
SEMICONDUCTOR TECHNICAL DATA
1
REV 6
Motorola, Inc. 1995
10/95
$ "!%$" "
"%$!%$ $ #$"
&$ $ $$ %$!%$#
High–Performance Silicon–Gate CMOS
The MC54/74HC595A is identical in pinout to the LS595. The device
inputs are compatible with standard CMOS outputs; with pullup resistors,
they are compatible with LSTTL outputs.
The HC595A consists of an 8–bit shift register and an 8–bit D–type latch
with three–state parallel outputs. The shift register accepts serial data and
provides a serial output. The shift register also provides parallel data to the
8–bit latch. The shift register and latch have independent clock inputs. This
device also has an asynchronous reset for the shift register.
The HC595A directly interfaces with the Motorola SPI serial data port on
CMOS MPUs and MCUs.
• Output Drive Capability: 15 LSTTL Loads
• Outputs Directly Interface to CMOS, NMOS, and TTL
• Operating Voltage Range: 2.0 to 6.0 V
• Low Input Current: 1.0 µA
• High Noise Immunity Characteristic of CMOS Devices
• In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
• Chip Complexity: 328 FETs or 82 Equivalent Gates
• Improvements over HC595
— Improved Propagation Delays
— 50% Lower Quiescent Power
— Improved Input Noise and Latchup Immunity
LOGIC DIAGRAM
SERIAL
DATA
INPUT
14
11
10
12
13
SHIFT
CLOCK
RESET
LATCH
CLOCK
OUTPUT
ENABLE
SHIFT
REGISTER
LATCH
15
1
2
3
4
5
6
7
9
Q
A
Q
B
Q
C
Q
D
Q
E
Q
F
Q
G
Q
H
SQ
H
A
VCC = PIN 16
GND = PIN 8
PARALLEL
DATA
OUTPUTS
SERIAL
DATA
OUTPUT
PIN ASSIGNMENT
13
14
15
16
9
10
11
125
4
3
2
1
8
7
6
LATCH CLOCK
OUTPUT ENABLE
A
Q
A
V
CC
SQ
H
RESET
SHIFT CLOCK
Q
E
Q
D
Q
C
Q
B
GND
Q
H
Q
G
Q
F
D SUFFIX
SOIC PACKAGE
CASE 751B–05
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
ORDERING INFORMATION
MC54HCXXXAJ
MC74HCXXXAN
MC74HCXXXAD
MC74HCXXXADT
Ceramic
Plastic
SOIC
TSSOP
1
16
1
16
1
16
DT SUFFIX
TSSOP PACKAGE
CASE 948F–01
J SUFFIX
CERAMIC PACKAGE
CASE 620–10
1
16

MC54/74HC595A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
2
DC Supply Voltage (Referenced to GND)
DC Input Voltage (Referenced to GND)
DC Output Voltage (Referenced to GND)
DC Input Current, per Pin
DC Output Current, per Pin
DC Supply Current, VCC and GND Pins
Power Dissipation in Still Air,Plastic or Ceramic DIP†
SOIC Package†
TSSOP Package†
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP, SOIC or TSSOP Package)
(Ceramic DIP)
_
C
*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
Ceramic DIP: – 10 mW/_C from 100_ to 125_C
SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: – 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage
(Referenced to GND)
Operating Temperature, All Package Types
Input Rise and Fall Time VCC = 2.0 V
(Figure 1) VCC = 4.5 V
VCC = 6.0 V
ns
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Minimum High–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Maximum Low–Level Input
Voltage
V
out
= 0.1 V or VCC – 0.1 V
|I
out
| v 20 µA
Minimum High–Level Output
Voltage, QA – Q
H
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or VIL|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
Maximum Low–Level Output
Voltage, QA – Q
H
Vin = VIH or V
IL
|I
out
| v 20 µA
Vin = VIH or VIL|I
out
| v 6.0 mA
|I
out
| v 7.8 mA
NOTE: Information on typical parametric values can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high–impedance circuit. For proper operation, Vin and
V
out
should be constrained to the
range GND v (Vin or V
out
) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.

