Data Sheet, Rev. 1.0
72 Freescale Semiconductor
Acquisition/Lock Time Specifications
The most critical parameter which affects the reaction times of the PLL is the reference frequency, f
RCLK
This frequency is the input to the phase detector and controls how often the PLL makes corrections. For stability, the corrections must be small compared to the desired frequency, so several corrections are required to reduce the frequency error. Therefore, the slower the reference the longer it takes to make these corrections. This parameter is under user control via the choice of crystal frequency f
XCLK
. (See
4.3.3 PLL Circuits and 4.3.6 Programming the PLL.)
Another critical parameter is the external filter network. The PLL modifies the voltage on the VCO by adding or subtracting charge from capacitors in this network. Therefore, the rate at which the voltage changes for a given frequency error (thus change in charge) is proportional to the capacitance. The size of the capacitor also is related to the stability of the PLL. If the capacitor is too small, the PLL cannot make small enough adjustments to the voltage and the system cannot lock. If the capacitor is too large, the PLL may not be able to adjust the voltage in a reasonable time. (See 4.8.3 Choosing a Filter.)
Also important is the operating voltage potential applied to V
. The power supply potential alters the
DDA
characteristics of the PLL. A fixed value is best. Variable supplies, such as batteries, are acceptable if they vary within a known range at very slow speeds. Noise on the power supply is not acceptable, because it causes small frequency errors which continually change the acquisition time of the PLL.
Temperature and processing also can affect acquisition time because the electrical characteristics of the PLL change. The part operates as specified as long as these influences stay within the specified limits. External factors, however, can cause drastic changes in the operation of the PLL. These factors include noise injected into the PLL through the filter capacitor, filter capacitor leakage, stray impedances on the circuit board, and even humidity or circuit board contamination.
.
4.8.3 Choosing a Filter
As described in 4.8.2 Parametric Influences on Reaction Time, the external filter network is critical to the stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply voltage.
Figure 4-9 shows two types of filter circuits. In low-cost applications, where stability and reaction time of
the PLL are not critical, the three component filter network shown in Figure 4-9 (B) can be replaced by a single capacitor, C components at various reference frequencies. For reference frequencies between the values listed in the table, extrapolate to the nearest common capacitor value. In general, a slightly larger capacitor provides more stability at the expense of increased lock time.
, as shown in shown in Figure 4-9 (A). Refer to Table 4-5 for recommended filter
F
CGMXFC
C
F
V
SSA
(A) (B)
CGMXFC
R
F1
C
F1
C
F2
V
SSA
Figure 4-9. PLL Filter
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 73
Clock Generator Module (CGM)
Table 4-5. Example Filter Component Values
f
RCLK
C
F1
C
F2
R
F1
C
F
1 MHz 8.2 nF 820 pF 2k 18 nF
2 MHz 4.7 nF 470 pF 2k 6.8 nF
3 MHz 3.3 nF 330 pF 2k 5.6 nF
4 MHz 2.2 nF 220 pF 2k 4.7 nF
5 MHz 1.8 nF 180 pF 2k 3.9 nF
6 MHz 1.5 nF 150 pF 2k 3.3 nF
7 MHz 1.2 nF 120 pF 2k 2.7 nF
8 MHz 1 nF 100 pF 2k 2.2 nF
MC68HC908GR16A Data Sheet, Rev. 1.0
74 Freescale Semiconductor
Chapter 5 Configuration Register (CONFIG)
5.1 Introduction
This section describes the configuration registers, CONFIG1 and CONFIG2. The configuration registers enable or disable these options:
Stop mode recovery time (32 CGMXCLK cycles or 4096 CGMXCLK cycles)
COP timeout period (262,128 or 8176 COPCLK cycles)
•STOP instruction
Computer operating properly module (COP)
Low-voltage inhibit (LVI) module control and voltage trip point selection
Enable/disable the oscillator (OSC) during stop mode
Enable/disable an extra divide by 128 prescaler in timebase module
5.2 Functional Description
The configuration registers are used in the initialization of various options. The configuration registers can be written once after each reset. All of the configuration register bits are cleared during reset. Since the various options affect the operation of the microcontroller unit (MCU), it is recommended that these registers be written immediately after reset. The configuration registers are located at $001E and $001F and may be read at anytime.
NOTE
On a FLASH device, the options except LVI5OR3 are one-time writable by the user after each reset. The LVI5OR3 bit is one-time writable by the user only after each POR (power-on reset). The CONFIG registers are not in the FLASH memory but are special registers containing one-time writable latches after each reset. Upon a reset, the CONFIG registers default to predetermined settings as shown in Figure 5-1 and Figure 5-2.
Address: $001E
Bit 76543 2 1 Bit 0
Read:0000
Write:
Reset:00000 0 0 1
= Unimplemented R = Reserved
Figure 5-1. Configuration Register 2 (CONFIG2)
MC68HC908GR16A Data Sheet, Rev. 1.0
R TBMCLKSEL OSCENINSTOP ESCIBDSRC
Freescale Semiconductor 75
Configuration Register (CONFIG)
Address: $001F
Bit 7654321Bit 0
Read:
Write:
Reset:0000See note000
Note: LVI5OR3 bit is only reset via POR (power-on reset).
COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC STOP COPD
Figure 5-2. Configuration Register 1 (CONFIG1)
TBMCLKSEL— Timebase Clock Select Bit
TBMCLKSEL the extra prescaler and clearing this bit disables it.
enables an extra divide-by-128 prescaler in the timebase module. Setting this bit enables
See Chapter 4 Clock Generator Module (CGM) for
a more detailed description of the external clock operation.
1 = Enables extra divide-by-128 prescaler in timebase module 0 = Disables extra divide-by-128 prescaler in timebase module
OSCENINSTOP — Oscillator Enable In Stop Mode Bit
OSCENINSTOP, when set, will enable the oscillator to continue to generate clocks in stop mode. See
Chapter 4 Clock Generator Module (CGM). This function is used to keep the timebase running while
the reset of the MCU stops. See Chapter 17 Timebase Module (TBM). When clear, oscillator will cease to generate clocks while in stop mode. The default state for this option is clear, disabling the oscillator in stop mode.
1 = Oscillator enabled to operate during stop mode 0 = Oscillator disabled during stop mode (default)
ESCIBDSRC — SCI Baud Rate Clock Source Bit
ESCIBDSRC controls the clock source used for the serial communications interface (SCI). The setting of this bit affects the frequency at which the SCI operates.See Chapter 14 Enhanced Serial
Communications Interface (ESCI) Module.
1 = Internal bus clock used as clock source for SCI (default) 0 = External oscillator used as clock source for SCI
COPRS — COP Rate Select Bit
COPRS selects the COP timeout period. Reset clears COPRS. See Chapter 6 Computer Operating
Properly (COP) Module
1 = COP timeout period = 8176 COPCLK cycles 0 = COP timeout period = 262,128 COPCLK cycles
LVISTOP — LVI Enable in Stop Mode Bit
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP.
1 = LVI enabled during stop mode 0 = LVI disabled during stop mode
LVIRSTD — LVI Reset Disable Bit
LVIRSTD disables the reset signal from the LVI module. See Chapter 11 Low-Voltage Inhibit (LVI).
1 = LVI module resets disabled 0 = LVI module resets enabled
MC68HC908GR16A Data Sheet, Rev. 1.0
76 Freescale Semiconductor
Functional Description
LVIPWRD — LVI Power Disable Bit
LVIPWRD disables the LVI module. See Chapter 11 Low-Voltage Inhibit (LVI).
1 = LVI module power disabled 0 = LVI module power enabled
LVI5OR3 — LVI 5-V or 3-V Operating Mode Bit
LVI5OR3 selects the voltage operating mode of the LVI module (see Chapter 11 Low-Voltage Inhibit
(LVI)). The voltage mode selected for the LVI should match the operating V
(see Chapter 20
DD
Electrical Specifications) for the LVI’s voltage trip points for each of the modes.
1 = LVI operates in 5-V mode 0 = LVI operates in 3-V mode
NOTE
The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other resets will leave this bit unaffected.
SSREC — Short Stop Recovery Bit
SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles instead of a 4096-CGMXCLK cycle delay.
1 = Stop mode recovery after 32 CGMXCLK cycles 0 = Stop mode recovery after 4096 CGMXCLCK cycles
NOTE
Exiting stop mode by an LVI reset will result in the long stop recovery.
If the system clock source selected is the internal oscillator or the external crystal and the OSCENINSTOP configuration bit is not set, the oscillator will be disabled during stop mode. The short stop recovery does not provide enough time for oscillator stabilization and for this reason the SSREC bit should not be set.
The system stabilization time for power-on reset and long stop recovery (both 4096 CGMXCLK cycles) gives a delay longer than the LVI enable time for these startup scenarios. There is no period where the MCU is not protected from a low-power condition. However, when using the short stop recovery configuration option, the 32-CGMXCLK delay must be greater than the LVI’s turn on time to avoid a period in startup where the LVI is not protecting the MCU.
STOP — STOP Instruction Enable Bit
STOP enables the STOP instruction.
1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode
COPD — COP Disable Bit
COPD disables the COP module. See Chapter 6 Computer Operating Properly (COP) Module.
1 = COP module disabled 0 = COP module enabled
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 77
Configuration Register (CONFIG)
MC68HC908GR16A Data Sheet, Rev. 1.0
78 Freescale Semiconductor
Chapter 6 Computer Operating Properly (COP) Module
6.1 Introduction
The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the CONFIG register.
6.2 Functional Description
Figure 6-1 shows the structure of the COP module.
SIM MODULE
BUSCLKX4
INTERNAL RESET SOURCES
RESET VECTOR FETCH
COPCTL WRITE
COPEN (FROM SIM)
COPD (FROM CONFIG1)
COPCTL WRITE
COP RATE SELECT
(COPRS FROM CONFIG1)
1. See Chapter 15 System Integration Module (SIM) for more details.
(1)
RESET
12-BIT SIM COUNTER
CLEAR ALL STAGES
COP CLOCK
COP COUNTER
CLEAR STAGES 5–12
COP MODULE
6-BIT COP COUNTER
CLEAR
SIM RESET CIRCUIT
RESET STATUS REGISTER
COP TIMEOUT
Figure 6-1. COP Block Diagram
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 79
Computer Operating Properly (COP) Module
The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 262,128 or 8176 CGMXCLK cycles, depending on the state of the COP rate select bit, COPRS, in the configuration register. With a 262,128 CGMXCLK cycle overflow option, a 4.9152-MHz crystal gives a COP timeout period of 53.3 ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12–5 of the prescaler.
NOTE
Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow.
A COP reset pulls the RST
pin low for 32 CGMXCLK cycles and sets the COP bit in the reset status
register (RSR).
In monitor mode, the COP is disabled if the RST
on the RST pin disables the COP.
V
TST
pin or the IRQ is held at V
. During the break state,
TST
NOTE
Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly.
6.3 I/O Signals
The following paragraphs describe the signals shown in Figure 6-1.
6.3.1 CGMXCLK
CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency is equal to the crystal frequency.
6.3.2 STOP Instruction
The STOP instruction clears the COP prescaler.
6.3.3 COPCTL Write
Writing any value to the COP control register (COPCTL) clears the COP counter and clears bits 12–5 of the prescaler. Reading the COP control register returns the low byte of the reset vector. See 6.4 COP
Control Register.
6.3.4 Power-On Reset
The power-on reset (POR) circuit clears the COP prescaler 4096 CGMXCLK cycles after power-up.
6.3.5 Internal Reset
An internal reset clears the COP prescaler and the COP counter.
MC68HC908GR16A Data Sheet, Rev. 1.0
80 Freescale Semiconductor
COP Control Register
6.3.6 Reset Vector Fetch
A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the COP prescaler.
6.3.7 COPD (COP Disable)
The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register. See
Chapter 5 Configuration Register (CONFIG).
6.3.8 COPRS (COP Rate Select)
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register. See
Chapter 5 Configuration Register (CONFIG).
6.4 COP Control Register
The COP control register (COPCTL) is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector.
Address: $FFFF
Bit 7654321Bit 0
Read: Low byte of reset vector
Write: Clear COP counter
Reset: Unaffected by reset
Figure 6-2. COP Control Register (COPCTL)
6.5 Interrupts
The COP does not generate central processor unit (CPU) interrupt requests.
6.6 Monitor Mode
When monitor mode is entered with V on the IRQ having V
pin or the RST pin. When monitor mode is entered by having blank reset vectors and not
on the IRQ pin, the COP is automatically disabled until a POR occurs.
TST
on the IRQ pin, the COP is disabled as long as V
TST
remains
TST
6.7 Low-Power Modes
The WAIT and STOP instructions put the microcontroller unit (MCU) in low power-consumption standby modes.
6.7.1 Wait Mode
The COP remains active during wait mode. If COP is enabled, a reset will occur at COP timeout.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 81
Computer Operating Properly (COP) Module
6.7.2 Stop Mode
Stop mode turns off the CGMXCLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode.
To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available that disables the STOP instruction. When the STOP bit in the configuration register has the STOP instruction disabled, execution of a STOP instruction results in an illegal opcode reset.
6.8 COP Module During Break Mode
The COP is disabled during a break interrupt when V
is present on the RST pin.
TST
MC68HC908GR16A Data Sheet, Rev. 1.0
82 Freescale Semiconductor
Chapter 7 Central Processor Unit (CPU)
7.1 Introduction
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture.