MC54/74HC595A
High–Speed CMOS Logic Data
DL129 — Rev 6
3 MOTOROLA
DC ELECTRICAL CHARACTERISTICS (Continued)
Minimum High–Level Output
Voltage, SQ
H
Vin = VIH or V
IL
II
out
I v 20 µA
Vin = VIH or VILII
outI v
4.0 mA
II
out
Iv 5.2 mA
Maximum Low–Level Output
Voltage, SQ
H
Vin = VIH or V
IL
II
out
I v 20 µA
Vin = VIH or VILII
outI v
4.0 mA
II
out
Iv 5.2 mA
Maximum Input Leakage Current
Maximum Three–State Leakage
Current, QA – Q
H
Output in High–Impedance State
Vin = VIL or V
IH
V
out
= VCC or GND
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
l
out
= 0 µA
µA
AC ELECTRICAL CHARACTERISTICS (C
L
= 50 pF, Input tr = tf = 6.0 ns)
Maximum Clock Frequency (50% Duty Cycle)
(Figures 1 and 7)
Maximum Propagation Delay, Shift Clock to SQ
H
(Figures 1 and 7)
Maximum Propagation Delay, Reset to SQ
H
(Figures 2 and 7)
Maximum Propagation Delay, Latch Clock to QA – Q
H
(Figures 3 and 7)
Maximum Propagation Delay, Output Enable to QA – Q
H
(Figures 4 and 8)
Maximum Propagation Delay, Output Enable to QA – Q
H
(Figures 4 and 8)
Maximum Output Transition Time, QA – Q
H
(Figures 3 and 7)
Maximum Output Transition Time, SQ
H
(Figures 1 and 7)
Maximum Input Capacitance
Maximum Three–State Output Capacitance (Output in
High–Impedance State), QA – Q
H
pF
NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the Motorola High–
Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
C
PD
Power Dissipation Capacitance (Per Package)*
*Used to determine the no–load dynamic power consumption: PD = CPD V
CC
2
f + ICC VCC. For load considerations, see Chapter 2 of the
Motorola High–Speed CMOS Data Book (DL129/D).

MC54/74HC595A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
4
TIMING REQUIREMENTS (Input t
r
= tf = 6.0 ns)
Minimum Setup Time, Serial Data Input A to Shift Clock
(Figure 5)
Minimum Setup Time, Shift Clock to Latch Clock
(Figure 6)
Minimum Hold Time, Shift Clock to Serial Data Input A
(Figure 5)
Minimum Recovery Time, Reset Inactive to Shift Clock
(Figure 2)
Minimum Pulse Width, Reset
(Figure 2)
Minimum Pulse Width, Shift Clock
(Figure 1)
Minimum Pulse Width, Latch Clock
(Figure 6)
Maximum Input Rise and Fall Times
(Figure 1)
Inputs Resulting Function
Reset
Serial
Input
A
Shift
Clock
Latch
Clock
Output
Enable
Shift
Register
Contents
Latch
Register
Contents
Serial
Output
SQ
H
Parallel
Outputs
QA – Q
H
Reset shift register L X X L, H, L L U L U
Shift data into shift
register
H D L, H, L D → SRA;
SRN → SR
N+1
U SRG → SR
H
U
Shift register remains
unchanged
H X L, H, L, H, L U U U U
Transfer shift register
contents to latch register
H X L, H, L U SRN → LR
N
U SR
N
Latch register remains
unchanged
X X X L, H, L * U * U
Enable parallel outputs X X X X L * ** * Enabled
Force outputs into high
impedance state
X X X X H * ** * Z
SR = shift register contents D = data (L, H) logic level X = don’t care * = depends on Reset and Shift Clock inputs
LR = latch register contents U = remains unchanged Z = high impedance ** = depends on Latch Clock input