7.2 Features
Features of the CPU include:
Object code fully upward-compatible with M68HC05 Family
16-bit stack pointer with stack manipulation instructions
16-bit index register with x-register manipulation instructions
8-MHz CPU internal bus frequency
64-Kbyte program/data memory space
16 addressing modes
Memory-to-memory data moves without using accumulator
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
Enhanced binary-coded decimal (BCD) data handling
Modular architecture with expandable internal bus definition for extension of addressing range
beyond 64 Kbytes
Low-power stop and wait modes
7.3 CPU Registers
Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory map.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 83
Central Processor Unit (CPU)
7
15
H X
15
15
70
V11H I NZC
0
ACCUMULATOR (A)
0
INDEX REGISTER (H:X)
0
STACK POINTER (SP)
0
PROGRAM COUNTER (PC)
CONDITION CODE REGISTER (CCR)
CARRY/BORROW FLAG
ZERO FLAG
NEGATIVE FLAG
INTERRUPT MASK
HALF-CARRY FLAG
TWO’S COMPLEMENT OVERFLOW FLAG
Figure 7-1. CPU Registers
7.3.1 Accumulator
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations.
Bit 7654321Bit 0
Read:
Write:
Reset: Unaffected by reset
Figure 7-2. Accumulator (A)
7.3.2 Index Register
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.
In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand.
The index register can serve also as a temporary data storage location.
Bit 151413121110987654321
Read:
Write:
Reset:00000000XXXXXXXX
X = Indeterminate
Figure 7-3. Index Register (H:X)
Bit
0
MC68HC908GR16A Data Sheet, Rev. 1.0
84 Freescale Semiconductor
CPU Registers
7.3.3 Stack Pointer
The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack.
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand.
Bit 151413121110987654321
Read:
Write:
Reset:0000000011111111
Bit
0
Figure 7-4. Stack Pointer (SP)
NOTE
The location of the stack is arbitrary and may be relocated anywhere in random-access memory (RAM). Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations.
7.3.4 Program Counter
The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched.
Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location.
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state.
Bit 151413121110987654321
Read:
Write:
Reset: Loaded with vector from $FFFE and $FFFF
Bit
0
Figure 7-5. Program Counter (PC)
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 85
Central Processor Unit (CPU)
7.3.5 Condition Code Register
The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the functions of the condition code register.
Bit 7654321Bit 0
Read:
Write:
Reset:X11X1XXX
V — Overflow Flag
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag.
1 = Overflow 0 = No overflow
H — Half-Carry Flag
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor.
1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4
V11H I NZC
X = Indeterminate
Figure 7-6. Condition Code Register (CCR)
I — Interrupt Mask
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.
1 = Interrupts disabled 0 = Interrupts enabled
NOTE
To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions.
After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI).
N — Negative Flag
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result.
1 = Negative result 0 = Non-negative result
MC68HC908GR16A Data Sheet, Rev. 1.0
86 Freescale Semiconductor
Arithmetic/Logic Unit (ALU)
Z — Zero Flag
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00.
1 = Zero result 0 = Non-zero result
C — Carry/Borrow Flag
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag.
1 = Carry out of bit 7 0 = No carry out of bit 7
7.4 Arithmetic/Logic Unit (ALU)
The ALU performs the arithmetic and logic operations defined by the instruction set.
Refer to the CPU08 Reference Manual (document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU.
7.5 Low-Power Modes
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.
7.5.1 Wait Mode
The WAIT instruction:
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.
Disables the CPU clock
7.5.2 Stop Mode
The STOP instruction:
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.
Disables the CPU clock
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.
7.6 CPU During Break Interrupts
If a break module is present on the MCU, the CPU starts a break interrupt by:
Loading the instruction register with the SWI instruction
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode
The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 87
Central Processor Unit (CPU)
7.7 Instruction Set Summary
Table 7-1 provides a summary of the M68HC08 instruction set.
Table 7-1. Instruction Set Summary (Sheet 1 of 6)
Effect
Source
Form
ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP
ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP
AIS #
opr Add Immediate Value (Signed) to SP
AIX #opr Add Immediate Value (Signed) to H:X
AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP
ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP
ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP
BCC rel Branch if Carry Bit Clear PC (PC) + 2 + rel ? (C) = 0 ––––––REL 24 rr 3
BCLR n, opr Clear Bit n in M Mn 0 ––––––
BCS rel Branch if Carry Bit Set (Same as BLO) PC (PC) + 2 + rel ? (C) = 1 ––––––REL 25 rr 3 BEQ rel Branch if Equal PC (PC) + 2 + rel ? (Z) = 1 ––––––REL 27 rr 3
BGE opr
BGT opr
BHCC rel Branch if Half Carry Bit Clear PC (PC) + 2 + rel ? (H) = 0 ––––––REL 28 rr 3 BHCS rel Branch if Half Carry Bit Set PC (PC) + 2 + rel ? (H) = 1 ––––––REL 29 rr 3 BHI rel Branch if Higher PC (PC) + 2 + rel ? (C) | (Z) = 0 ––––––REL 22 rr 3
Add with Carry A (A) + (M) + (C) – 
Add without Carry A (A) + (M) – 
Logical AND A (A) & (M) 0 – –  –
Arithmetic Shift Left (Same as LSL)
Arithmetic Shift Right  ––
Branch if Greater Than or Equal To (Signed Operands)
Branch if Greater Than (Signed Operands)
Operation Description
SP (SP) + (16
H:X (H:X) + (16
C
b7
b7
PC (PC) + 2 + rel ? (N
PC ← (PC) + 2 + rel ? (Z) | (N
« M)
« M)
0
b0
C
b0
V) = 0
V) = 0
on CCR
VH I NZC
––––––IMM A7 ii 2
––––––IMM AF ii 2
 ––

––––––REL 90 rr 3
––––––REL 92 rr 3
Address
IMM DIR EXT IX2 IX1 IX SP1 SP2
IMM DIR EXT IX2 IX1 IX SP1 SP2
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR INH INH IX1 IX SP1
DIR INH INH IX1 IX SP1
DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)
Mode
9EE9 9ED9
9EEB
9EDB
9EE4 9ED4
9E68
9E67
A9 B9 C9 D9 E9
F9
AB BB CB DB EB FB
A4 B4 C4 D4 E4
F4
38 48 58 68 78
37 47 57 67 77
11 13 15 17
19 1B 1D
1F
Opcode
ii dd hh ll ee ff ff
ff ee ff
ii dd hh ll ee ff ff
ff ee ff
ii dd hh ll ee ff ff
ff ee ff
dd
ff
ff dd
ff
ff
dd dd dd dd dd dd dd dd
Operand
Cycles
2 3 4 4 3 2 4 5
2 3 4 4 3 2 4 5
2 3 4 4 3 2 4 5
4 1 1 4 3 5
4 1 1 4 3 5
4 4 4 4 4 4 4 4
MC68HC908GR16A Data Sheet, Rev. 1.0
88 Freescale Semiconductor
Instruction Set Summary
Table 7-1. Instruction Set Summary (Sheet 2 of 6)
Effect
Source
Form
BHS rel
BIH rel Branch if IRQ BIL rel Branch if IRQ BIT #opr
BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP
BLE opr
BLO rel Branch if Lower (Same as BCS) PC (PC) + 2 + rel ? (C) = 1 ––––––REL 25 rr 3 BLS rel Branch if Lower or Same PC (PC) + 2 + rel ? (C) | (Z) = 1 ––––––REL 23 rr 3
BLT opr Branch if Less Than (Signed Operands) BMC rel Branch if Interrupt Mask Clear PC (PC) + 2 + rel ? (I) = 0 ––––––REL 2C rr 3
BMI rel Branch if Minus PC (PC) + 2 + rel ? (N) = 1 ––––––REL 2B rr 3 BMS rel Branch if Interrupt Mask Set PC (PC) + 2 + rel ? (I) = 1 ––––––REL 2D rr 3 BNE rel Branch if Not Equal PC (PC) + 2 + rel ? (Z) = 0 ––––––REL 26 rr 3 BPL rel Branch if Plus PC (PC) + 2 + rel ? (N) = 0 ––––––REL 2A rr 3 BRA rel Branch Always PC (PC) + 2 + rel ––––––REL 20 rr 3
BRCLR n,opr,rel Branch if Bit n in M Clear PC (PC) + 3 + rel ? (Mn) = 0 –––––
BRN rel Branch Never PC (PC) + 2 ––––––REL 21 rr 3
BRSET n,opr,rel Branch if Bit n in M Set PC (PC) + 3 +
BSET n,opr Set Bit n in M Mn 1 ––––––
BSR rel Branch to Subroutine
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel
CLC Clear Carry Bit C 0 –––––0INH 98 1 CLI Clear Interrupt Mask I 0 ––0–––INH 9A 2
Branch if Higher or Same (Same as BCC)
Bit Test (A) & (M) 0 – – –
Branch if Less Than or Equal To (Signed Operands)
Compare and Branch if Equal
Operation Description
PC (PC) + 2 + rel ? (C) = 0 ––––––REL 24 rr 3
Pin High PC (PC) + 2 + rel ? IRQ = 1 ––––––REL 2F rr 3 Pin Low PC (PC) + 2 + rel ? IRQ = 0 ––––––REL 2E rr 3
PC (PC) + 2 + rel ? (Z) | (N
PC (PC) + 2 + rel ? (N
rel ? (Mn) = 1 –––––
PC (PC) + 2; push (PCL) SP (SP) – 1; push (PCH)
SP (SP) – 1
PC (PC) + rel
PC (PC) + 3 + rel ? (A) – (M) = $00 PC (PC) + 3 + rel ? (A) – (M) = $00 PC (PC) + 3 + rel ? (X) – (M) = $00 PC (PC) + 3 + rel ? (A) – (M) = $00 PC (PC) + 2 + rel ? (A) – (M) = $00 PC (PC) + 4 + rel ? (A) – (M) = $00
V) = 1
V) =1
on CCR
VH I NZC
––––––REL 93 rr 3
––––––REL 91 rr 3
––––––REL AD rr 4
––––––
Address
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)
DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)
DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)
DIR IMM IMM IX1+ IX+ SP1
Mode
9EE5 9ED5
9E61
A5 B5 C5 D5 E5
F5
01
03
05
07
09 0B 0D
0F
00
02
04
06
08 0A 0C 0E
10
12
14
16
18 1A 1C 1E
31
41
51
61
71
Opcode
ii dd hh ll ee ff ff
ff ee ff
dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr
dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr
dd dd dd dd dd dd dd dd
dd rr ii rr ii rr ff rr rr ff rr
Operand
2 3 4 4 3 2 4 5
5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4
5 4 4 5 4 6
Cycles
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 89
Central Processor Unit (CPU)
Source
Form
CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP
COM
opr
COMA COMX COM opr,X COM ,X COM opr,SP
CPHX #opr CPHX opr
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP
DAA Decimal Adjust A
DBNZ opr,rel DBNZA rel DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP
DIV Divide
EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP
INC opr INCA INCX INC opr,X INC ,X INC opr,SP
Clear
Compare A with M (A) – (M)  ––
Complement (One’s Complement)
Compare H:X with M (H:X) – (M:M + 1)  ––