MC54/74HC595A
High–Speed CMOS Logic Data
DL129 — Rev 6
5 MOTOROLA
PIN DESCRIPTIONS
INPUTS
A (Pin 14)
Serial Data Input. The data on this pin is shifted into the
8–bit serial shift register.
CONTROL INPUTS
Shift Clock (Pin 11)
Shift Register Clock Input. A low– to–high transition on this
input causes the data at the Serial Input pin to be shifted into
the 8–bit shift register.
Reset (Pin 10)
Active–low, Asynchronous, Shift Register Reset Input. A
low on this pin resets the shift register portion of this device
only. The 8–bit latch is not affected.
Latch Clock (Pin 12)
Storage Latch Clock Input. A low–to–high transition on this
input latches the shift register data.
Output Enable (Pin 13)
Active–low Output Enable. A low on this input allows the
data from the latches to be presented at the outputs. A high
on this input forces the outputs (QA–QH) into the high–
impedance state. The serial output is not affected by this
control unit.
OUTPUTS
QA – QH (Pins 15, 1, 2, 3, 4, 5, 6, 7)
Noninverted, 3–state, latch outputs.
SQH (Pin 9)
Noninverted, Serial Data Output. This is the output of the
eighth stage of the 8–bit shift register. This output does not
have three–state capability.

MC54/74HC595A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
6
SWITCHING WAVEFORMS
SERIAL
INPUT A
50%
50%
LATCH
CLOCK
V
CC
GND
VALID
t
su
t
h
Figure 5.
SHIFT
CLOCK
OUTPUT
SQ
H
t
r
t
f
V
CC
GND
90%
50%
10%
90%
50%
10%
t
PLH
t
PHL
t
TLH
t
THL
t
w
1/f
max
RESET
OUTPUT
SQ
H
SHIFT
CLOCK
t
w
50%
50%
50%
V
CC
GND
V
CC
GND
t
PHL
t
rec
t
su
50%
50%
V
CC
GND
LATCH
CLOCK
QA–Q
H
OUTPUTS
50%
t
PLHtPHL
t
TLHtTHL
90%
50%
10%
V
CC
GND
V
CC
GND
SHIFT
CLOCK
LATCH
CLOCK
Figure 3.
V
CC
GND
t
w
Figure 1. Figure 2.
Figure 4.
Figure 6.
OUTPUT Q
OUTPUT Q
50%
50%
90%
10%
t
PZL
t
PLZ
t
PZHtPHZ
V
CC
GND
HIGH
IMPEDANCE
V
OL
V
OH
HIGH
IMPEDANCE
OUTPUT
ENABLE
50%
TEST CIRCUITS
*Includes all probe and jig capacitance
CL*
TEST POINT
DEVICE
UNDER
TEST
OUTPUT
*Includes all probe and jig capacitance
CL*
TEST POINT
DEVICE
UNDER
TEST
OUTPUT
CONNECT TO VCC WHEN
TESTING t
PLZ
AND t
PZL
.
CONNECT TO GND WHEN
TESTING t
PHZ
AND t
PZH
.
1 k
Ω
Figure 7. Figure 8.

MC54/74HC595A
High–Speed CMOS Logic Data
DL129 — Rev 6
7 MOTOROLA
D
R
Q
SR
A
D Q
LR
A
D
Q
SR
B
D Q
LR
B
R
D
Q
SR
C
D Q
LR
C
R
D
Q
SR
D
D Q
LR
D
R
D
Q
SR
E
D Q
LR
E
R
D
Q
SR
F
D Q
LR
F
R
D
Q
SR
G
D Q
LR
G
R
D
Q
SR
H
D Q
LR
H
R
EXPANDED LOGIC DIAGRAM
OUTPUT
ENABLE
LATCH
CLOCK
SERIAL
DATA
INPUT A
SHIFT
CLOCK
RESET
13
12
14
11
10
15
1
2
3
4
5
6
7
9
Q
A
Q
B
Q
C
Q
D
Q
E
Q
F
Q
G
Q
H
SERIAL
DATA
OUTPUT SQ
H
PARALLEL
DATA
OUTPUTS

MC54/74HC595A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
8
TIMING DIAGRAM
SHIFT
CLOCK
SERIAL DATA
INPUT A
RESET
LATCH
CLOCK
OUTPUT
ENABLE
Q
A
Q
B
Q
C
Q
D
Q
E
Q
F
Q
G
Q
H
SERIAL DATA
OUTPUT SQ
H
NOTE: implies that the output is in a high–impedance
state.