Compare X with M (X) – (M)  ––
Decrement and Branch if Not Zero
Decrement
Exclusive OR M with A
Increment
Operation Description
Table 7-1. Instruction Set Summary (Sheet 3 of 6)
Effect
on CCR
VH I NZC
M $00
A $00
X $00 H $00 M $00 M $00 M $00
M (M
) = $FF – (M)
A (A
) = $FF – (M)
X (X) = $FF – (M)
M (M
) = $FF – (M)
M (M) = $FF – (M) M (M) = $FF – (M)
(A)
10
A (A) – 1 or M (M) – 1 or X (X) – 1
PC (PC) + 3 + rel ? (result) 0 PC (PC) + 2 + rel ? (result) 0 PC (PC) + 2 + rel ? (result) 0 PC (PC) + 3 + rel ? (result) 0 PC (PC) + 2 + rel ? (result) 0 PC (PC) + 4 + rel ? (result) 0
M
(M) – 1 A (A) – 1 X (X) – 1
M (M) – 1 M (M) – 1 M (M) – 1
A ← (H:A)/(X)
H Remainder
A (A
M)
M (M) + 1
A (A) + 1 X (X) + 1
M (M) + 1 M (M) + 1 M (M) + 1
0––01–
0––1
U–– INH 72 2
––––––
––
––––INH 52 7
0––
––
DIR INH INH INH IX1 IX SP1
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR INH INH IX1 IX SP1
IMM DIR
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR INH INH IX1 IX SP1
DIR INH INH IX1 IX SP1
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR INH INH IX1 IX SP1
Address
Mode
Opcode
Operand
3F
dd 4F 5F
8C
6F
ff 7F
9E6F
ff
ii
A1
dd
B1
hh ll
C1
ee ff
D1
ff
E1
F1
ff
9EE1
ee ff
9ED1
33
dd 43 53 63
ff 73
9E63
ff 6575ii ii+1dd3
A3
ii
B3
dd
C3
hh ll
D3
ee ff
E3
ff F3
9EE3
ff
9ED3
ee ff
3B
dd rr 4B
rr 5B
rr 6B
ff rr 7B
rr
9E6B
ff rr
3A
dd
4A 5A 6A
ff
7A
9E6A
ff
A8
ii
B8
dd
C8
hh ll
D8
ee ff
E8
ff F8
9EE8
ff
9ED8
ee ff
3C
dd
4C 5C 6C
ff
7C
9E6C
ff
Cycles
3 1 1 1 3 2 4
2 3 4 4 3 2 4 5
4 1 1 4 3 5
4 2
3 4 4 3 2 4 5
5 3 3 5 4 6
4 1 1 4 3 5
2 3 4 4 3 2 4 5
4 1 1 4 3 5
MC68HC908GR16A Data Sheet, Rev. 1.0
90 Freescale Semiconductor
Instruction Set Summary
Table 7-1. Instruction Set Summary (Sheet 4 of 6)
Effect
Source
Form
JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X
JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X
LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP
LDHX #opr LDHX opr
LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP
LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP
LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP
MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr
MUL Unsigned multiply X:A (X) × (A) –0–––0INH 42 5 NEG opr
NEGA NEGX NEG opr,X NEG ,X NEG opr,SP
NOP No Operation None ––––––INH 9D 1 NSA Nibble Swap A A (A[3:0]:A[7:4]) ––––––INH 62 3 ORA #opr
ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP
PSHA Push A onto Stack Push (A); SP (SP) – 1 ––––––INH 87 2 PSHH Push H onto Stack Push (H); SP (SP) – 1 ––––––INH 8B 2 PSHX Push X onto Stack Push (X); SP ← (SP) – 1 ––––––INH 89 2
Jump PC Jump Address ––––––
Jump to Subroutine
Load A from M A (M) 0–––
Load H:X from M H:X ← (M:M + 1) 0––
Load X from M X (M) 0–––
Logical Shift Left (Same as ASL)
Logical Shift Right  ––0
Move
Negate (Two’s Complement)
Inclusive OR A and M A (A) | (M) 0 – – –
Operation Description
PC (PC) + n (n = 1, 2, or 3)
Push (PCL); SP (SP) – 1
Push (PCH); SP (SP) – 1
PC Unconditional Address
C
b7
b7
(M)
Destination
H:X (H:X) + 1 (IX+D, DIX+)
M –(M) = $00 – (M)
A –(A) = $00 – (A)
X –(X) = $00 – (X) M –(M) = $00 – (M) M –(M) = $00 – (M)
(M)
0
b0
C0
b0
Source
on CCR
VH I NZC
––––––
––
0––
––
DIR EXT IX2 IX1 IX
DIR EXT IX2 IX1 IX
IMM DIR EXT IX2 IX1 IX SP1 SP2
IMM DIR
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR INH INH IX1 IX SP1
DIR INH INH IX1 IX SP1
DD DIX+ IMD IX+D
DIR INH INH IX1 IX SP1
IMM DIR EXT IX2 IX1 IX SP1 SP2
Address
Mode
Opcode
BC
dd
CC
hh ll
DC
ee ff
EC
ff
FC BD
dd
CD
hh ll
DD
ee ff
ED
ff
FD A6
ii
B6
dd
C6
hh ll
D6
ee ff
E6
ff
F6
9EE6
ff
9ED6
ee ff
4555ii jjdd3
AE
ii
BE
dd
CE
hh ll
DE
ee ff
EE
ff
FE
9EEE
ff
9EDE
ee ff
38
dd 48 58 68
ff 78
9E68
ff 34
dd 44 54 64
ff 74
9E64
ff
4E
dd dd
5E
dd
6E
ii dd
7E
dd
30
dd 40 50 60
ff 70
9E60
ff
AA
ii
BA
dd
hh ll
CA
ee ff
DA
ff
EA
FA
ff
9EEA
ee ff
9EDA
Operand
2 3 4 3 2
4 5 6 5 4
2 3 4 4 3 2 4 5
4 2
3 4 4 3 2 4 5
4 1 1 4 3 5
4 1 1 4 3 5
5 4 4 4
4 1 1 4 3 5
2 3 4 4 3 2 4 5
Cycles
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 91
Central Processor Unit (CPU)
Table 7-1. Instruction Set Summary (Sheet 5 of 6)
Effect
Source
Form
PULA Pull A from Stack SP ← (SP + 1); Pull (A) ––––––INH 86 2 PULH Pull H from Stack SP ← (SP + 1); Pull (H) ––––––INH 8A 2 PULX Pull X from Stack SP ← (SP + 1); Pull (X) ––––––INH 88 2 ROL opr
ROLA ROLX ROL opr,X ROL ,X ROL opr,SP
ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP
RSP Reset Stack Pointer SP $FF ––––––INH 9C 1
RTI Return from Interrupt
RTS Return from Subroutine
SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP
SEC Set Carry Bit C 1 –––––1INH 99 1 SEI Set Interrupt Mask I 1 ––1–––INH 9B 2 STA opr
STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP
STHX opr Store H:X in M (M:M + 1) ← (H:X) 0 – – – DIR 35 dd 4
STOP
STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP
SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP
Rotate Left through Carry  ––
Rotate Right through Carry  ––
Subtract with Carry A (A) – (M) – (C)  ––
Store A in M M ← (A) 0––
Enable Interrupts, Stop Processing, Refer to MCU Documentation
Store X in M M ← (X) 0––
Subtract A ← (A) – (M)  ––
Operation Description
C
b7
b7
SP (SP) + 1; Pull (CCR)
SP (SP) + 1; Pull (A) SP (SP) + 1; Pull (X)
SP
(SP) + 1; Pull (PCH)
SP (SP) + 1; Pull (PCL)
SP ← SP + 1; Pull (PCH) SP ← SP + 1; Pull (PCL)
I 0; Stop Processing ––0–––INH 8E 1
b0
b0
C
on CCR
VH I NZC
INH 80 7
––––––INH 81 4

DIR INH INH IX1 IX SP1
DIR INH INH IX1 IX SP1
IMM DIR EXT IX2 IX1 IX SP1 SP2
DIR EXT IX2 IX1 IX SP1 SP2
DIR EXT IX2 IX1 IX SP1 SP2
IMM DIR EXT IX2 IX1 IX SP1 SP2
Address
Mode
9E69
9E66
9EE2 9ED2
9EE7 9ED7
9EEF 9EDF
9EE0 9ED0
39 49 59 69 79
36 46 56 66 76
A2 B2 C2 D2 E2
F2
B7 C7 D7 E7
F7
BF CF DF EF FF
A0 B0 C0 D0 E0
F0
Opcode
dd
ff
ff
dd
ff
ff
ii
dd
hh ll
ee ff
ff
ff
ee ff
dd
hh ll
ee ff
ff
ff
ee ff
dd
hh ll
ee ff
ff
ff
ee ff
ii
dd
hh ll
ee ff
ff
ff
ee ff
Operand
Cycles
4 1 1 4 3 5
4 1 1 4 3 5
2 3 4 4 3 2 4 5
3 4 4 3 2 4 5
3 4 4 3 2 4 5
2 3 4 4 3 2 4 5
MC68HC908GR16A Data Sheet, Rev. 1.0
92 Freescale Semiconductor
Opcode Map
Table 7-1. Instruction Set Summary (Sheet 6 of 6)
Effect
Source
Form
SWI Software Interrupt
TAP Transfer A to CCR CCR (A) INH 84 2 TAX Transfer A to X X (A) ––––––INH 97 1 TPA Transfer CCR to A A (CCR) ––––––INH 85 1 TST opr
TSTA TSTX TST opr,X TST ,X TST opr,SP
TSX Transfer SP to H:X H:X (SP) + 1 ––––––INH 95 2 TXA Transfer X to A A (X) ––––––INH 9F 1 TXS Transfer H:X to SP (SP) (H:X) – 1 ––––––INH 94 2
WAIT Enable Interrupts; Wait for Interrupt
A Accumulator n Any bit C Carry/borrow bit opr Operand (one or two bytes) CCR Condition code register PC Program counter dd Direct address of operand PCH Program counter high byte dd rr Direct address of operand and relative offset of branch instruction PCL Program counter low byte DD Direct to direct addressing mode REL Relative addressing mode DIR Direct addressing mode rel Relative program counter offset byte DIX+ Direct to indexed with post increment addressing mode rr Relative program counter offset byte ee ff High and low bytes of offset in indexed, 16-bit offset addressing SP1 Stack pointer, 8-bit offset addressing mode EXT Extended addressing mode SP2 Stack pointer 16-bit offset addressing mode ff Offset byte in indexed, 8-bit offset addressing SP Stack pointer H Half-carry bit U Undefined H Index register high byte V Overflow bit hh ll High and low bytes of operand address in extended addressing X Index register low byte I Interrupt mask Z Zero bit ii Immediate operand byte & Logical AND IMD Immediate source to direct destination addressing mode | Logical OR
IMM Immediate addressing mode INH Inherent addressing mode ( ) Contents of IX Indexed, no offset addressing mode –( ) Negation (two’s complement) IX+ Indexed, no offset, post increment addressing mode # Immediate value IX+D Indexed with post increment to direct addressing mode IX1 Indexed, 8-bit offset addressing mode Loaded with IX1+ Indexed, 8-bit offset, post increment addressing mode ? If IX2 Indexed, 16-bit offset addressing mode : Concatenated with M Memory location Set or cleared N Negative bit Not affected
Test for Negative or Zero (A) – $00 or (X) – $00 or (M) – $00 0 – – –
Operation Description
PC (PC) + 1; Push (PCL) SP (SP) – 1; Push (PCH)
SP (SP) – 1; Push (X) SP (SP) – 1; Push (A)
SP (SP) – 1; Push (CCR)
SP (SP) – 1; I 1
PCH Interrupt Vector High Byte
PCL Interrupt Vector Low Byte
I bit 0; Inhibit CPU clocking
until interrupted
Logical EXCLUSIVE OR
« Sign extend
on CCR
VH I NZC
––1–––INH 83 9
––0–––INH 8F 1
DIR INH INH IX1 IX SP1
Address
Mode
9E6D
3D 4D 5D 6D 7D
Opcode
dd
ff
ff
Operand
3 1 1 3 2 4
Cycles
7.8 Opcode Map
See Table 7-2.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 93
Central Processor Unit (CPU)
Table 7-2. Opcode Map
2
4
3
5
4
4
3
2
3
7
3
5
4
1
1
4
3
4
SUB
1IX
SUB
3 SP1
SUB
2IX1
SUB
4 SP2
SUB
3IX2
SUB
3EXT
SUB
2DIR
SUB
2IMM
BGE
2REL
RTI
1INH
NEG
1IX
NEG
3 SP1
NEG
2IX1
NEGX
1INH
NEGA
1INH
NEG
2DIR
BRA
2REL
BSET0
2DIR
2
CMP
4
CMP
3
CMP
5
CMP
4
CMP
4
CMP
3
CMP
2
CMP
3
BLT
4
RTS
4
CBEQ
6
CBEQ
5
CBEQ
4
CBEQX
4
CBEQA
5
CBEQ
3
BRN
4
BCLR0
1IX
3 SP1
2IX1
4 SP2
3IX2
3EXT
2DIR
2IMM
2REL
1INH
2IX+
4 SP1
3IX1+
3IMM
3IMM
3DIR
2REL
2DIR
2
2
4
3
5
4
4
3
2
3
2
3
7
5
3
4
SBC
1IX
SBC
3 SP1
SBC
2IX1
SBC
4 SP2
SBC
3IX2
SBC
3EXT
SBC
2DIR
SBC
2IMM
BGT
2REL
DAA
1INH
NSA
1INH
DIV
1INH
MUL
1INH
BHI
2REL
BSET1
2DIR
4
3
5
4
4
3
2
3
9
3
5
4
1
1
4
3
4
CPX
1IX
CPX
3 SP1
CPX
2IX1
CPX
4 SP2
CPX
3IX2
CPX
3EXT
CPX
2DIR
CPX
2IMM
BLE
2REL
SWI
1INH
COM
1IX
COM
3 SP1
COM
2IX1
COMX
1INH
COMA
1INH
COM
2DIR
BLS
2REL
BCLR1
2DIR
2
4
3
5
4
4
3
2
2
2
3
5
4
1
1
4
3
4
AND
1IX
AND
3 SP1
AND
2IX1
AND
4 SP2
AND
3IX2
AND
3EXT
AND
2DIR
AND
2IMM
TXS
1INH
TA P
1INH
LSR
1IX
LSR
3 SP1
LSR
2IX1
LSRX
1INH
LSRA
1INH
LSR
2DIR
BCC
2REL
BSET2
2DIR
2
BIT
4
BIT
3
BIT
5
BIT
4
BIT
4
BIT
3
BIT
2
BIT
2
TSX
1
TPA
4
CPHX
3
CPHX
4
LDHX
3
LDHX
4
STHX
3
BCS
4
BCLR2
1IX
3 SP1
2IX1
4 SP2
3IX2
3EXT
2DIR
2IMM
1INH
1INH
2DIR
3IMM
2DIR
3IMM
2DIR
2REL
2DIR
2
4
3
5
4
4
3
2
2
3
5
4
1
1
4
3
4
LDA
1IX
LDA
3 SP1
LDA
2IX1
LDA
4 SP2
LDA
3IX2
LDA
3EXT
LDA
2DIR
LDA
2IMM
PULA
1INH
ROR
1IX
ROR
3 SP1