MC54/74HC595A
High–Speed CMOS Logic Data
DL129 — Rev 6
9 MOTOROLA
OUTLINE DIMENSIONS
J SUFFIX
CERAMIC PACKAGE
CASE 620–10
ISSUE V
N SUFFIX
PLASTIC PACKAGE
CASE 648–08
ISSUE R
19.05
6.10
—
0.39
1.40
0.21
3.18
19.93
7.49
5.08
0.50
1.65
0.38
4.31
0
°
0.51
15
°
1.01
1.27 BSC
2.54 BSC
7.62 BSC
MIN MINMAX MAX
INCHES MILLIMETERS
DIM
0.750
0.240
—
0.015
0.055
0.008
0.125
0.785
0.295
0.200
0.020
0.065
0.015
0.170
0.050 BSC
0.100 BSC
0.300 BSC
A
B
C
D
E
F
G
J
K
L
M
N
0
°
0.020
15
°
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4. DIM F MAY NARROW TO 0.76 (0.030) WHERE
THE LEAD ENTERS THE CERAMIC BODY.
1 8
916
–A
–
–B
–
C
K
N
G
E
F
D 16 PL
–T
–
SEATING
PLANE
M
L
J 16 PL
0.25 (0.010) T A
M
S
0.25 (0.010) T B
M
S
MIN MINMAX MAX
INCHES MILLIMETERS
DIM
A
B
C
D
F
G
H
J
K
L
M
S
18.80
6.35
3.69
0.39
1.02
0.21
2.80
7.50
0
°
0.51
19.55
6.85
4.44
0.53
1.77
0.38
3.30
7.74
10
°
1.01
0.740
0.250
0.145
0.015
0.040
0.008
0.110
0.295
0
°
0.020
0.770
0.270
0.175
0.021
0.070
0.015
0.130
0.305
10
°
0.040
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
2.54 BSC
1.27 BSC
0.100 BSC
0.050 BSC
–A
–
B
1 8
916
F
H
G
D
16 PL
S
C
–T
–
SEATING
PLANE
K
J
M
L
T A0.25 (0.010)
M M
0.25 (0.010) T B A
M
S S
MIN MINMAX MAX
MILLIMETERS INCHES
DIM
A
B
C
D
F
G
J
K
M
P
R
9.80
3.80
1.35
0.35
0.40
0.19
0.10
0
°
5.80
0.25
10.00
4.00
1.75
0.49
1.25
0.25
0.25
7
°
6.20
0.50
0.386
0.150
0.054
0.014
0.016
0.008
0.004
0
°
0.229
0.010
0.393
0.157
0.068
0.019
0.049
0.009
0.009
7
°
0.244
0.019
1.27 BSC 0.050 BSC
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
1
8
916
–A
–
–B
–
D 16 PL
K
C
G
–T
–
SEATING
PLANE
R X 45°
M
J
F
P 8 PL
0.25 (0.010) B
M M
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751B–05
ISSUE J

MC54/74HC595A
MOTOROLA High–Speed CMOS Logic Data
DL129 — Rev 6
10
OUTLINE DIMENSIONS
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948F–01
ISSUE O
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A 4.90 5.10 0.193 0.200
B 4.30 4.50 0.169 0.177
C ––– 1.20 ––– 0.047
D 0.05 0.15 0.002 0.006
F 0.50 0.75 0.020 0.030
G 0.65 BSC 0.026 BSC
H 0.18 0.28 0.007 0.011
J 0.09 0.20 0.004 0.008
J1 0.09 0.16 0.004 0.006
K 0.19 0.30 0.007 0.012
K1 0.19 0.25 0.007 0.010
L 6.40 BSC 0.252 BSC
M 0 8 0 8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER
SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT
DATUM PLANE –W–.
_ _ _ _
SECTION N–N
SEATING
PLANE
IDENT.
PIN 1
1
8
16
9
DETAIL E
J
J1
B
C
D
A
K
K1
H
G
DETAIL E
F
M
L
2X L/2
–U–
S
U0.15 (0.006) T
S
U0.15 (0.006) T
S
U
M
0.10 (0.004) V
S
T
0.10 (0.004)
–T–
–V–
–W–
0.25 (0.010)
16X REFK
N
N
How to reach us:
USA/EUROPE: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: RMFAX0@email.sps.mot.com –TOUCHTONE (602) 244–6609 HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty , representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “T ypical” parameters can and do vary in different
applications. All operating parameters, including “T ypicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
MC54/74HC595A/D
*MC54/74HC595A/D*
◊
CODELINE