ROR
2IX1
RORX
1INH
RORA
1INH
ROR
2DIR
BNE
2REL
BSET3
2DIR
2
4
3
5
4
4
3
2
1
2
3
5
4
1
1
4
3
4
STA
1IX
STA
3 SP1
STA
2IX1
STA
4 SP2
STA
3IX2
STA
3EXT
STA
2DIR
AIS
2IMM
TA X
1INH
PSHA
1INH
ASR
1IX
ASR
3 SP1
ASR
2IX1
ASRX
1INH
ASRA
1INH
ASR
2DIR
BEQ
2REL
BCLR3
2DIR
2
4
3
5
4
4
3
2
1
2
3
5
4
1
1
4
3
4
EOR
1IX
EOR
3 SP1
EOR
2IX1
EOR
4 SP2
EOR
3IX2
EOR
3EXT
EOR
2DIR
EOR
2IMM
CLC
1INH
PULX
1INH
LSL
1IX
LSL
3 SP1
LSL
2IX1
LSLX
1INH
LSLA
1INH
LSL
2DIR
BHCC
2REL
BSET4
2DIR
2
4
3
5
4
4
3
2
1
2
3
5
4
1
1
4
3
4
ADC
1IX
ADC
3 SP1
ADC
2IX1
ADC
4 SP2
ADC
3IX2
ADC
3EXT
ADC
2DIR
ADC
2IMM
SEC
1INH
PSHX
1INH
ROL
1IX
ROL
3 SP1
ROL
2IX1
ROLX
1INH
ROLA
1INH
ROL
2DIR
BHCS
2REL
BCLR4
2DIR
2
4
3
5
4
4
3
2
2
2
3
5
4
1
1
4
3
4
ORA
1IX
ORA
3 SP1
ORA
2IX1
ORA
4 SP2
ORA
3IX2
ORA
3EXT
ORA
2DIR
ORA
2IMM
CLI
1INH
PULH
1INH
DEC
1IX
DEC
3 SP1
DEC
2IX1
DECX
1INH
DECA
1INH
DEC
2DIR
BPL
2REL
BSET5
2DIR
2
ADD
4
ADD
3
ADD
5
ADD
4
ADD
4
ADD
3
ADD
2
ADD
2
SEI
2
PSHH
4
DBNZ
6
DBNZ
5
DBNZ
3
DBNZX
3
DBNZA
5
DBNZ
3
BMI
4
BCLR5
1IX
3 SP1
2IX1
4 SP2
3IX2
3EXT
2DIR
2IMM
1INH
1INH
2IX
4 SP1
3IX1
2INH
2INH
3DIR
2REL
2DIR
2
3
4
3
2
1
1
3
5
4
1
1
4
3
4
JMP
1IX
JMP
2IX1
JMP
3IX2
JMP
3EXT
JMP
2DIR
RSP
1INH
CLRH
1INH
INC
1IX
INC
3 SP1
INC
2IX1
INCX
1INH
INCA
1INH
INC
2DIR
BMC
2REL
BSET6
2DIR
4
JSR
5
JSR
6
JSR
5
JSR
4
JSR
4
BSR
1
NOP
2
TST
4
TST
3
TST
1
TSTX
1
TSTA
3
TST
3
BMS
4
BCLR6
1IX
2IX1
3IX2
3EXT
2DIR
2REL
1INH
1IX
3 SP1
2IX1
1INH
1INH
2DIR
2REL
2DIR
2
2
STX
LDX
4
LDX
3
LDX
5
LDX
4
LDX
4
LDX
3
LDX
2
LDX
1
STOP
4
MOV
4
MOV
4
MOV
5
MOV
3
BIL
4
BSET7
1IX
3 SP1
2IX1
4 SP2
3IX2
3EXT
2DIR
2IMM
*
1INH
2IX+D
3IMD
2DIX+
3DD
2REL
2DIR
4
STX
3
STX
5
STX
4
STX
4
STX
3
STX
2
AIX
1
TXA
1
WAIT
2
CLR
4
CLR
3
CLR
1
CLRX
1
CLRA
3
CLR
3
BIH
4
BCLR7
1IX
3 SP1
2IX1
4 SP2
3IX2
3EXT
2DIR
2IMM
1INH
1INH
1IX
3 SP1
2IX1
1INH
1INH
2DIR
2REL
2DIR
MSB
0 High Byte of Opcode in Hexadecimal
LSB
Cycles
Opcode Mnemonic
Number of Bytes / Addressing Mode
5
BRSET0
3DIR
Low Byte of Opcode in Hexadecimal 0
5
BRCLR0
1
3DIR
5
BRSET1
3DIR
2
5
0 1 2 3 4 5 6 9E6 7 8 9 A B C D 9ED E 9EE F
DIR DIR REL DIR INH INH IX1 SP1 IX INH INH IMM DIR EXT IX2 SP2 IX1 SP1 IX
Bit Manipulation Branch Read-Modify-Write Control Register/Memory
MSB
BRSET0
3DIR
0
LSB
5
5
BRSET2
3DIR
3DIR
4
BRCLR1
3
5
5
BRSET3
3DIR
BRCLR2
3DIR
6
5
5
5
BRSET4
3DIR
BRCLR3
3DIR
8
7
5
BRSET5
A
3DIR
5
5
5
BRSET6
BRCLR5
3DIR
3DIR
BRCLR6
3DIR
B
C
D
5
BRCLR4
3DIR
9
5
5
BRSET7
BRCLR7
3DIR
3DIR
F
E
INH Inherent REL Relative SP1 Stack Pointer, 8-Bit Offset
IMM Immediate IX Indexed, No Offset SP2 Stack Pointer, 16-Bit Offset
DIR Direct IX1 Indexed, 8-Bit Offset IX+ Indexed, No Offset with
EXT Extended IX2 Indexed, 16-Bit Offset Post Increment
DD Direct-Direct IMD Immediate-Direct IX1+ Indexed, 1-Byte Offset with
IX+D Indexed-Direct DIX+ Direct-Indexed Post Increment
*Pre-byte for stack pointer indexed instructions
MC68HC908GR16A Data Sheet, Rev. 1.0
94 Freescale Semiconductor
Chapter 8 External Interrupt (IRQ)
8.1 Introduction
The IRQ (external interrupt) module provides a maskable interrupt input.
8.2 Features
Features of the IRQ module include:
A dedicated external interrupt pin (IRQ
IRQ interrupt control bits
Hysteresis buffer
Programmable edge-only or edge and level interrupt sensitivity
Automatic interrupt acknowledge
Internal pullup resistor
8.3 Functional Description
A falling edge applied to the external interrupt pin can latch a central processor unit (CPU) interrupt request. Figure 8-1 shows the structure of the IRQ module.
)
Interrupt signals on the IRQ the following actions occurs:
Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch.
Software clear — Software can clear an interrupt latch by writing to the appropriate acknowledge bit in the interrupt status and control register (INTSCR). Writing a 1 to the ACK bit clears the IRQ latch.
Reset — A reset automatically clears the interrupt latch.
The external interrupt pin is falling-edge triggered out of reset and is software-configurable to be either falling-edge or falling-edge and low-level triggered. The MODE bit in the INTSCR controls the triggering sensitivity of the IRQ
When an interrupt pin is edge-triggered only (MODE = 0), the interrupt remains set until a vector fetch, software clear, or reset occurs.
pin.
pin are latched into the IRQ latch. An interrupt latch remains set until one of
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 95
External Interrupt (IRQ)
RESET
ACK
TO CPU FOR BIL/BIH INSTRUCTIONS
IRQ INTERRUPT REQUEST
TO MODE SELECT LOGIC
INTERNAL ADDRESS BUS
IRQ
VECTOR
FETCH
DECODER
V
DD
INTERNAL PULLUP DEVICE
V
DD
DQ
MODE
CK
CLR
SYNCHRONIZER
IMASK
HIGH
VOLTAGE
DETECT
IRQF
Figure 8-1. IRQ Module Block Diagram
When an interrupt pin is both falling-edge and low-level triggered (MODE = 1), the interrupt remains set until both of these events occur:
Vector fetch or software clear
Return of the interrupt pin to a high level
The vector fetch or software clear may occur before or after the interrupt pin returns to a high level. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low.
When set, the IMASK bit in the INTSCR masks all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear.
NOTE
The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests.
Addr.Register Name Bit 7654321Bit 0
Read:0000IRQF0
IMASK MODE
Write:
ACK
Reset:00000000
$001D
IRQ Status and Control
Register (INTSCR)
See page 98.
= Unimplemented
Figure 8-2. IRQ I/O Register Summary
MC68HC908GR16A Data Sheet, Rev. 1.0
96 Freescale Semiconductor
IRQ Pin
8.4 IRQ Pin
A falling edge on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch.
If the MODE bit is set, the IRQ both of the following actions must occur to clear IRQ:
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a 1 to the ACK bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that poll the IRQ
pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ latches another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB.
Return of the IRQ pin to a high level — As long as the IRQ pin is low, IRQ remains active.
The vector fetch or software clear and the return of the IRQ The interrupt request remains pending as long as the IRQ MODE control bit, thereby clearing the interrupt even if the pin stays low.
If the MODE bit is clear, the IRQ software clear immediately clears the IRQ latch.
The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred.
Use the BIH or BIL instruction to read the logic level on the IRQ
When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine.
pin is both falling-edge-sensitive and low-level sensitive. With MODE set,
pin. A falling edge that occurs after writing to the ACK bit
pin to a high level may occur in any order.
pin is low. A reset will clear the latch and the
pin is falling-edge-sensitive only. With MODE clear, a vector fetch or
pin.
NOTE
8.5 IRQ Module During Break Interrupts
The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the latch during the break state. See Chapter 19 Development Support.
To allow software to clear the IRQ latch during a break interrupt, write a 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.
To protect CPU interrupt flags during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ interrupt flags.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 97
External Interrupt (IRQ)
8.6 IRQ Status and Control Register
The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The INTSCR:
Shows the state of the IRQ flag
Clears the IRQ latch
Masks IRQ interrupt request
Controls triggering sensitivity of the IRQ
Address: $001D
Bit 7654321Bit 0
Read:0000IRQF0
Write: ACK
Reset:00000000
= Unimplemented
Figure 8-3. IRQ Status and Control Register (INTSCR)
IRQF — IRQ Flag Bit
This read-only status bit is high when the IRQ interrupt is pending.
1 = IRQ 0 = IRQ
interrupt pending interrupt not pending
interrupt pin
IMASK MODE
ACK — IRQ Interrupt Request Acknowledge Bit
Writing a 1 to this write-only bit clears the IRQ latch. ACK always reads as 0. Reset clears ACK.
IMASK — IRQ Interrupt Mask Bit
Writing a 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK.
1 = IRQ interrupt requests disabled 0 = IRQ interrupt requests enabled
MODE — IRQ Edge/Level Select Bit
This read/write bit controls the triggering sensitivity of the IRQ
1 = IRQ 0 = IRQ
interrupt requests on falling edges and low levels interrupt requests on falling edges only
pin. Reset clears MODE.
MC68HC908GR16A Data Sheet, Rev. 1.0
98 Freescale Semiconductor
Chapter 9 Keyboard Interrupt Module (KBI)
9.1 Introduction
The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are accessible via PTA0–PTA7. When a port pin is enabled for keyboard interrupt function, an internal pullup device is also enabled on the pin.
9.2 Features
Features include:
Eight keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask
Hysteresis buffers
Programmable edge-only or edge- and level- interrupt sensitivity
Exit from low-power modes
I/O (input/output) port bit(s) software configurable with pullup device(s) if configured as input port bit(s)
9.3 Functional Description
Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin also enables its internal pullup device. A low level applied to an enabled keyboard interrupt pin latches a keyboard interrupt request.
A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt.
If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low.
If the keyboard interrupt is falling edge- and low-level sensitive, an interrupt request is present as long as any keyboard interrupt pin is low and the pin is keyboard interrupt enabled.
MC68HC908GR16A Data Sheet, Rev. 1.0
Freescale Semiconductor 99
Keyboard Interrupt Module (KBI)
M68HC08 CPU
CPU
REGISTERS
CONTROL AND STATUS REGISTERS — 64 BYTES
USER FLASH — 15,872 BYTES
USER RAM — 1024 BYTES
MONITOR ROM — 350 BYTES
FLASH PROGRAMMING ROUTINES ROM — 406 BYTES
USER FLASH VECTOR SPACE — 36 BYTES
OSC1
OSC2
CGMXFC
(3)
RST
(3)
IRQ
V
DDAD/VREFH
V
SSAD/VREFL
V
DD
V
SS
V
DDA
V
SSA
ARITHMETIC/LOGIC
UNIT (ALU)
CLOCK GENERATOR MODULE
1–8 MHz OSCILLATOR
PHASE LOCKED LOOP
SYSTEM INTEGRATION
MODULE
SINGLE EXTERNAL
INTERRUPT MODULE
10-BIT ANALOG-TO-DIGITAL
CONVERTER MODULE
POWER-ON RESET
MODULE
POWER
INTERNAL BUS
PROGRAMMABLE TIMEBASE
MODULE
SINGLE BREAKPOINT
BREAK MODULE
DUAL VOLTAGE
LOW-VOLTAGE INHIBIT
MODULE
8-BIT KEYBOARD
INTERRUPT MODULE
2-CHANNEL TIMER
INTERFACE MODULE 1
2-CHANNEL TIMER
INTERFACE MODULE 2
ENHANCED SERIAL
COMUNICATIONS
INTERFACE MODULE
COMPUTER OPERATING
PROPERLY MODULE
SERIAL PERIPHERAL
INTERFACE MODULE
MONITOR MODULE
MEMORY MAP
MODULE
CONFIGURATION
REGISTER 1–2
MODULE
PTA7/KBD7–
DDRA
PTA0/KBD0
PORTA
PTB7/AD7
PTB6/AD6
PTB5/AD5
PTB4/AD4
DDRB
PORTB
PTB3/AD3
PTB2/AD2
PTB1/AD1
PTB0/AD0
PTC6
PTC5
PTC4
DDRC
PORTC
PTC3
PTC2
PTC1
PTC0
PTD7/T2CH1
PTD6/T2CH0
PTD5/T1CH1
PTD4/T1CH0
DDRD
PORTD
PTD3/SPSCK
PTD2/MOSI
PTD1/MISO
PTD0/SS
PTE5–PTE2
DDRE
PORTE
PTE1/RxD
PTE0/TxD
SECURITY MODULE
MONITOR MODE ENTRY
MODULE
(1)
(1)
(1)
(1), (2)
(1), (2)
(1), (2)
(1), (2)
(1), (2)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
1. Ports are software configurable with pullup device if input port.
2. Higher current drive port pins
3. Pin contains integrated pullup device
Figure 9-1. Block Diagram Highlighting KBI Block and Pins
MC68HC908GR16A Data Sheet, Rev. 1.0
100 Freescale Semiconductor
Loading...